1
|
Sun Y, Quan K, Zhang R, Feng A, Ye M, Zhang K. An enzyme-free multi-stage hybridization chain reaction for the electrochemiluminescence detection of MRSA using MoS 2 NF@AuNPs catalyst. Food Chem 2025; 481:144043. [PMID: 40157107 DOI: 10.1016/j.foodchem.2025.144043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a ubiquitous foodborne pathogen capable of causing food poisoning and producing enterotoxins in foodstuffs, which ultimately results in various illnesses, such as vomiting, diarrhea, and pneumonia. In this study, we present a MoS2 NF@AuNPs enhanced electrochemiluminescence (ECL) biosensor for MRSA detection based on a DNA branching tree structure formed via enzyme-free hybridization chain reaction (HCR) amplification. This approach integrates bacterial aptamers with multistage HCR amplification to achieve highly sensitive and specific target recognition. Furthermore, MoS2 NF@AuNPs act as a synergistic catalyst for Ru(bpy)32+ molecules, which in turn substantially enhances the signal readout of the biosensor. The biosensor exhibits a robust linear correlation for MRSA detection over a concentration range of 100 to 107 cfu/mL, with a detection limit of 1 cfu/mL. In addition, the biosensor demonstrates excellent selectivity and high sensitivity when applied to real samples such as water, juice, and milk.
Collapse
Affiliation(s)
- Yudie Sun
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Maanshan, Anhui 243032, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Kehong Quan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Maanshan, Anhui 243032, PR China
| | - Ruilai Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Maanshan, Anhui 243032, PR China
| | - Aobo Feng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Maanshan, Anhui 243032, PR China
| | - Mingfu Ye
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Maanshan, Anhui 243032, PR China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Maanshan, Anhui 243032, PR China.
| |
Collapse
|
2
|
Hangan AC, Oprean LS, Dican L, Procopciuc LM, Sevastre B, Lucaciu RL. Metal-Based Drug-DNA Interactions and Analytical Determination Methods. Molecules 2024; 29:4361. [PMID: 39339356 PMCID: PMC11434005 DOI: 10.3390/molecules29184361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA structure has many potential places where endogenous compounds and xenobiotics can bind. Therefore, xenobiotics bind along the sites of the nucleic acid with the aim of changing its structure, its genetic message, and, implicitly, its functions. Currently, there are several mechanisms known to be involved in DNA binding. These mechanisms are covalent and non-covalent interactions. The covalent interaction or metal base coordination is an irreversible binding and it is represented by an intra-/interstrand cross-link. The non-covalent interaction is generally a reversible binding and it is represented by intercalation between DNA base pairs, insertion, major and/or minor groove binding, and electrostatic interactions with the sugar phosphate DNA backbone. In the present review, we focus on the types of DNA-metal complex interactions (including some representative examples) and on presenting the methods currently used to study them.
Collapse
Affiliation(s)
- Adriana Corina Hangan
- Department of Inorganic Chemistry, Faculty of Pharmacy, "Iuliu-Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Luminița Simona Oprean
- Department of Inorganic Chemistry, Faculty of Pharmacy, "Iuliu-Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lucia Dican
- Department of Medical Biochemistry, Faculty of Medicine, "Iuliu-Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lucia Maria Procopciuc
- Department of Medical Biochemistry, Faculty of Medicine, "Iuliu-Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bogdan Sevastre
- Clinic Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Roxana Liana Lucaciu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, "Iuliu-Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Bozzi AS, Rocha WR. Photophysics and Excited State Reactions of [Ru(bpy) 2dppn] 2+: A Computational Study. Chem Asian J 2024:e202400605. [PMID: 39185997 DOI: 10.1002/asia.202400605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
In this work, we used DFT and TD-DFT in the investigation of the structural parameters and photophysics of the complex [Ru(bpy)2dppn]2+ (dppn=benzo[i]-dipyrido[3,2-a:2',3'-c]phenazine) in water, and its suitability as a photosensitizer (PS) in photodynamic therapy (PDT). For that, the thermodynamics of electron transfer (ET) and energy transfer (ENT) reactions in the excited state with molecular oxygen and guanosine-5'-monophosphate (GMP) were investigated. The overall intersystem crossing (ISC) rate constant was approximately 1012 s-1, indicating that this process is highly favorable, and the triplet excited states are populated. The triplet excited states are known to lead to photoreactions between the PS and species of the medium or directly with nucleobases. Here, we show that the Ru-dppn complex can react favorably to oxidize the GMP and generate singlet oxygen. Furthermore, this complex can also act as an intercalator between DNA base pairs and undergo dual-channel reactions. It has been proposed that the T2 excited state is responsible for oxidizing the GMP, but we show that T1 is thermodynamically capable of undergoing the same reaction. In this sense, docking simulations were carried out to investigate further the interactions of the Ru-dppn complex with a DNA fragment.
Collapse
Affiliation(s)
- A S Bozzi
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - W R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMolab, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Pozza MD, Mesdom P, Abdullrahman A, Prieto Otoya TD, Arnoux P, Frochot C, Niogret G, Saubaméa B, Burckel P, Hall JP, Hollenstein M, Cardin CJ, Gasser G. Increasing the π-Expansive Ligands in Ruthenium(II) Polypyridyl Complexes: Synthesis, Characterization, and Biological Evaluation for Photodynamic Therapy Applications. Inorg Chem 2023; 62:18510-18523. [PMID: 37913550 DOI: 10.1021/acs.inorgchem.3c02606] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Lack of selectivity is one of the main issues with currently used chemotherapies, causing damage not only to altered cells but also to healthy cells. Over the last decades, photodynamic therapy (PDT) has increased as a promising therapeutic tool due to its potential to treat diseases like cancer or bacterial infections with a high spatiotemporal control. Ruthenium(II) polypyridyl compounds are gaining attention for their application as photosensitizers (PSs) since they are generally nontoxic in dark conditions, while they show remarkable toxicity after light irradiation. In this work, four Ru(II) polypyridyl compounds with sterically expansive ligands were studied as PDT agents. The Ru(II) complexes were synthesized using an alternative route to those described in the literature, which resulted in an improvement of the synthesis yields. Solid-state structures of compounds [Ru(DIP)2phen]Cl2 and [Ru(dppz)2phen](PF6)2 have also been obtained. It is well-known that compound [Ru(dppz)(phen)2]Cl2 binds to DNA by intercalation. Therefore, we used [Ru(dppz)2phen]Cl2 as a model for DNA interaction studies, showing that it stabilized two different sequences of duplex DNA. Most of the synthesized Ru(II) derivatives showed very promising singlet oxygen quantum yields, together with noteworthy photocytotoxic properties against two different cancer cell lines, with IC50 in the micro- or even nanomolar range (0.06-7 μM). Confocal microscopy studies showed that [Ru(DIP)2phen]Cl2 and [Ru(DIP)2TAP]Cl2 accumulate preferentially in mitochondria, while no mitochondrial internalization was observed for the other compounds. Although [Ru(dppn)2phen](PF6)2 did not accumulate in mitochondria, it interestingly triggered an impairment in mitochondrial respiration after light irradiation. Among others, [Ru(dppn)2phen](PF6)2 stands out for its very good IC50 values, correlated with a very high singlet oxygen quantum yield and mitochondrial respiration disruption.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health, Paris 75005, France
| | - Pierre Mesdom
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health, Paris 75005, France
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading, Whiteknights Campus, Reading, Berkshire RG6 6AD, U.K
| | | | | | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, Nancy F-54000, France
| | - Germain Niogret
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Departement of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Paris 75015, France
| | - Bruno Saubaméa
- Université Paris Cité, INSERM, CNRS, P-MIM, Plateforme d'Imagerie Cellulaire et Moléculaire (PICMO), Paris F-75006, France
| | - Pierre Burckel
- Université de Paris, Institut de physique du globe de Paris, CNRS, Paris F-75005, France
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading, Whiteknights Campus, Reading, Berkshire RG6 6AD, U.K
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Departement of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Paris 75015, France
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health, Paris 75005, France
| |
Collapse
|
5
|
Ponte F, Scoditti S, Barretta P, Mazzone G. Computational Assessment of a Dual-Action Ru(II)-Based Complex: Photosensitizer in Photodynamic Therapy and Intercalating Agent for Inducing DNA Damage. Inorg Chem 2023. [PMID: 37248070 DOI: 10.1021/acs.inorgchem.3c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A combined quantum-mechanical and classical molecular dynamics study of a recent Ru(II) complex with potential dual anticancer action is reported here. The main basis for the multiple action relies on the merocyanine ligand, whose electronic structure allows the drug to be able to absorb within the therapeutic window and in turn efficiently generate 1O2 for photodynamic therapy application and to intercalate within two nucleobases couples establishing reversible electrostatic interactions with DNA. TDDFT outcomes, which include the absorption spectrum, triplet states energy, and spin-orbit matrix elements, evidence that the photosensitizing activity is ensured by an MLCT state at around 660 nm, involving the merocyanine-based ligand, and by an efficient ISC from such state to triplet states with different characters. On the other hand, the MD exploration of all the possible intercalation sites within the dodecamer B-DNA evidences the ability of the complex to establish several electrostatic interactions with the nucleobases, thus potentially inducing DNA damage, though the simulation of the absorption spectra for models extracted by each MD trajectory shows that the photosensitizing properties of the complex remain unaltered. The computational results support that the anti-tumor effect may be related to multiple mechanisms of action.
Collapse
Affiliation(s)
- Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Stefano Scoditti
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Pierraffaele Barretta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
6
|
Silva HVR, da Silva GÁF, Zavan B, Machado RP, de Araujo-Neto JH, Ellena JA, Ionta M, Barbosa MIF, Doriguetto AC. The nicotinamide ruthenium(II) complex induces the production of reactive oxygen species (ROS), cell cycle arrest, and apoptosis in melanoma cells. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Synthesis, characterization and in vitro cytotoxicity of ruthenium(II) metronidazole complexes: Cell cycle arrest at G1/S transition and apoptosis induction in MCF-7 cells. J Inorg Biochem 2022; 237:112022. [PMID: 36244314 DOI: 10.1016/j.jinorgbio.2022.112022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
Abstract
Ruthenium compounds are known to be potential drug candidates since they offer the potential for reduced toxicity. Furthermore, the various oxidation states, different mechanisms of action and ligand substitution kinetics give them advantages over platinum-based complexes, making them suitable for use in biological applications. So, herein, novel ruthenium(II) complexes with metronidazole as ligand were obtained [RuCl(MTNZ)(dppb)(4,4'-Mebipy)]PF6 (1), [RuCl(MTNZ)(dppb)(4,4'-Methoxybipy)]PF6 (2), [RuCl(MTNZ)(dppb)(bipy)]PF6 (3) and [RuCl(MTNZ)(dppb)(phen)]PF6 (4) where, MTNZ = metronidazole, dppb = 1,4-bis(diphenylphosphino)butane, 4,4'-Mebipy = 4,4'-dimethyl-2,2'-bipyridine, 4,4'-Methoxybipy = 4,4'-dimethoxy-2,2'-bipyridine, bipy = 2,2'-bipyridine and phen = 1,10-phenanthroline. The complexes were characterized by elemental analysis, molar conductivity, infrared and UV-Vis spectroscopy, cyclic voltammetry, 31P{1H}, 1H, 13C{1H} and Dept 135 NMR and mass spectrometry. The interaction of complexes 1-4 with DNA was evaluated, and their cytotoxicity profiles were determined on four different tumor cell lines derived from human cancers (SK-MEL-147, melanoma; HepG2, hepatocarcinoma; MCF-7, estrogen-positive breast cancer; A549, non-small cell lung cancer). We demonstrated that complexes (1) and (3) are promising antitumor agents once inhibited the proliferative behavior of MCF-7 cells and induced apoptosis.
Collapse
|
8
|
Georgakopoulou C, Thomos D, Tsolis T, Ypsilantis K, Plakatouras JC, Kordias D, Magklara A, Kouderis C, Kalampounias AG, Garoufis A. Synthesis, characterization, interactions with the DNA duplex dodecamer d(5'-CGCGAATTCGCG-3') 2 and cytotoxicity of binuclear η 6-arene-Ru(II) complexes. Dalton Trans 2022; 51:13808-13825. [PMID: 36039685 DOI: 10.1039/d2dt02304k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel binuclear η6-arene-Ru(II) complexes with the general formula {[(η6-cym)Ru(L)]2(μ-BL)}(PF6)4, and their corresponding water soluble {[(η6-cym)Ru(L)]2(μ-BL)}Cl4, where cym = p-cymene, L = 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), BL = 4,4'-bipyridine (BL-1), 1,2-bis(4-pyridyl)ethane (BL-2) and 1,3-bis(4-pyridyl)propane (BL-3), were synthesized and characterized. The structure of {[(η6-cym)Ru(phen)]2(μ-BL-1)}(PF6)4 was determined by X-ray single crystal methods. The interaction of {[(η6-cym)Ru(phen)]2(μ-BL-i)}Cl4 (i = 1, 2, 3; (4), (5) and (6) correspondingly) with the DNA duplex d(5'-CGCGAATTCGCG-3')2 was studied by means of NMR techniques and fluorescence titrations. The results show that complex (4) binds with a Kb = 12.133 × 103 M-1 through both intercalation and groove binding, while (5) and (6) are groove binders (Kb = 2.333 × 103 M-1 and Kb = 3.336 × 103 M-1 correspondingly). Comparison with the mononuclear complex [(η6-cym)Ru(phen)(py)]2+ reveals that it binds to the d(5'-CGCGAATTCGCG-3')2 with a Kb value two orders of magnitude lower than (4) (Kb = 0.158 × 103 M-1), indicating that for the binuclear complexes both ruthenium moieties participate in the binding. The complexes were found to be cytotoxic against the A2780 and A2780 res. cancer cell line with a selectivity index (SI) in the range of 3.0-5.9.
Collapse
Affiliation(s)
| | - Dimitrios Thomos
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece.
| | - Theodoros Tsolis
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece.
| | | | - John C Plakatouras
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece. .,University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| | - Dimitris Kordias
- Biomedical Research Institute-Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki Magklara
- Biomedical Research Institute-Foundation for Research and Technology, 45110 Ioannina, Greece.,Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece.,Institute of Biosciences, University Research Center of Ioannina (U.R.C.I.), Ioannina, Greece
| | | | - Angelos G Kalampounias
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece. .,University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| | - Achilleas Garoufis
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece. .,University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
9
|
Katheria S. Ruthenium Complexes as Potential Cancer Cell Growth Inhibitors for Targeted Chemotherapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202201645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Wang H, Liu X, Tan L. A naked-eye colorimetric molecular "light switch" based on ruthenium(II) polypyridyl complex [Ru(phen) 2ttbd] 2+ as binder and stabilizer for RNA duplex and triplex. Int J Biol Macromol 2022; 215:571-578. [PMID: 35752337 DOI: 10.1016/j.ijbiomac.2022.06.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/05/2022]
Abstract
Binding of [Ru(phen)2ttbd]2+ (phen = 1,10-phenanthroline, ttbd = 4-(6-propenylpyrido-[3,2-a]- phenzain-10-yl-benzene-1,2-diamine) to the RNA triplex poly(U-A*U) (herein "-" and "*" refer to the Watson-Crick and Hoogsteen binding, respectively) and the duplex poly(A-U) have been investigated by spectral technology and viscosity method. Analysis of spectral titrations and viscosity experiments as well as melting measurements suggest that [Ru(phen)2ttbd]2+ binds to the studied RNA triplex and duplex through intercalation, while its binding constant toward the triplex is greater than the duplex. Luminescent titrations indicate that [Ru(phen)2ttbd]2+ can act as a molecular "light switch" for the two RNAs and the switch effect can be detected by the naked-eye. Moreover, the "light switch" can be repeatedly cycled off and on by adjusting the pH of the solution, whereas color change in the case of the triplex is more significant compared with the duplex. To our knowledge, [Ru(phen)2ttbd]2+ is the first small molecule capable of serving as a pH-controlled reversible visual molecular "light switch" for both the RNA triplex poly(U-A*U) and duplex poly(A-U). Thermal denaturation experiments suggest that [Ru(phen)2ttbd]2+ can obviously increase the triplex stabilization, while it stabilizing third-strand is more marked in comparison with the template duplex of the triplex, indicating this complex preferentially binds to third-strand. The obtained results may be useful for understanding the binding of Ru(II) polypyridyl complexes to RNAs.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
11
|
Zhu L, Zhao D, Xu L, Sun M, Song Y, Liu M, Li M, Zhang J. A Fluorescent "Turn-On" Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1262. [PMID: 35457970 PMCID: PMC9027387 DOI: 10.3390/nano12081262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
Abstract
Early diagnosis of cancer is of paramount significance for the therapeutic intervention of cancers. Although the detection of circulating cell-free DNA (cfDNA) has emerged as a promising, minimally invasive approach for early cancer diagnosis, there is an urgent need to develop a highly sensitive and rapid method to precisely identify plasma cfDNA from clinical samples. Herein, we report a robust fluorescent "turn-on" clutch probe based on non-emissive QDs-Ru complexes to rapidly recognize EGFR gene mutation in plasma cfDNA from lung cancer patients. In this system, the initially quenched emission of QDs is recovered while the red emission of Ru(II) complexes is switched on. This is because the Ru(II) complexes can specifically intercalate into the double-stranded DNA (dsDNA) to form Ru-dsDNA complexes and simultaneously liberate free QDs from the QDs-Ru complexes, which leads to the occurrence of an overlaid red fluorescence. In short, the fluorescent "turn-on" clutch probe offers a specific, rapid, and sensitive paradigm for the recognition of plasma cfDNA biomarkers from clinical samples, providing a convenient and low-cost approach for the early diagnosis of cancer and other gene-mutated diseases.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Lixin Xu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Mingrui Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| |
Collapse
|
12
|
Understanding the role of ancillary ligands in the interaction of Ru(II) complexes with covalent arylamine-DNA adducts. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Photocytotoxic Activity of Ruthenium(II) Complexes with Phenanthroline-Hydrazone Ligands. Molecules 2021; 26:molecules26072084. [PMID: 33917290 PMCID: PMC8038675 DOI: 10.3390/molecules26072084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
This paper reports on the synthesis and characterization of two new polypyridyl-hydrazone Schiff bases, (E)-N′-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)thiophene-2-carbohydrazide (L1) and (E)-N′-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)furan-2-carbohydrazide (L2), and their two Ru(II) complexes of the general formula [RuCl(DMSO)(phen)(Ln)](PF6). Considering that hydrazides are a structural part of severa l drugs and metal complexes containing phenanthroline derivatives are known to interact with DNA and to exhibit antitumor activity, more potent anticancer agents can be obtained by covalently linking the thiophene acid hydrazide or the furoic acid hydrazide to a 1,10-phenanthroline moiety. These ligands and the Ru(II) complexes were characterized by elemental analyses, electronic, vibrational, 1H NMR, and ESI-MS spectroscopies. Ru is bound to two different N-heterocyclic ligands. One chloride and one S-bonded DMSO in cis-configuration to each other complete the octahedral coordination sphere around the metal ion. The ligands are very effective in inhibiting cellular growth in a chronic myelogenous leukemia cell line, K562. Both complexes are able to interact with DNA and present moderate cytotoxic activity, but 5 min of UV-light exposure increases cytotoxicity by three times.
Collapse
|
14
|
Min I, Tamaki Y, Ishitani O, Serizawa T, Ito Y, Uzawa T. Effective Suppression of O2 Quenching of Photo-Excited Ruthenium Complex Using RNA Aptamer. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Iljae Min
- RIKEN CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yusuke Tamaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- RIKEN CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanori Uzawa
- RIKEN CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Oliveira VA, Terenzi H, Menezes LB, Chaves OA, Iglesias BA. Evaluation of DNA-binding and DNA-photocleavage ability of tetra-cationic porphyrins containing peripheral [Ru(bpy)2Cl]+ complexes: Insights for photodynamic therapy agents. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:111991. [DOI: 10.1016/j.jphotobiol.2020.111991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/02/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
|
16
|
Li S, Xu G, Zhu Y, Zhao J, Gou S. Bifunctional ruthenium(ii) polypyridyl complexes of curcumin as potential anticancer agents. Dalton Trans 2020; 49:9454-9463. [PMID: 32598409 DOI: 10.1039/d0dt01040e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(ii)-polypyridyl complexes have been widely studied and well established for their antitumor properties. Modifications of the coordination environment around the Ru atom through a proper choice of the ligand can lead to different modes of action and result in greatly improved anticancer efficacy. Herein, two Ru(ii)-polypyridyl complexes of curcumin were synthesized and characterized as potential anticancer agents. In vitro tests indicated that complexes 1 and 2 displayed excellent antiproliferative activity against the tested cancer cell lines, especially complex 2, which exhibited superior cytotoxicity compared to curcumin and cisplatin. Further biological evaluations demonstrated that complexes 1 and 2 can cause cell apoptosis via DNA interaction and MEK/ERK signaling pathway, which is the first example of a Ru(ii)-polypyridyl complex inhibiting the MEK/ERK signaling pathway and DNA intercalation. Overall, this work suggests that coordination with bioactive agents may endow Ru(ii)-polypyridyl complexes with improved pharmaceutical properties and synergistic effects for cancer therapy.
Collapse
Affiliation(s)
- Shuang Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | | | | | | | | |
Collapse
|