1
|
Solmaz A, Bölükbaşi ÖS, Sari ZA. Green industry work: production of FeCl 3 from iron and steel industry waste (mill scale) and its use in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19795-19814. [PMID: 38367113 PMCID: PMC10927800 DOI: 10.1007/s11356-024-32451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Mill scale (MS) is considered to be a significant metallurgical waste, but there is no economical method yet to utilize its metal content. In this study, which covers various processes in several stages, the solution of iron in MS, which is the Iron and Steel Industry (I&SI) waste, as FeCl3 (MS-FeCl3) in the thermoreactor in the presence of HCl, was investigated. In the next step, the conditions for using this solution as a coagulant in the treatment of I&SI wastewater were investigated using the jar test. The results of the treated water sample were compared by chemical oxygen demand (COD), total suspended solids (TSS), color, and turbidity analyses using commercial aluminum sulfate (Al2(SO4)3) and FeCl3 (C-FeCl3). Additionally, heavy metal analyses were conducted, and the treatment performance of three coagulants was presented. Accordingly, while 2.0 mg/L anionic polyelectrolyte was consumed at a dosage of 4.05 mg/L Al2(SO4)3 at pH 7.0, 0.25 mg/L anionic polyelectrolyte was consumed at a dosage of 1.29 mg/L at pH 5.0 in the C-FeCl3 and MS-FeCl3 studies. Also, Fe, Cr, Mn, Ni, Zn, Cd, Hg, and Pb removal efficiencies were over 93.56% for all three coagulant usage cases. The results showed that the wastewater treatment performance of MS-FeCl3 by the recycling of MS, which is an I&SI waste, was at the same level as C-FeCl3. Thus, thanks to recycling, waste scale can be used as an alternative to commercial products for green production.
Collapse
Affiliation(s)
- Alper Solmaz
- Department of Environmental Protection and Control-Iskenderun Vocational School of Higher Education, Iskenderun Technical University, Hatay, Turkey.
| | - Ömer Saltuk Bölükbaşi
- Department of Metallurgy and Materials Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, 31200, Hatay, Turkey
| | - Zeynel Abidin Sari
- Department of Metallurgy-Iskenderun Vocational School of Higher Education, Iskenderun Technical University, Hatay, Turkey
| |
Collapse
|
2
|
Dickson LE, Cranston RR, Xu H, Swaraj S, Seferos DS, Lessard BH. Blade Coating Poly(3-hexylthiophene): The Importance of Molecular Weight on Thin-Film Microstructures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55109-55118. [PMID: 37963182 DOI: 10.1021/acsami.3c12335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Poly(3-hexylthiophene) is one of the most prevalent and promising conjugated polymers for use in organic electronics. However, the deposition of this material in thin films is highly dependent on the process, such as blade coating versus spin coating and material properties such as molecular weight. Typically, large polymer dispersity makes it difficult to isolate the effect of molecular weight without considering a distribution. In this study, we characterize oligothiophenes of exactly 8, 11, and 14 repeat units, which were deposited into thin films by varying blade coating conditions and postdeposition annealing. From synchrotron-based grazing incidence wide-angle X-ray scattering (GIWAXS), scanning transmission X-ray microscopy (STXM) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS), Raman microscopy, optical microscopy, and X-ray diffraction (XRD), it was suggested that higher molecular weight polymers exhibit a fast-forming crystalline polymorph (form-1) while low molecular weight polymers exhibit a slow forming polymorph (form-2) with large domain boundaries. As molecular weight is gradually increased, the polymorph formed transitions from form-1 and form-2, where 11 repeat unit oligomers display both polymorphs. We also found that processing conditions can increase the formation of the form-2 polymorph. We also report improved organic thin film transistor (OTFT) performance when form-1 is present. Overall, oligothiophene polymorph formation is highly dependent on the molecular weight and processing conditions, providing critical insight into the importance of polymer weight control in the development of thin-film electronics based on conjugated polymers.
Collapse
Affiliation(s)
- Laura E Dickson
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Rosemary R Cranston
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Hao Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sufal Swaraj
- L'Orme des Merisiers, Départementale 128, SOLEIL Synchrotron, Saint-Aubin 91190, France
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave., Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Nicolaidou E, Parker AW, Sazanovich IV, Towrie M, Hayes SC. Unraveling Excited State Dynamics of a Single-Stranded DNA-Assembled Conjugated Polyelectrolyte. J Phys Chem Lett 2023; 14:9794-9803. [PMID: 37883808 PMCID: PMC10641883 DOI: 10.1021/acs.jpclett.3c01803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Conformational templating of conjugated polyelectrolytes with single-stranded DNAs (ssDNAs) has the prospect of tailoring excited state dynamics for specific optoelectronic applications. We use ultrafast time-resolved infrared spectroscopy to study the photophysics of a cationic polythiophene assembled with different ssDNAs, inducing distinct conformations (flexible disordered structures vs more rigid complexes with increased backbone planarity). Intrachain polarons are always produced upon selective excitation of the polymer, the extent being dependent on backbone torsional order. Polaron formation and decay were monitored through evolution of IR-active vibrational modes that interfere with mid-IR polaron electronic absorption giving rise to Fano-antiresonances. Selective UV excitation of ssDNAs revealed that stacking interactions between thiophene rings and nucleic acid bases can promote the formation of an intermolecular charge transfer complex. The findings inform designers of functional conjugated polymers by identifying that involvement of the scaffold in the photophysics needs to be considered when developing such structures for optoelectronic applications.
Collapse
Affiliation(s)
- Eliana Nicolaidou
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Anthony W. Parker
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Sophia C. Hayes
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
4
|
Takaya T, Shinohara M, Iwata K. Torsional relaxation dynamics of vinylene groups in photoexcited MEH-PPV as studied by time-resolved resonance stimulated Raman spectroscopy in the 900–1500 nm region. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Piercy V, Saeed KH, Prentice AW, Neri G, Li C, Gardner AM, Bai Y, Sprick RS, Sazanovich IV, Cooper AI, Rosseinsky MJ, Zwijnenburg MA, Cowan AJ. Time-Resolved Raman Spectroscopy of Polaron Formation in a Polymer Photocatalyst. J Phys Chem Lett 2021; 12:10899-10905. [PMID: 34730969 PMCID: PMC8591663 DOI: 10.1021/acs.jpclett.1c03073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Polymer photocatalysts are a synthetically diverse class of materials that can be used for the production of solar fuels such as H2, but the underlying mechanisms by which they operate are poorly understood. Time-resolved vibrational spectroscopy provides a powerful structure-specific probe of photogenerated species. Here we report the use of time-resolved resonance Raman (TR3) spectroscopy to study the formation of polaron pairs and electron polarons in one of the most active linear polymer photocatalysts for H2 production, poly(dibenzo[b,d]thiophene sulfone), P10. We identify that polaron-pair formation prior to thermalization of the initially generated excited states is an important pathway for the generation of long-lived photoelectrons.
Collapse
Affiliation(s)
- Verity
L. Piercy
- Stephenson
Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K.
| | - Khezar H. Saeed
- Stephenson
Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K.
| | - Andrew W. Prentice
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Gaia Neri
- Stephenson
Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K.
| | - Chao Li
- Stephenson
Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Adrian M. Gardner
- Stephenson
Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K.
| | - Yang Bai
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Reiner Sebastian Sprick
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory,
Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Andrew I. Cooper
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Matthew J. Rosseinsky
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool L7 3NY, U.K.
| | - Martijn A. Zwijnenburg
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Alexander J. Cowan
- Stephenson
Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K.
| |
Collapse
|
6
|
Narra S, Tsai S, Awasthi K, Rana S, Diau EW, Ohta N. Photoluminescence of
P3HT
:
PCBM
bulk heterojunction thin films and effect of external electric field. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sudhakar Narra
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Shuo‐En Tsai
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Kamlesh Awasthi
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Shailesh Rana
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Eric Wei‐Guang Diau
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Nobuhiro Ohta
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
7
|
Kim W, Tahara S, Kuramochi H, Takeuchi S, Kim T, Tahara T, Kim D. Mode‐Specific Vibrational Analysis of Exciton Delocalization and Structural Dynamics in Conjugated Oligomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
- Current address: Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Shinya Tahara
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Current address: Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aramaki-aza-Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- JST PRESTO 4-1-8 Honcho Kawaguchi 332-0012 Japan
- Current address: Research Center of Integrative Molecular Systems (CIMoS) Institute for Molecular Science 38 Nishigo-Naka, Myodaji Okazaki 444-8585 Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
- Current address: Graduate School of Material Science University of Hyogo 3-2-1 Koto Kamigori Ako 678-1297 Japan
| | - Taeyeon Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
- Current address: Department of Chemistry and Institute for Sustainability and Energy at Northwestern Northwestern University Evanston IL 60208-3113 USA
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory RIKEN 2-1 Hirosawa Wako 351-0198 Japan
- Ultrafast Spectroscopy Research Team RIKEN Center for Advanced Photonics (RAP) 2-1 Hirosawa Wako 351-0198 Japan
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems Yonsei University Seoul 03722 Korea
| |
Collapse
|
8
|
Kim W, Tahara S, Kuramochi H, Takeuchi S, Kim T, Tahara T, Kim D. Mode-Specific Vibrational Analysis of Exciton Delocalization and Structural Dynamics in Conjugated Oligomers. Angew Chem Int Ed Engl 2021; 60:16999-17008. [PMID: 33730430 DOI: 10.1002/anie.202102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 11/09/2022]
Abstract
Exciton delocalization in organic semiconducting polymers, affected by structures at a molecular level, plays a crucial role in modulating relaxation pathways, such as charge generation and singlet fission, which can boost device efficiency. However, the structural diversity of polymers and broad signals from typical electronic spectroscopy have their limits when it comes to revealing the interplay between local structures and exciton delocalization. To tackle these problems, we apply femtosecond stimulated Raman spectroscopy in archetypical conjugated oligothiophenes with different chain lengths. We observed Raman frequency dispersions of symmetric bond stretching modes and mode-specific kinetics in the S1 Raman spectra, which underpins the subtle and complex interplay between exciton delocalization and bond length alternation along the conjugation coordinate. Our results provide a more general picture of exciton delocalization in the context of molecular structures for conjugated materials.
Collapse
Affiliation(s)
- Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea.,Current address: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shinya Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Current address: Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan.,JST PRESTO, 4-1-8 Honcho, Kawaguchi, 332-0012, Japan.,Current address: Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaji, Okazaki, 444-8585, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan.,Current address: Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Kamigori, Ako, 678-1297, Japan
| | - Taeyeon Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea.,Current address: Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, 60208-3113, USA
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional, π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
9
|
Maddali H, House KL, Emge TJ, O'Carroll DM. Identification of the local electrical properties of crystalline and amorphous domains in electrochemically doped conjugated polymer thin films. RSC Adv 2020; 10:21454-21463. [PMID: 35518769 PMCID: PMC9054526 DOI: 10.1039/d0ra02796k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Doped polymer thin films have several applications in electronic, optoelectronic and thermoelectric devices. Often the electrical properties of doped conjugated polymer thin films are affected by their local physical and mechanical characteristics. However, investigations into the effects of doping on local domain properties have not been carried out. Here, we study the physical, mechanical and optical properties of electrochemically doped P3HT thin films at the nanoscale and establish a relation between doping level and the physical properties of P3HT thin films. Bulk crystallinity of both pristine and doped P3HT thin films, characterized using grazing incidence X-ray diffraction, shows a clear loss in crystallinity upon doping. Nanoscale crystalline and amorphous domains in the films are visualized by multimode atomic force microscopy (AFM). It is apparent that the crystalline domains are most affected by doping and have a higher degree of doping compared to amorphous domains. This results in crystalline domains exhibiting superior electrical conductivity at a local level. These results are further supported by Raman mapping and elemental analysis of doped films. A direct relation is established between the physical, mechanical and electrical properties of doped P3HT thin films based on the AFM data. The findings demonstrate that higher dopant concentrations are found in crystalline domains compared to amorphous domains, which has not been shown before to the best of our knowledge. This study can be used to optimize the electronic properties of doped P3HT thin films for use in electronic and optoelectronic device applications.
Collapse
Affiliation(s)
- Hemanth Maddali
- Department of Chemistry and Chemical Biology, Rutgers University 610 Taylor Road., Piscataway NJ 08854 USA
| | - Krystal L House
- Department of Chemistry and Chemical Biology, Rutgers University 610 Taylor Road., Piscataway NJ 08854 USA
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers University 610 Taylor Road., Piscataway NJ 08854 USA
| | - Deirdre M O'Carroll
- Department of Chemistry and Chemical Biology, Rutgers University 610 Taylor Road., Piscataway NJ 08854 USA
- Department of Materials Science and Engineering, Rutgers University 607 Taylor Rd., Piscataway NJ 08854 USA
| |
Collapse
|
10
|
Special Issue "Raman Spectroscopy: A Spectroscopic 'Swiss-Army Knife'". Molecules 2019; 24:molecules24152852. [PMID: 31390748 PMCID: PMC6696425 DOI: 10.3390/molecules24152852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 11/17/2022] Open
|