1
|
Xu C, Wen S, Du X, Zou X, Leung ELH, Zhou G, Wu Q, Shen B. Targeting regulated cell death (RCD) with naturally derived sesquiterpene lactones in cancer therapy. Pharmacol Res 2025; 211:107553. [PMID: 39706282 DOI: 10.1016/j.phrs.2024.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Regulated cell death (RCD) is a type of cell death modulated by specific signal transduction pathways. Currently, known RCD types include apoptosis, autophagy, ferroptosis, necroptosis, cuproptosis, pyroptosis, and NETosis. Mutations in cancer cells may prevent the RCD pathway; therefore, targeting RCD in tumors has become a promising therapeutic approach. Sesquiterpene lactones represent a diverse and extensive class of plant-derived phytochemicals that serve as potential sources for developing various drugs. Recent studies have shown that sesquiterpene lactones have promising potential in cancer treatment. This review systematically summarizes recent progress in the study of sesquiterpene lactones as antitumor agents, highlighting their role in targeting various RCD pathways, including those involved in apoptosis, autophagy, ferroptosis, necroptosis, and cuproptosis. The primary purpose of the present review is to provide a clear picture of the regulation of RCD by sesquiterpene lactones against different targets in various cancers, which will facilitate the development of new strategies for cancer therapy.
Collapse
Affiliation(s)
- Cong Xu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China; State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao
| | - Shaodi Wen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Xiaoyue Du
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Xinhua Zou
- Department of Vascular and Tumor Interventional Medicine, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | | | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China; DongTai People's Hospital, Dongtai, Jiangsu, China.
| |
Collapse
|
2
|
Lin H, Wang K, Yang J, Wang A, Deng J, Lin D. Donepezil promotes skin flap survival through activation of the HIF-1α/VEGF signalling pathway. Wound Repair Regen 2024; 32:500-510. [PMID: 38551210 DOI: 10.1111/wrr.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 07/11/2024]
Abstract
Flaps are mainly used to repair wounds in the clinical setting but can sometimes experience ischaemic necrosis postoperatively. This study investigated whether donepezil, an acetylcholinesterase inhibitor, can enhance the survival rate of flaps. We randomly allocated 36 rats into control, low-dose (3 mg/kg/day), and high-dose (5 mg/kg/day) groups. On Postoperative day 7, we assessed flap viability and calculated the mean area of viable flap. After euthanizing the rats, we employed immunological and molecular biology techniques to examine the changes in flap tissue vascularization, apoptosis, autophagy, and inflammation. Donepezil enhanced the expression of hypoxia-inducible factor and vascular endothelial growth factor to facilitate angiogenesis. In addition, it elevated the expression of LC3B, p62, and beclin to stimulate autophagy. Furthermore, it increased the expression of Bcl-2 while reducing the expression of Bax, thus inhibiting apoptosis. Finally, it had anti-inflammatory effects by reducing the levels of IL-1β, IL-6, and TNF-α. The results suggest that donepezil can enhance the viability of randomly generated skin flaps by upregulating HIF-1α/VEGF signalling pathway, facilitating vascularization, inducing autophagy, suppressing cell apoptosis, and mitigating inflammation within the flap tissue.
Collapse
Affiliation(s)
- Hang Lin
- Department of Hand and Plastic Surgery, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaitao Wang
- Department of Hand and Plastic Surgery, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jialong Yang
- Department of Hand and Plastic Surgery, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - An Wang
- Department of Hand and Plastic Surgery, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiapeng Deng
- Department of Hand and Plastic Surgery, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dingsheng Lin
- Department of Hand and Plastic Surgery, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhang X, Han MJ, Han XY, Jia JH, Lu RY, Yao GD, Liu YY, Bai M, Song SJ. MS/MS-based molecular networking discovery of sesquiterpenes from Carpesium abrotanoides L. with their cytotoxic and acetylcholinesterase inhibitory activity. Fitoterapia 2024; 175:105947. [PMID: 38570097 DOI: 10.1016/j.fitote.2024.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Employing an MS/MS-based molecular networking-guided strategy, three new eudesmane-type sesquiterpenes (1-3) and one undescribed pseudoguaianolide sesquiterpene (8), along with four known eudesmane-type sesquiterpene lactones (4-7) were extracted and purified from the herbs of Carpesium abrotanoides L. Structural elucidation encompassed comprehensive spectroscopic analysis, NMR calculations, DP4+ analysis, and ECD calculations. The cytotoxicity activity of all isolates was evaluated against two human hepatoma carcinoma cells (HepG2 and Hep3B) in vitro. It was demonstrated that compounds 2 and 4 showed moderate cytotoxic against HepG2 and Hep3B cells. Furthermore, all compounds were evaluated for their acetylcholinesterase (AChE) inhibitory activity. Particularly noteworthy is that, in comparison to the positive control, compound 1 demonstrated significant AChE inhibition with an inhibition rate of 77.86%. In addition, the inhibitory mechanism of compound 1 were investigated by in silico docking analyze and molecular dynamic simulation.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Mei-Juan Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xiao-Yu Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jian-Huan Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Rui-Yan Lu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yu-Yang Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
4
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
5
|
Chemical constituents of plants from the genus Carpesium. HETEROCYCL COMMUN 2022. [DOI: 10.1515/hc-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Carpesium (Family – Compositae) is a genus with 24 species of mainly perennial herbs. Several species of this genus have served as folk medicine in China and Korea for their antipyretic, anti-inflammatory, analgesic, antifungal, antibacterial, and cytotoxic activity properties. Chemical constituents are mostly sesquiterpenes, diterpenes, glycosides, and several other types of compounds. This article summarizes the literature on the isolated and identified constituents from various Carpesium species and their various biological activities.
Collapse
|
6
|
Ibrahim SRM, Fadil SA, Fadil HA, Hareeri RH, Abdallah HM, Mohamed GA. Ethnobotanical Uses, Phytochemical Composition, Biosynthesis, and Pharmacological Activities of Carpesium abrotanoides L. (Asteraceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121598. [PMID: 35736748 PMCID: PMC9230109 DOI: 10.3390/plants11121598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 05/13/2023]
Abstract
Carpesium abrotanoides L. (Asteraceae) is a medicinal plant with immense therapeutic importance and bioactivities. It is commonly encountered in various Asian regions. It has numerous ethnomedicinal uses for curing diverse ailments such as toothache, stomach ulcer, boils, tonsillitis, bronchitis, bacterial infection, bruises, swelling, virus infection, fever, and amygdalitis, as well as an anthelmintic versus round-, tape-, hook-, and pinworms. Different classes of phytoconstituents such as sesquiterpenes, sesquiterpene dimers, monoterpenes, and nitrogenous compounds have been reported from this plant. These phytoconstituents have proved to possess anti-inflammatory, cytotoxic, antimicrobial, and insecticidal capacities. The present review aims to summarize all published data on C. abrotanoides including traditional uses, phytoconstituents, bioactivities, and toxicological aspects, as well as the synthesis and biosynthesis of its metabolites through an extensive survey on various databases and various publishers. These reported data could draw the attention of various natural-metabolite-interested researchers and medicinal chemists towards the development of this plant and/or its metabolites into medicine for the prevention and treatment of certain illnesses. Despite the diverse traditional uses of C. abrotanoides, there is a need for scientific evidence to support these claims. Clinical trials are also required to further assure these data and validate this plant utilization in treating several diseases.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: or ; Tel.: +966-581183034
| | - Sana A. Fadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (H.M.A.); (G.A.M.)
| | - Haifa A. Fadil
- Department of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Taibah University, Almadinah Almunawarah 30078, Saudi Arabia;
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (H.M.A.); (G.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (H.M.A.); (G.A.M.)
| |
Collapse
|
7
|
Lai J, Tang Y, Yang F, Chen J, Huang FH, Yang J, Wang L, Qin D, Law BYK, Wu AG, Wu JM. Targeting autophagy in ethnomedicine against human diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114516. [PMID: 34487846 DOI: 10.1016/j.jep.2021.114516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the past five years, ethnopharmacy-based drugs have been increasingly used in clinical practice. It has been reported that hundreds of ethnopharmacy-based drugs can modulate autophagy to regulate physiological and pathological processes, and ethnomedicines also have certain therapeutic effects on illnesses, revealing the important roles of these medicines in regulating autophagy and treating diseases. AIM OF THE STUDY This study reviews the regulatory effects of natural products on autophagy in recent years, and discusses their pharmacological effects and clinical applications in the process of diseases. It provides a preliminary literature basis and reference for the research of plant drugs in the regulation of autophagy. MATERIALS AND METHODS A comprehensive systematic review in the fields of relationship between autophagy and ethnomedicine in treating diseases from PubMed electronic database was performed. Information was obtained from documentary sources. RESULTS We recorded some illnesses associated with autophagy, then classified them into different categories reasonably. Based on the uses of these substances in different researches of diseases, a total of 80 active ingredients or compound preparations of natural drugs were searched. The autophagy mechanisms of these substances in the treatments of divers diseases have been summarized for the first time, we also looked forward to the clinical application of some of them. CONCLUSIONS Autophagy plays a key function in lots of illnesses, the regulation of autophagy has become one of the important means to prevent and treat these diseases. About 80 compounds and preparations involved in this review have been proved to have therapeutic effects on related diseases through the mechanism of autophagy. Experiments in vivo and in vitro showed that these compounds and preparations could treat these diseases by regulating autophagy. The typical natural products curcumin and tripterine have powerful roles in regulating autophagy and show good and diversified curative effects.
Collapse
Affiliation(s)
- Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Fei Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Fei-Hong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| | - Jian-Ming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
8
|
Qian Y, Shanbo M, Shaojie H, Long L, Yuhan C, Jin W, Shan M, Xiao-Peng S. Integrating bioinformatics with pharmacological evaluation for illustrating the action mechanism of herbal formula Jiao'e mixture in suppressing lung carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114513. [PMID: 34400263 DOI: 10.1016/j.jep.2021.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lung carcinoma (LC) is not only a kind of disease that seriously threatens human life but also an intractable problem in modern medicine. Jiao'e Mixture (JEM) is an innovative Chinese medicine formula with Chinese patent, which is composed of two herbal extracts with a specific ratio-zedoary turmeric oil and medicinal Zanthoxylum bungeanum Maxim(Z. bungeanum Maxim) seeds oil (ZMSO). Zedoary turmeric oil is extracted from dried rhizomes of Curcuma wenyujin Y.H.Chen et C. Ling, which has been reported have an anti-cancer effects. Medicinal ZMSO is a by-product of Z. bungeanum Maxim, refined from kernel shell separation, modern cold soaking and refining technology; JEM is used to treat Lung carcinoma (LC) patients in folk for many years. However, its therapeutic mechanisms for treating LC have not been fully explored. AIM OF THE STUDY The purpose of this study was to explore the therapeutic mechanisms of JEM for treating LC. MATERIALS AND METHODS The action mechanism of JEM in LC treatment was analysed by comprehensive network pharmacology approach combined with experimental validation (in vivo and in vitro). RESULTS Seventeen active compounds and 457 related targets were collected from the HERB, TCMSP, and Swiss Target Prediction platforms. Nine hundred and thirty-eight LC related targets were obtained from Gene Cards and OMIM databases. Finally, 140 overlapping targets were obtained, which representing the target of JEM in LC treatment. The pathway analysis showed that PI3K-AKT could be a potential pathway for JEM in LC treatment. In vivo results presented that JEM had a good effect in inhibiting the growth of LC tumour cells with high efficacy and low toxicity. In vitro experiments validated that JEM had inhibited LC cells' proliferation, migration and invasion, and had induced cell apoptosis mainly via PI3K/Akt signalling pathways. CONCLUSION The anti-LC activity of JEM might via regulating the PI3K-AKT signalling pathways.This study may provide further evidence for the potential use of JEM in LC treatment.
Collapse
Affiliation(s)
- Yang Qian
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China; College of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, China
| | - Ma Shanbo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Huang Shaojie
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Li Long
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Chen Yuhan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China; College of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, China
| | - Wang Jin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Miao Shan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China.
| | - Shi Xiao-Peng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China.
| |
Collapse
|
9
|
Butala S, Suvarna V, Mallya R, Khan T. An insight into cytotoxic activity of flavonoids and sesquiterpenoids from selected plants of Asteraceae species. Chem Biol Drug Des 2021; 98:1116-1130. [PMID: 34626448 DOI: 10.1111/cbdd.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 11/26/2022]
Abstract
Cancer continues to be a disease that is difficult to cure and the current therapeutic regimen is associated with severe side effects and the issue of emerging drug resistance. According to the World Health Organization fact sheet 2017, cancer is the second major cause of morbidity and death and a 70% rise in new cases is expected over the next 20 years. The quest for new anticancer chemical entities is a thrust area identified by many government agencies and industry research and development groups. Nature-derived entities have played a very important role in therapeutics especially cancer Asteraceae is a large family consisting of around 1700 genera and more than 24,000 species. Several genera belonging to this family have ethnopharmacological uses such as cytotoxicity, antidiabetic, hepatoprotective and antioxidant. This review highlights the cytotoxic potential of structurally novel flavonoids and sesquiterpenes isolated from some selected species of Asteraceae plants native to Asia, Europe, parts of Africa and America. The existing literature suggests that sesquiterpenes and flavonoids from various species of Asteraceae represent a viable class of secondary metabolites with strong cytotoxic potential. These have demonstrated potent activity in cell cycle arrest, inhibition of neoangiogenesis and induction of apoptosis. The sesquiterpenoids exhibiting potent cytotoxic activity were found to contain an α- methylene-butyrolactone conjugated with an exomethylene group and the flavonoids obtained from various plant species of Blumea suggest that a dihydroxy ring system present in structure is essential for activity. Most of the published literature contains in vitro data of extracts/secondary metabolites with very few in vivo studies. Additionally, there is dearth of knowledge on mechanisms of cytotoxic activity and molecular targets impacted by the active secondary metabolites. This review hopes to fuel interest in researchers to take up detailed investigations on these scaffolds that could contribute significantly as potential leads in anticancer drug development.
Collapse
Affiliation(s)
- Sahil Butala
- Department of Quality Assurance, Indoco Remedies, Rabale, Navi Mumbai, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Chemistry & QA, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Rashmi Mallya
- Department of Pharmacognosy, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & QA, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
10
|
Al-Bari MAA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. Int J Mol Sci 2021; 22:9807. [PMID: 34575981 PMCID: PMC8467030 DOI: 10.3390/ijms22189807] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Macro-autophagy (autophagy) is a highly conserved eukaryotic intracellular process of self-digestion caused by lysosomes on demand, which is upregulated as a survival strategy upon exposure to various stressors, such as metabolic insults, cytotoxic drugs, and alcohol abuse. Paradoxically, autophagy dysfunction also contributes to cancer and aging. It is well known that regulating autophagy by targeting specific regulatory molecules in its machinery can modulate multiple disease processes. Therefore, autophagy represents a significant pharmacological target for drug development and therapeutic interventions in various diseases, including cancers. According to the framework of autophagy, the suppression or induction of autophagy can exert therapeutic properties through the promotion of cell death or cell survival, which are the two main events targeted by cancer therapies. Remarkably, natural products have attracted attention in the anticancer drug discovery field, because they are biologically friendly and have potential therapeutic effects. In this review, we summarize the up-to-date knowledge regarding natural products that can modulate autophagy in various cancers. These findings will provide a new position to exploit more natural compounds as potential novel anticancer drugs and will lead to a better understanding of molecular pathways by targeting the various autophagy stages of upcoming cancer therapeutics.
Collapse
Affiliation(s)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2–7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Samrein Ahmed
- Department of Biosciences and Chemistry, College of Health and Wellbeing and Life Sciences, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK;
| | - Nada Radwan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Hend S. Ahmed
- Department of Hematology and Blood Transfusion, Faculty of Medical Laboratory Science, Omdurman Ahlia University, Khartoum 786, Sudan;
| | - Nabil Eid
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| |
Collapse
|
11
|
Liu L, Yan J, Cao Y, Yan Y, Shen X, Yu B, Tao L, Wang S. Proliferation, migration and invasion of triple negative breast cancer cells are suppressed by berbamine via the PI3K/Akt/MDM2/p53 and PI3K/Akt/mTOR signaling pathways. Oncol Lett 2020; 21:70. [PMID: 33365081 PMCID: PMC7716707 DOI: 10.3892/ol.2020.12331] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the second most common cause of cancer-associated mortality among women worldwide, and triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Berbamine (BBM) is a traditional Chinese medicine used for the treatment of leukopenia without any obvious side effects. Recent reports found that BBM has anti-cancer effects. The present study aimed to investigate the effects of BBM on TNBC cell lines and the underlying molecular mechanism. MDA-MB-231 cells and MCF-7 cells, two TNBC cell lines, were treated with various concentrations of BBM. A series of bioassays including MTT, colony formation, EdU staining, apoptosis, trypan blue dye, wound healing, transwell, ELISA and western blotting assays were performed. The results showed that BBM significantly inhibited cell proliferation of MDA-MB-231 cells (P<0.05; IC50=22.72 µM) and MCF-7 cells (P<0.05; IC50=20.92 µM). BBM (20 µM) decreased the apoptosis ratio (percentage of absorbance compared with the control group) by 28.4±3.3% (P<0.05) in MDA-MB-231 cells, and 62.4±24.6% (P<0.05) in MCF-7 cells. In addition, BBM inhibited cell migration and invasion of TNBC cells. Furthermore, the expression levels of PI3K, phosphorylated-Akt/Akt, COX-2, LOX, MDM2 and mTOR were downregulated by BBM, and the expression of p53 was upregulated by BBM. These results indicated that BBM may suppress the development of TNBC via regulation of the PI3K/Akt/MDM2/p53 and PI3K/Akt/mTOR signal pathways. Therefore, BBM might be used as a drug candidate for the treatment of TNBC in the future.
Collapse
Affiliation(s)
- Lili Liu
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Jiadong Yan
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Ying Cao
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Yan Yan
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xiang Shen
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Binbin Yu
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Li Tao
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Shusheng Wang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
12
|
El-Ashmawy NE, Al-Ashmawy GM, Amr EA, Khedr EG. Inhibition of lovastatin- and docosahexaenoic acid-initiated autophagy in triple negative breast cancer reverted resistance and enhanced cytotoxicity. Life Sci 2020; 259:118212. [PMID: 32768581 DOI: 10.1016/j.lfs.2020.118212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
AIMS Autophagy plays a complex role in breast cancer by suppressing or improving the efficiency of treatment. Triple-negative breast cancer (TNBC) cell line (MDA-MB-231) is associated with aggressive response and developing therapy resistance. MDA-MB-231 cells depend on autophagy for survival. Also, the potential benefits of autophagy inhibition in ameliorating developed chemotherapy resistance towards MDA-MB-231 remains to be elucidated. Despite showing anti-tumorigenic activities, the use of lovastatin and docosahexaenoic acid (DHA) for treating different types of cancers is still limited. We aimed to investigate the protective effect of autophagy inhibition by chloroquine (CQ) in MDA-MB-231 cells resistance treated with lovastatin or DHA. MAIN METHODS MDA-MB-231 cells were treated with 30 μM lovastatin and/or 100 μM DHA for 48 h plus 20 μM CQ. Autophagic flux was assessed in association with the expression of multidrug resistance gene 1 (MDR1), transforming growth factor beta 1 gene (TGF-β1), and autophagy-related 7 gene (ATG7). KEY FINDINGS Both drugs exhibited dose-dependent cytotoxicity, enhanced the autophagic flux represented by increased LC3BII protein concentration and decreased p62 protein concentration, and up-regulated the expression of MDR1, TGF-β1, and ATG7 genes. CQ addition enhanced the cytotoxicity of drugs and inhibited the autophagic flux which is detected by higher levels of LC3BII and p62 correlated with the reverted MDR1, TGF-β1 and ATG7 genes expression. SIGNIFICANCE Autophagy inhibition by CQ showed an ameliorative effect on lovastatin- and DHA-induced resistance and enhanced their cytotoxicity, providing a promising strategy in breast cancer therapy.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt, Postal code: 31527.
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt, Postal code: 31527.
| | - Eman A Amr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt, Postal code: 31527.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt, Postal code: 31527.
| |
Collapse
|
13
|
Wang S, Zhang Y, Ren T, Wu Q, Lu H, Qin X, Liu Y, Ding H, Zhao Q. A novel 4-aminoquinazoline derivative, DHW-208, suppresses the growth of human breast cancer cells by targeting the PI3K/AKT/mTOR pathway. Cell Death Dis 2020; 11:491. [PMID: 32606352 PMCID: PMC7327080 DOI: 10.1038/s41419-020-2690-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023]
Abstract
Breast cancer is one of the most frequent cancers among women worldwide. However, there is still no effective therapeutic strategy for advanced breast cancer that has metastasized. Aberrant activation of the PI3K/AKT/mTOR pathway is an essential step for the growth of human breast cancers. In our previous study, we designed and synthesized DHW-208 (2,4-difluoro-N-(5-(4-((1-(2-hydroxyethyl)-1H-pyrazol-4-yl)amino)quinazolin-6-yl)-2-methoxypyridin-3-yl)benzenesulfonamide) as a novel pan-PI3K inhibitor. This study aimed to assess the therapeutic efficacy of DHW-208 in breast cancer and investigate its underlying mechanism. We found that DHW-208 inhibited the growth, proliferation, migration, and invasion of breast cancer cells. Moreover, DHW-208 induced breast cancer cell apoptosis via the mitochondrial pathway and induced G0/G1 cell-cycle arrest. In vitro results show that DHW-208 is a dual inhibitor of PI3K and mTOR, and suppress the growth of human breast cancer cells by targeting the PI3K/AKT/mTOR pathway. Consistent with the in vitro results, in vivo studies demonstrated that DHW-208 elicits an antitumor effect by inhibiting the PI3K/AKT/mTOR-signaling pathway with a high degree of safety in breast cancer. Above all, we report for the first time that DHW-208 suppressed the growth of human breast cancer cells by inhibiting the PI3K/AKT/mTOR-signaling pathway both in vivo and in vitro. Our study may provide evidence for the use of DHW-208 as an effective, novel therapeutic candidate for the treatment of human breast cancers in clinical trials.
Collapse
Affiliation(s)
- Shu Wang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Yingshi Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Tianshu Ren
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, 110840, Shenyang, China
| | - Qiong Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, 110840, Shenyang, China
| | - Hongyuan Lu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Xiaochun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Yuyan Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, 110016, Shenyang, China.
| | - Qingchun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, 110016, Shenyang, China.
- Department of Pharmacy, General Hospital of Northern Theater Command, 110840, Shenyang, China.
| |
Collapse
|
14
|
Cell-Free Coelomic Fluid Extracts of the Sea Urchin Arbacia lixula Impair Mitochondrial Potential and Cell Cycle Distribution and Stimulate Reactive Oxygen Species Production and Autophagic Activity in Triple-Negative MDA-MB231 Breast Cancer Cells. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8040261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant tumor histotype which lacks effective targeted therapies, thereby being considered as the most aggressive form of breast carcinoma. To identify novel compounds which could counteract TNBC cell growth, we explored the in vitro effects of crude extracts and <10 kDa-filtered fractions of the coelomic fluid obtained from the sea urchin Arbacia lixula on TNBC MDA-MB231 cells. We examined cell viability, cycle distribution, apoptotic/autophagic activity, and mitochondrial polarization/cell redox status. Here, we report the first data demonstrating an anti-TNBC effect by A. lixula-derived coelomic fluid extracts. Thus, identification of the water-soluble bioactive component(s) contained in the extracts deserve(s) further investigation aimed to devise novel promising prevention and/or treatment agents effective against highly malignant breast tumors.
Collapse
|
15
|
Antitumoral Properties of Natural Products. Molecules 2020; 25:molecules25030650. [PMID: 32028725 PMCID: PMC7037154 DOI: 10.3390/molecules25030650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
|
16
|
Wang N, Dong Q, Zhou XN. LMO4 promotes the invasion and proliferation of gastric cancer by activating PI3K-Akt-mTOR signaling. Am J Transl Res 2019; 11:6534-6543. [PMID: 31737204 PMCID: PMC6834506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
This study assessed the biological functions of LIM-domain-only 4 (LMO4) in gastric cancer (GC) and investigated the underlying molecular mechanisms. It was found that the expression of LMO4 was significantly upregulated in GC tissues and closely associated with clinicopathological factors, overall survival and disease-free survival of patients. After knockdown of LMO4 in MGC-803 and SGC-7901 cells, invasion and proliferation were obviously suppressed. Furthermore, LMO4 knockdown suppressed the phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt and mammalian target of rapamycin (mTOR). Miltefosine, the inhibitor of PI3K/Akt, and dactolisib, the inhibitor of mTOR, abrogated recombinant LMO4-induced GC cell invasion and proliferation. These results suggest that LMO4 promotes GC cell invasion and proliferation mainly through PI3K-Akt-mTOR signaling. LMO4 may serve as a potential therapeutic target for GC in the future.
Collapse
Affiliation(s)
- Ning Wang
- Department of Gastroenterology, The First Ward, Shijiazhuang First HospitalShijiazhuang 050011, Hebei, P. R. China
| | - Qing Dong
- Department of Oncology, The Fifth Ward, Shijiazhuang First HospitalShijiazhuang 050011, Hebei, P. R. China
| | - Xiao-Na Zhou
- Department of Gastroenterology, The First Ward, Shijiazhuang First HospitalShijiazhuang 050011, Hebei, P. R. China
| |
Collapse
|
17
|
Cytotoxic Potential of the Coelomic Fluid Extracted from the Sea Cucumber Holothuria tubulosa against Triple-Negative MDA-MB231 Breast Cancer Cells. BIOLOGY 2019; 8:biology8040076. [PMID: 31600896 PMCID: PMC6955747 DOI: 10.3390/biology8040076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 12/31/2022]
Abstract
Growing evidence has demonstrated that the extracts of different holothurian species exert beneficial effects on human health. Triple negative breast cancers (TNBC) are highly malignant tumors that present a poor prognosis due to the lack of effective targeted therapies. In the attempt to identify novel compounds that might counteract TNBC cell growth, we studied the effect of the exposure of the TNBC cell line MDA-MB231 to total and filtered aqueous extracts of the coelomic fluid obtained from the sea cucumber Holoturia tubulosa, a widespread species in the Mediterranean Sea. In particular, we examined cell viability and proliferative behaviour, cell cycle distribution, apoptosis, autophagy, and mitochondrial metabolic/cell redox state. The results obtained indicate that both total and fractionated extracts are potent inhibitors of TNBC cell viability and growth, acting through both an impairment of cell cycle progression and mitochondrial transmembrane potential and a stimulation of cellular autophagy, as demonstrated by the increase of the acidic vesicular organelles and of the intracellular protein markers beclin-1, and total LC3 and LC3-II upon early exposure to the preparations. Identification of the water-soluble bioactive component(s) present in the extract merit further investigation aiming to develop novel prevention and/or treatment agents efficacious against highly metastatic breast carcinomas.
Collapse
|
18
|
New eremophilane-type sesquiterpenes and maleimide-bearing compounds from Carpesium abrotanoides L. Fitoterapia 2019; 138:104294. [DOI: 10.1016/j.fitote.2019.104294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023]
|
19
|
Teng JF, Qin DL, Mei QB, Qiu WQ, Pan R, Xiong R, Zhao Y, Law BYK, Wong VKW, Tang Y, Yu CL, Zhang F, Wu JM, Wu AG. Polyphyllin VI, a saponin from Trillium tschonoskii Maxim. induces apoptotic and autophagic cell death via the ROS triggered mTOR signaling pathway in non-small cell lung cancer. Pharmacol Res 2019; 147:104396. [PMID: 31404628 DOI: 10.1016/j.phrs.2019.104396] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 01/04/2023]
Abstract
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Our previous studies have proven that Trillium tschonoskii Maxim. (TTM), a traditional Chinese medicine, possesses potent anti-tumor effect. However, the detailed components and molecular mechanism of TTM in anti-NSCLC are still unknown. In the present experiment, polyphyllin VI (PPVI) was successfully isolated from TTM with guidance of the anti-proliferative effect in A549 cells, and the cell death of PPVI treated A549 and H1299 cells was closely linked with the increased intracellular ROS levels. In addition, PPVI induced apoptosis by promoting the protein expression of Bax/Bcl2, caspase-3 and caspase-9, and activated autophagy by improving LC3 II conversion and GFP-LC3 puncta formation in A549 and H1299 cells. The mechanism study found that the activity of mTOR which regulates cell growth, proliferation and autophagy was significantly suppressed by PPVI. Accordingly, the PI3K/AKT and MEK/ERK pathways positively regulating mTOR were inhibited, and AMPK negatively regulating mTOR was activated. In addition, the downstream of mTOR, ULK1 at Ser 757 which downregulates autophagy was inhibited by PPVI. The apoptotic cell death induced by PPVI was confirmed, and it was significantly suppressed by the overexpression of AKT, ERK and mTOR, and the induced autophagic cell death which was depended on the Atg7 was decreased by the inhibitors, such as LY294002 (LY), Bafilomycin A1 (Baf), Compound C (CC) and SBI-0206965 (SBI). Furthermore, the mTOR signaling pathway was regulated by the increased ROS as the initial signal in A549 and H1299 cells. Finally, the anti-tumor growth activity of PPVI in vivo was validated in A549 bearing athymic nude mice. Taken together, our data have firstly demonstrated that PPVI is the main component in TTM that exerts the anti-proliferative effect by inducing apoptotic and autophagic cell death in NSCLC via the ROS-triggered mTOR signaling pathway, and PPVI may be a promising candidate for the treatment of NSCLC in future.
Collapse
Affiliation(s)
- Jin-Feng Teng
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Da-Lian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Qi-Bing Mei
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Wen-Qiao Qiu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rong Pan
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Xiong
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ya Zhao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yong Tang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Jian-Ming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|