1
|
Al-Gholam MAS, Abd-Elhafiz HI, Tayel SG. Effect of Alpinia officinarum Rhizome extract on experimentally induced lung fibrosis: The pertinent role of Sirt1 and Nrf2 antioxidant pathways. Morphologie 2025; 109:100940. [PMID: 39694016 DOI: 10.1016/j.morpho.2024.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a frequently reported COVID-19 sequela. It is a progressive disorder characterized by respiratory failure and death. The properties of Alpinia officinarum Rhizomes (AO) make it a highly potent antioxidant, anti-inflammatory, and antifibrotic agent. This study has evaluated AO's protective effects on bleomycin-induced PF in rats and investigated the underlying mechanisms. MATERIAL AND METHODS Bleomycin (5mg/kg, intratracheally) was used to induce PF in albino rats, and then, AO extract (200mg/kg/daily, orally) was administrated for 28days post-bleomycin-instillation. After euthanizing the rats, the biochemical, quantitative real-time polymerase chain reaction (qPCR) and histopathological examination of lung tissue were determined. RESULTS Findings have revealed that bleomycin significantly increased the tissue level of malondialdehyde, tumor necrosis factor-alpha, and interleukin-6, Silent information regulator 1 (Sirt1), and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA levels. Furthermore, the total antioxidant capacity level decreased in the lungs of bleomycin-instilled rats. However, AO extract significantly decreased histopathological injuries in hematoxylin & eosin, Masson's trichrome-stained sections, inducible nitric oxide synthase and α-smooth muscle actin, transforming growth factor beta 1 immunoexpression. CONCLUSION Alpinia officinarum Rhizomes extract appears to protect against bleomycin-induced PF, possibly due to its antioxidant, anti-inflammatory, and antifibrotic properties.
Collapse
Affiliation(s)
- Marwa A S Al-Gholam
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| | - Huda I Abd-Elhafiz
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| | - Sara G Tayel
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
| |
Collapse
|
2
|
Vithalkar MP, Pradhan S, Sandra KS, Bharath HB, Nayak Y. Modulating NLRP3 Inflammasomes in Idiopathic Pulmonary Fibrosis: A Comprehensive Review on Flavonoid-Based Interventions. Cell Biochem Biophys 2025:10.1007/s12013-025-01696-4. [PMID: 39966334 DOI: 10.1007/s12013-025-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a severe, rapidly advancing disease that drastically diminishes life expectancy. Without treatment, it can progress to lung cancer. The precise etiology of IPF remains unknown, but inflammation and damage to the alveolar epithelium are widely thought to be pivotal in its development. Research has indicated that activating the NLRP3 inflammasome is a crucial mechanism in IPF pathogenesis, as it triggers the release of pro-inflammatory cytokines such as IL-1β, IL-18, and TGF-β. These cytokines contribute to the myofibroblast differentiation and extracellular matrix (ECM) accumulation. Currently, treatment options for IPF are limited. Only two FDA-approved medications, pirfenidone and nintedanib, are available. While these drugs can decelerate disease progression, they come with a range of side effects and do not cure the disease. Additional treatment strategies primarily involve supportive care and therapy. Emerging research has highlighted that numerous flavonoids derived from traditional medicines can inhibit the critical regulators responsible for activating the NLRP3 inflammasome. These flavonoids show promise as potential therapeutic agents for managing IPF, offering a new avenue for treatment that targets the core inflammatory processes of this debilitating condition.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Shreya Pradhan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India.
| |
Collapse
|
3
|
Amararathna M, Hoskin DW, Goralski KB, Rupasinghe HPV. Suppression of NNK Metabolism by Anthocyanin-Rich Haskap Berry Supplementation Through Modulation of P450 Enzymes. Pharmaceuticals (Basel) 2024; 17:1615. [PMID: 39770457 PMCID: PMC11728747 DOI: 10.3390/ph17121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Oral supplementation of anthocyanins-rich haskap (Lonicera caerulea) berry (HB) reduces 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis, cytotoxicity, DNA damage, and modulated inflammation in vitro and in vivo. The procarcinogen NNK is metabolically activated by cytochrome P450 (P450) enzymes, producing reactive metabolites that induce lung carcinogenesis. Hypothesis: Therefore, we hypothesized that the HB-modulated protective effect against NNK could be due to its ability to suppress P450 enzymes. Methods: HB (6 mg of cyanidin-3-O-glucoside [C3G] in 0.2 g of HB/mouse/day) was given to A/J mice as a dietary supplement following subsequent administration of NNK (100 mg/kg body weight). The liver tissues of mice were analyzed to determine the expression of P450s and metabolites. Results: HB upregulated the expression of cyp2a4 and cyp2a5 mRNA and nuclear receptor/transcription factor (PPARα) in NNK-deprived hepatic tissues. With NNK, HB downregulated the expression of cyp2a4 and cyp2a5 and facilitated the formation of non-carcinogenic NNK metabolites. Molecular docking indicated a high binding affinity and strong hydrophobic interactions between C3G and its major metabolites, peonidin-3-O-glucoside, petunidin-3-O-glucoside, peonidin and cyanidin with Cyp2a5 and with human P450 homologue CYP2A13. Conclusions: HB could be a potential dietary supplement to inhibit the P450 activated NNK carcinogenic metabolites formation. Hence, inhibiting the activation of NNK by lung CYP2A13 through dietary HB supplementation could be a strategy to reduce lung carcinogenesis among smokers. Understanding the effect of HB on the activity of CYP2A13 in human studies is necessary before recommending these natural compounds as therapeutics.
Collapse
Affiliation(s)
- Madumani Amararathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada;
| | - Kerry B. Goralski
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada;
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
- College of Pharmacy, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Division of Hematology/Oncology, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada;
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
4
|
Li SC, Wang B, Zhang M, Yin Q, Yang ZY, Li XT, Liang G. Induction of cytochrome P450 via upregulation of CAR and PXR: a potential mechanism for altered florfenicol metabolism by macranthoidin B in vivo. Front Pharmacol 2024; 15:1460948. [PMID: 39444610 PMCID: PMC11496122 DOI: 10.3389/fphar.2024.1460948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Macranthoidin B (MB) is a primary active component of Flos Lonicerae. In Chinese veterinary clinics, Flos Lonicerae is frequently used in combination with florfenicol to prevent and treat infections in livestock and poultry. However, potential interactions between Flos Lonicerae and florfenicol remain unclear. To systematically study these interactions, it is crucial to investigate the individual phytochemicals within Flos Lonicerae. Therefore, MB was selected for this study to assess its effect on the pharmacokinetics of florfenicol in vivo and to explore the underlying mechanisms involved. Methods Male Sprague-Dawley rats were administered MB (60 mg/kg BW) or sterile water orally for 7 consecutive days. On the 8th day, a single oral dose of florfenicol (25 mg/kg BW) was given. Florfenicol pharmacokinetics were analyzed using ultra-high performance liquid chromatography. The hepatic expression levels of cytochrome P450 (CYP1A2, CYP2C11, CYP3A1), UDP-glucuronosyltransferase (UGT1A1), P-glycoprotein (P-gp), and nuclear receptors, including constitutive androstane receptor (CAR), pregnane X receptor (PXR), and retinoid X receptor alpha (RXRα), were quantified via reverse transcription-quantitative polymerase chain reaction and Western blotting (WB). Hepatic CYP1A2 and CYP2C11 activities were measured using a cocktail method. Additionally, the subcellular expression and localization of CAR, PXR, and RXRαin hepatocytes was assessed using WB and immunofluorescence staining. Results MB significantly reduces the AUC(0-∞) and MRT(0-∞) of florfenicol. MB also markedly upregulates the mRNA and protein expression of hepatic CYP1A2 and CYP2C11, along with their catalytic activities. Substantial upregulation of CAR and PXR proteins occurs in the hepatocyte nucleus, along with significant nuclear colocalization of the transcriptionally active CAR/RXRα and PXR/RXRαheterodimers, indicating MB-induced nuclear translocation of both CAR and PXR. Discussion These findings suggest that MB-induced alterations in florfenicol pharmacokinetics, particularly its accelerated elimination, may be due to increased expression and activities of CYP1A2 and CYP2C11, with CAR and PXR potentially involved in these regulatory effects. Further investigation is yet needed to fully elucidate the clinical implications of these interactions concerning the efficacy of florfenicol in veterinary medicine.
Collapse
Affiliation(s)
- Si-cong Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Bin Wang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Min Zhang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Qin Yin
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zi-yi Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Xu-ting Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| | - Ge Liang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Veterinary Natural Medicine Research and Good Clinical Practice Experimental Animal Centre, Lezhi, China
| |
Collapse
|
5
|
Huang Y, Ren X, Li Y, Zhang J, Wei N, Li H, Tan Y. Comparisons of pharmacokinetics and tissue distribution of six major bioactive components of the herbal pair Alpinia officinarum-Cyperus rotundus in normal and primary dysmenorrhea rats. J Pharm Biomed Anal 2024; 248:116316. [PMID: 38941920 DOI: 10.1016/j.jpba.2024.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
The Liangfu formula, as described in 'Liangfang Jiye', is well-known for its efficacy in treating stomach pain, abdominal pain, and dysmenorrhea. This research aimed to investigate the pharmacokinetics and tissue distribution of 5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenyl-3-heptanone (DPHA), Galangin, Kaempferide, 5-Hydroxy-1,7-diphenyl-3-heptanone (DPHC), α-Cyperone, and Nootkatone in vivo using an LC-MS/MS method. The method successfully separated the six active components and internal standards (Chrysin and Yakuchinone-A) on an XB-C18 column with a mobile phase of 0.2 ‰ formic acid water-acetonitrile. It demonstrated good linearity with a correlation coefficient (r2) ≥ 0.9911 and a lower limit of quantification (LLOQ) of 5-80 ng/mL for the different components. Precision, accuracy, matrix effects, and recovery rates were within acceptable ranges. Pharmacokinetic analysis revealed significant differences in parameters between primary dysmenorrhea (PD) and normal rats (especially AUC, Tmax, and CLz/F). Tissue distribution showed that the six active components of the herbal pair Alpinia officinarum Hance-Cyperus rotundus L. (HPAC) extract was primarily distributed in the liver, lung, and kidney. This study offers valuable insights into the potential mechanisms of action and drug development for treating PD.
Collapse
Affiliation(s)
- Yufang Huang
- Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou, PR China; School of Pharmacy, Hainan Medical University, Haikou, PR China
| | - Xikang Ren
- Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou, PR China; School of Pharmacy, Hainan Medical University, Haikou, PR China
| | - Yonghui Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Haikou, PR China; Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou, PR China; Haikou Key Laboratory of Li Nationality Medicine, Haikou, PR China; School of Pharmacy, Hainan Medical University, Haikou, PR China
| | - Junqing Zhang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Haikou, PR China; Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou, PR China; Haikou Key Laboratory of Li Nationality Medicine, Haikou, PR China; School of Pharmacy, Hainan Medical University, Haikou, PR China
| | - Na Wei
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Haikou, PR China; Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou, PR China; Haikou Key Laboratory of Li Nationality Medicine, Haikou, PR China; School of Pharmacy, Hainan Medical University, Haikou, PR China
| | - Hailong Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Haikou, PR China; Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou, PR China; Haikou Key Laboratory of Li Nationality Medicine, Haikou, PR China; School of Pharmacy, Hainan Medical University, Haikou, PR China.
| | - Yinfeng Tan
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Haikou, PR China; Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou, PR China; Haikou Key Laboratory of Li Nationality Medicine, Haikou, PR China; School of Pharmacy, Hainan Medical University, Haikou, PR China.
| |
Collapse
|
6
|
Khawaja G, El-Orfali Y, Shoujaa A, Abou Najem S. Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis-Mechanisms, Evidence, and Therapeutic Potential. Pharmaceuticals (Basel) 2024; 17:963. [PMID: 39065811 PMCID: PMC11279697 DOI: 10.3390/ph17070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by progressive joint inflammation and damage. Oxidative stress plays a critical role in the onset and progression of RA, significantly contributing to the disease's symptoms. The complex nature of RA and the role of oxidative stress make it particularly challenging to treat effectively. This article presents a comprehensive review of RA's development, progression, and the emergence of novel treatments, introducing Galangin (GAL), a natural flavonoid compound sourced from various plants, as a promising candidate. The bioactive properties of GAL, including its anti-inflammatory, antioxidant, and immunomodulatory effects, are discussed in detail. The review elucidates GAL's mechanisms of action, focusing on its interactions with key targets such as inflammatory cytokines (e.g., TNF-α, IL-6), enzymes (e.g., SOD, MMPs), and signaling pathways (e.g., NF-κB, MAPK), which impact inflammatory responses, immune cell activation, and joint damage. The review also addresses the lack of comprehensive understanding of potential treatment options for RA, particularly in relation to the role of GAL as a therapeutic candidate. It highlights the need for further research and clinical studies to ascertain the effectiveness of GAL in RA treatment and to elucidate its mechanisms of action. Overall, this review provides valuable insights into the potential of GAL as a therapeutic option for RA, shedding light on its multifaceted pharmacological properties and mechanisms of action, while suggesting avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Youmna El-Orfali
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Aya Shoujaa
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon
| | - Sonia Abou Najem
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi P.O. Box 25026, United Arab Emirates;
| |
Collapse
|
7
|
Kostelecka K, Bryliński Ł, Komar O, Michalczyk J, Miłosz A, Biłogras J, Woliński F, Forma A, Baj J. An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer. Cancers (Basel) 2024; 16:1611. [PMID: 38672692 PMCID: PMC11049028 DOI: 10.3390/cancers16081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gastric cancer (GC) ranks third in terms of cancer-related deaths and is the fifth most commonly diagnosed type of cancer. Its risk factors include Helicobacter pylori infection, Epstein-Barr virus infection, the consumption of broiled and charbroiled animal meats, salt-preserved and smoke-enhanced foods, alcohol drinking, tobacco smoking, exposure to ionizing radiation, and positive family history. The limited effectiveness of conventional therapies and the widespread risk factors of GC encourage the search for new methods of treatment and prevention. In the quest for cheap and commonly available medications, numerous studies focus on herbal medicine, traditional brews, and spices. In this review, we outline the potential use of spices, including turmeric, ginger, garlic, black cumin, chili pepper, saffron, black pepper, rosemary, galangal, coriander, wasabi, cinnamon, oregano, cardamom, fenugreek, caraway, clove, dill, thyme, Piper sarmentosum, basil, as well as the compounds they contain, in the prevention and treatment of GC. We present the potential molecular mechanisms responsible for the effectivity of a given seasoning substance and their impact on GC cells. We discuss their potential effects on proliferation, apoptosis, and migration. For most of the spices discussed, we also outline the unavailability and side effects of their use.
Collapse
Affiliation(s)
- Katarzyna Kostelecka
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Łukasz Bryliński
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Olga Komar
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Justyna Michalczyk
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Agata Miłosz
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Jan Biłogras
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| | - Filip Woliński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (K.K.); (Ł.B.); (O.K.); (J.M.); (A.M.); (J.B.); (J.B.)
| |
Collapse
|
8
|
Wang D, Chen J, Pu L, Yu L, Xiong F, Sun L, Yu Q, Cao X, Chen Y, Peng F, Peng C. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother Res 2023; 37:5700-5723. [PMID: 37748788 DOI: 10.1002/ptr.8013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Galangin is an important flavonoid with natural activity, that is abundant in galangal and propolis. Currently, various biological activities of galangin have been disclosed, including anti-inflammation, antibacterial effect, anti-oxidative stress and aging, anti-fibrosis, and antihypertensive effect. Based on the above bioactivities, more and more attention has been paid to the role of galangin in neurodegenerative diseases, rheumatoid arthritis, osteoarthritis, osteoporosis, skin diseases, and cancer. In this paper, the natural sources, pharmacokinetics, bioactivities, and therapeutic potential of galangin against various diseases were systematically reviewed by collecting and summarizing relevant literature. In addition, the molecular mechanism and new preparation of galangin in the treatment of related diseases are also discussed, to broaden the application prospect and provide reference for its clinical application. Furthermore, it should be noted that current toxicity and clinical studies of galangin are insufficient, and more evidence is needed to support its possibility as a functional food.
Collapse
Affiliation(s)
- Daibo Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Pu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xiong
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Zhang F, Yan Y, Zhang LM, Li DX, Li L, Lian WW, Xia CY, He J, Xu JK, Zhang WK. Pharmacological activities and therapeutic potential of galangin, a promising natural flavone, in age-related diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155061. [PMID: 37689035 DOI: 10.1016/j.phymed.2023.155061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The extension of average life expectancy and the aggravation of population aging have become the inevitable trend of human development. In an aging society, various problems related to medical care for the elderly have become increasingly prominent. However, most of the age-related diseases have the characteristics of multiple diseases at the same time, prone to complications, and atypical clinical manifestations, which bring great difficulties to its treatment. Galangin (3,5,7-trihydroxyflavone) is a natural active compound extracted from the root of Alpinia officinarum Hance (Zingiberaceae). Recently, many studies have shown that galangin has potential advantages in the treatment of neurodegenerative diseases and cardiovascular and cerebrovascular diseases, which are common in the elderly. In addition, it also showed that galangin had prospective activities in the treatment of tumor, diabetes, liver injury, asthma and arthritis. PURPOSE This review aims to systematically summarize and discuss the effects and the underlying mechanism of galangin in the treatment of age-related diseases. METHODS We searched PubMed, SciFinder, Web of Science and CNKI literature database resources, combined with the keywords "galangin", "neurodegenerative disease", "tumor", "diabetes", "pharmacological activity", "drug combination", "pharmacokinetics", "drug delivery system" and "safety", and comprehensively reviewed the pharmacological activities and mechanism of galangin in treating age-related diseases. RESULTS According to the previous studies on galangin, the anti-neurodegenerative activity, cardiovascular and cerebrovascular protective activity, anti-tumor activity, anti-diabetes activity, anti-arthritis activity, hepatoprotective activity and antiasthmatic activity of galangin were discussed, and the related mechanisms were classified and summarized in detail. In addition, the drug combination, pharmacokinetics, drug delivery system and safety of galangin were furtherly discussed. CONCLUSIONS This review will provide reference for galangin in the treatment of age-related diseases. Meanwhile, further experimental research and long-term clinical trials are needed to determine the therapeutic safety and efficacy of galangin.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lin-Mei Zhang
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong-Xu Li
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Jie-Kun Xu
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
10
|
Lian D, Chen T, Yan L, Hou H, Gao S, Hu Q, Zhang G, Li H, Song L, Gao Y, Pu Y, Chen Y, Peng B. Protective effect of compatible herbs in Jin-Gu-Lian formula against Alangium chinense-induced neurotoxicity via oxidative stress, neurotransmitter metabolisms, and pharmacokinetics. Front Pharmacol 2023; 14:1133982. [PMID: 36874008 PMCID: PMC9977795 DOI: 10.3389/fphar.2023.1133982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Background: A. chinense frequently used in Miao medicine to treat rheumatic diseases. However, as a famous toxic herb, Alangium chinense and its representative components exhibit ineluctable neurotoxicity, thus creating significant challenges for clinical application. The combined application with compatible herbs in Jin-Gu-Lian formula attenuates such neurotoxicity according to the compatible principle of traditional Chinese medicines. Purpose: We aimed to investigate the detoxification of the compatible herbs in Jin-Gu-Lian formula on A. chinense-induced neurotoxicity and investigate its mechanism. Methods: Neurobehavioral and pathohistological analysis were used to determine the neurotoxicity in rats administered with A. chinense extract (AC), extract of compatible herbs in Jin-Gu-Lian formula (CH) and combination of AC with CH for 14 days. The mechanism underlying the reduction of toxicity by combination with CH was assessed by enzyme-linked immunosorbent assays, spectrophotometric assays, liquid chromatography tandem-mass spectrometry and real-time reverse transcription-quantitative polymerase chain reaction. Results: Compatible herbs attenuated the AC-induced neurotoxicity as evidenced by increased locomotor activity, enhanced grip strength, the decreased frequency of AC-induced morphological damage in neurons, as well as a reduction of neuron-specific enolase (NSE) and neurofilament light chain (NEFL) levels. The combination of AC and CH ameliorated AC-induced oxidative damage by modulating the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC). AC treatment significantly reduced the levels of monoamine and acetylcholine neurotransmitters in the brains of rats, including acetylcholine (Ach), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), and serotonin (5-HT). Combined AC and CH treatment regulated the abnormal concentrations and metabolisms of neurotransmitters. Pharmacokinetic studies showed that the co-administration of AC and CH significantly decreased plasma exposure levels of two main components of AC, as evidenced by the reduction of maximum plasma concentration (Cmax), area under the plasma concentration-time curve (AUC) compared to AC. In addition, the AC-induced downregulation in mRNA expression of cytochrome P450 enzymes was significantly reduced in response to combined AC and CH treatment. Conclusion: Compatible herbs in Jin-Gu-Lian formula alleviated the neurotoxicity induced by A. chinense by ameliorating oxidative damage, preventing abnormality of neurotransmitters and modulating pharmacokinetics.
Collapse
Affiliation(s)
- Dongyin Lian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tengfei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lihua Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongping Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, China
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunxi Pu
- College of Letters and Science, University of California, Santa Barbara, CA, United States
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Zhao F, Ma Y, Yin J, Li Y, Cao Y, Zhang L. Analysis of Galangin and Its In Vitro/In Vivo Metabolites via Ultra-High-Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry. Metabolites 2022; 12:1032. [PMID: 36355115 PMCID: PMC9692530 DOI: 10.3390/metabo12111032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/27/2023] Open
Abstract
Galangin, a naturally available flavonoid, induces a variety of pharmacological activities and biological effects via several mechanisms. However, in vivo metabolism of galangin has not been fully explored, which means knowledge of its pharmacodynamics and application potential is limited. The objective of this study was to establish an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method for the rapid profiling and identification of galangin metabolites in vitro and in vivo using unique online information-dependent acquisition with multiple mass defect filtering combined with dynamic background subtraction in positive ion mode. A total of 27 metabolites were detected and characterized, among which eight metabolites in liver microsomes and four metabolites in intestinal microflora were characterized, and 27 metabolites from rat plasma, bile, urine, feces, and a number of different tissue samples were characterized. Thirteen major metabolic pathways including hydrogenation, hydroxylation, glycosylation, methylation, acetylation, glucuronidation, and sulfation were observed to be attributable to the biotransformation of the metabolites. This study provides evidence for the presence of in vitro and in vivo metabolites and the pharmacokinetic mechanism of galangin. Moreover, the study promotes the further development and utilization of galangin and the plant from which it is derived, Alpinia officinarum Hance.
Collapse
Affiliation(s)
- Feng Zhao
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yinling Ma
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China
| | - Jintuo Yin
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Ying Li
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China
| | - Yanli Cao
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China
| | - Lantong Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
12
|
Xu W, Lu H, Yuan Y, Deng Z, Zheng L, Li H. The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB Pathways. Foods 2022; 11:foods11162439. [PMID: 36010439 PMCID: PMC9407528 DOI: 10.3390/foods11162439] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence shows that oxidative stress and inflammation contribute to the development of cardiovascular disease. It has been suggested that propolis possesses antioxidant and anti-inflammatory activities. In this study, the antioxidant and anti-inflammatory effects of the main flavonoids of propolis (chrysin, pinocembrin, galangin, and pinobanksin) and propolis extract were researched. The results showed that the cellular ROS (Reactive oxygen species) levels, antioxidant enzymes, Nrf2 (Nuclear factor erythroid 2-related factor 2) nuclear translocation, and the expression of NQO1 (NAD(P)H:quinone oxidoreductase 1) and HO-1 (heme oxygenase 1) were regulated by different concentrations of individual flavonoids and propolis extract, which showed good antioxidant and pro-oxidant effects. For example, ROS levels were decreased; SOD and CAT activities were increased; and the expression of HO-1 protein was increased by chrysin. The results demonstrated that NO (Nitric Oxide), NOS (Nitric Oxide Synthase), and the activation of the NF-κB signaling pathway were inhibited in a dose-dependent manner by different concentrations of individual flavonoids and propolis extract. Moreover, the results revealed that the phytochemicals presented antioxidant effects at lower concentrations but pro-oxidant effects and stronger anti-inflammatory effects at higher concentrations. To maintain the balance of antioxidant and anti-inflammatory effects, it is possible that phytochemicals activate the Nrf2 pathway and inhibited the NF-κB (Nuclear factor kappa B) pathway.
Collapse
Affiliation(s)
- Wenzhen Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Han Lu
- Guiyang Center for Disease Control and Prevention, Guiyang 550018, China
| | - Yuan Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-15979100756
| |
Collapse
|
13
|
Gómez-Garduño J, León-Rodríguez R, Alemón-Medina R, Pérez-Guillé BE, Soriano-Rosales RE, González-Ortiz A, Chávez-Pacheco JL, Solorio-López E, Fernandez-Pérez P, Rivera-Espinosa L. Phytochemicals That Interfere With Drug Metabolism and Transport, Modifying Plasma Concentration in Humans and Animals. Dose Response 2022; 20:15593258221120485. [PMID: 36158743 PMCID: PMC9500303 DOI: 10.1177/15593258221120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Phytochemicals (Pch) present in fruits, vegetables and other foods, are known to inhibit or induce drug metabolism and transport. An exhaustive search was performed in five databases covering from 2000 to 2021. Twenty-one compounds from plants were found to modulate CYP3A and/or P-gp activities and modified the pharmacokinetics and the therapeutic effect of 27 different drugs. Flavonols, flavanones, flavones, stilbenes, diferuloylmethanes, tannins, protoalkaloids, flavans, hyperforin and terpenes, reduce plasma concentration of cyclosporine, simvastatin, celiprolol, midazolam, saquinavir, buspirone, everolimus, nadolol, tamoxifen, alprazolam, verapamil, quazepam, digoxin, fexofenadine, theophylline, indinavir, clopidogrel. Anthocyanins, flavonols, flavones, flavanones, flavonoid glycosides, stilbenes, diferuloylmethanes, catechin, hyperforin, alkaloids, terpenes, tannins and protoalkaloids increase of plasma concentration of buspirone, losartan, diltiazem, felodipine, midazolam, cyclosporine, triazolam, verapamil, carbamazepine, diltiazem, aripiprazole, tamoxifen, doxorubicin, paclitaxel, nicardipine. Interactions between Pchs and drugs affect the gene expression and enzymatic activity of CYP3A and P-gp transporter, which has an impact on their bioavailability; such that co-administration of drugs with food, beverages and food supplements can cause a subtherapeutic effect or overdose. Therefore, it is important for the clinician to consider these interactions to obtain a better therapeutic effect.
Collapse
Affiliation(s)
| | - Renato León-Rodríguez
- Laboratorio de Contención Biológica BSL-3, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tuli HS, Sak K, Adhikary S, Kaur G, Aggarwal D, Kaur J, Kumar M, Parashar NC, Parashar G, Sharma U, Jain A. Galangin: A metabolite that suppresses anti-neoplastic activities through modulation of oncogenic targets. Exp Biol Med (Maywood) 2022; 247:345-359. [PMID: 34904901 PMCID: PMC8899339 DOI: 10.1177/15353702211062510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With the dramatic increase in cancer incidence all over the world in the last decades, studies on identifying novel efficient anti-cancer agents have been intensified. Historically, natural products have represented one of the most important sources of new lead compounds with a wide range of biological activities. In this article, the multifaceted anti-cancer action of propolis-derived flavonoid, galangin, is presented, discussing its antioxidant, anti-inflammatory, antiproliferative, pro-apoptotic, anti-angiogenic, and anti-metastatic effects in various cancer cells. In addition, co-effects with standard chemotherapeutic drugs as well as other natural compounds are also under discussion, besides highlighting modern nanotechnological advancements for overcoming the low bioavailability issue characteristic of galangin. Although further studies are needed for confirming the anti-cancer potential of galangin in vivo malignant systems, exploring this natural compound might open new perspectives in molecular oncology.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | | | - Shubham Adhikary
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s, NMIMS, Mumbai 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s, NMIMS, Mumbai 400056, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, India
| | | | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda 151401, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda 151401, Punjab, India
| |
Collapse
|
15
|
Qin Y, Dong H, Sun J, Zhang Y, Li J, Zhang T, Chen G, Wang S, Song S, Wang W, Fan Y, Wang J, Huang X, Shen C. Evaluation of MTBH, a novel hesperetin derivative, on the activity of hepatic cytochrome P450 isoform in vitro and in vivo using a cocktail method by HPLC-MS/MS. Xenobiotica 2022; 51:1389-1399. [PMID: 34806938 DOI: 10.1080/00498254.2021.2009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. 8-methylene-tert-butylamine-3',5,7-trihydroxy-4'-methoxyflavanone (MTBH), a novel hesperidin derivative, has potential in the prevention of hepatic disease, however, its effects on cytochrome P450 isoforms (CYP450s) remains unexplored. The purpose was to investigate the effects of MTBH on the mRNA, protein levels, and activities of six CYP450s (1A2, 2C11/9, 2D2/6, 3A1/4, 2C13/19, and 2E1) in vitro and in vivo.2. In vitro study, rat and human liver microsomes were adopted to elucidate the inhibitory effect of MTBH on six CYP450s using probe drugs. In vivo study, Sprague-Dawley male rats were treated with MTBH (25, 50, or 100 mg/kg for 28 consecutive days), phenobarbital (80 mg/kg for 12 consecutive days), or 0.5% CMC-Na solution (control group) by intragastric administration, then, the mRNA, protein levels and activities of liver CYP450s were analysed by real-time PCR, western blotting and probe-drug incubation systems, respectively.3. The in vitro study indicated that MTBH inhibits the activities of CYP3A1/4 and CYP2E1 in rat and human liver microsomes. In vivo data showed that MTBH inhibits mRNA, protein levels, and activities of CYP3A1 and CYP2E1 in medium- and high-dose MTBH groups.4. MTBH has the potential to cause drug-drug interactions when co-administered with drugs that are metabolised by CYP3A1/4 and CYP2E1.
Collapse
Affiliation(s)
- Yan Qin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Haijun Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Nanjing cantech Microbial Sci.& Tech. Co., Ltd, Nanjing, China
| | - Jiayin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yilong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tianci Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guanjun Chen
- Center for Scientific Research of Anhui Medical University, Hefei, P.R. China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, P.R. China
| | - Shuai Song
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Genrix (Shanghai) Biopharmaceutical Co., Ltd, Shanghai, P.R. China
| | - Yuru Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiaohui Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chenlin Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Hefei Kaifan Analytical Technology Co., Ltd, Hefei, China
| |
Collapse
|
16
|
Zhang D, Wu G, Hao H, Chang L, Cao X. Effect of total flavonoids of Hippophae rhamnoides L. on the activity and mRNA expression of CYP450 in rats. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_214_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Chai Y, Xu Y, Xia Z, Huang X, Zhang L, Jiang Z. Study on the effects of Zhuanggu Guanjie Pill, a modern Chinese medicine formula, on the activities and mRNA expression of seven CYP isozymes in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114521. [PMID: 34390794 DOI: 10.1016/j.jep.2021.114521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhuanggu Guanjie Pill (ZGGJP), a modern Chinese medicine formula, is composed of 12 herbs and has been used to treat osteoporosis in China for almost 30 years. However, no in vivo study of the influences of ZGGJP on the cytochrome P450 (CYP) activities have been reported. AIM OF THE STUDY The aim of this study was to evaluate the effects of ZGGJP on the activities and the mRNA expression of CYP enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A) and their corresponding nuclear receptor levels in rats. MATERIALS AND METHODS After 7 days oral treatment of ZGGJP at low- and high-dose, cocktail solution was given to rats. Blood samples were collected at series of time points. The plasma concentrations of probe drugs and their corresponding metabolites were determined by UPLC-MS/MS. The influence of ZGGJP on the activities of seven CYPs were evaluated the metabolic ratios (Cmax and AUC0-t) for metabolites/probe drugs. In addition, the effects of ZGGJP on the mRNA expression of CYPs and their corresponding nuclear receptors in rat liver were evaluated by real-time PCR. RESULTS ZGGJP showed significant inductive effects on CYP1A2 and CYP2B6 of both male and female rats. The influence of ZGGJP on CYP2C9 and CYP3A showed gender difference. ZGGJP could induce the activities of CYP2C9 and CYP3A in female rats, but have no influence on the activities in male rats. ZGGJP had no effects on CYP2D6, CYP2C19 and CYP2E1. The mRNA expression results of CYPs were in accordance with the pharmacokinetic results. The mRNA expression levels of constitutive androstane receptor (CAR) and vitamin D receptor (VDR) were increased significantly in female rats at high dosage, but no significant changes were observed in male rats. CONCLUSION ZGGJP had inductive effects on CYP1A2 and CYP2B6 in both male and female rats. The results showed that ZGGJP could induce the activities of CYP2C9 and CYP3A in female rats, but had no effect in male rats. This may suggest that the influence of ZGGJP on CYP2C9 and CYP3A exhibit gender difference. The inductive effects of ZGGJP on the activities of CYPs, exhibiting gender difference, may be regulated by CAR and VDR. Therefore, co-administration of ZGGJP with other drugs, especially using CYP2C9 and CYP3A substrates in females, may need dose adjustment to avoid herb-drug interaction.
Collapse
Affiliation(s)
- Yuanyuan Chai
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunxia Xu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziyin Xia
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Pang Y, Wu S, He Y, Nian Q, Lei J, Yao Y, Guo J, Zeng J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front Pharmacol 2021; 12:685116. [PMID: 34858164 PMCID: PMC8631938 DOI: 10.3389/fphar.2021.685116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.
Collapse
Affiliation(s)
- Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi Wu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lei
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Su Y, Shen L, Xue J, Zou J, Wan D, Shi Z. Therapeutic evaluation of galangin on cartilage protection and analgesic activity in a rat model of osteoarthritis. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
20
|
Heidari H, Abdollahi M, Khani S, Nojavan F, Khani S. Effect of Alpinia officinarum extract on reproductive damages in streptozotocin induced diabetic male rats. J Diabetes Metab Disord 2021; 20:77-85. [PMID: 34222060 PMCID: PMC8212207 DOI: 10.1007/s40200-020-00711-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Infertility is one of the systemic problems in diabetic men. The purpose of the present study is investigation of the effects of the Alpinia officinarum (AO) hydro-alcoholic extract on the reproductive system damages in diabetic male rats. METHODS Twenty four male rats were randomly assigned into 4 groups (n = 6); i.e., control, diabetic control, and diabetic rats treated orally with AO extract (200 and 500 mg kg-1). A single dose (60 mg kg-1) of streptozotocin (STZ) was injected intraperitoneally (IP) to induce diabetes. After 8 weeks of treatment, blood samples, testis, and cauda epididymis were excised to evaluate specific hormonal changes, sperm parameters, and testis morphology. RESULTS Diabetic control rats showed remarkably lower body and testicular weights, testicular volumes, and sperm parameters compared with the control group (p <0.05). Diabetic control rats also exhibited significantly decreased serum testosterone and follicle stimulating hormone (FSH). Sperm parameters were considerably enhanced in diabetic animals gavaged with AO extract. Testosterone levels were significantly elevated by administrating 500 mg kg-1 AO extract to the diabetic control rats (p <0.05). The morphological assessment of testis of treatment group (500 mg kg-1) indicated remarkable differences (p <0.05) by increasing the seminiferous tubules diameter (STD) and thickness of the seminiferous epithelium (TSE) compared with diabetic control rats. CONCLUSION As demonstrated by the results, AO extract ameliorated sperm damage and improved sperm morphology besides improving histological damage in the testis in diabetic rats. In addition, the dose of 500 mg kg-1 worked more efficiently than 200 mg kg-1.
Collapse
Affiliation(s)
- Hamid Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Maasoume Abdollahi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sima Khani
- Department of Chemistry, University of Massachusetts Boston, Boston, MA USA
| | - Fatemeh Nojavan
- Department of Iranian Traditional Medicine, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Samira Khani
- Neuroscience Research Center, Qom University of Medical Sciences, Pardis Campus, Ghadir Blvd, Qom, Iran
| |
Collapse
|
21
|
Wu G, Dong Z, Dong J, Wei L, Shi R, Kang S, Zhang D. Effects of mongolian medicine Terminalia chebula Retz. on 6 CYP450 enzymes in rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:3128-3138. [PMID: 33425113 PMCID: PMC7791385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Terminalia chebula Retz. (TCR) is a medicinal material commonly used in Mongolian medicine. After consulting the literature at home and abroad, current research on TCR focuses on chemical composition, pharmacodynamics, and fingerprints. The pharmacokinetics of TCR has not been reported. Cytochrome P450 (CYP450) is the main drug-metabolizing enzyme, and its activity may be induced or inhibited by certain drugs, resulting in drug interactions in clinical applications. The objective of this study was to establish a high performance liquid chromatography (HPLC) method that can simultaneously detect multiple probe drugs to determine the effect of TCR on the activities of CYP450 enzymes CYP2C19, CYP2E1, CYP2D6, CYP2C9, CYP3A4, and CYP1A2. Wistar rats (male) were divided into 5 groups according to the randomization principle, namely the control group, the positive group, and the high, medium and low dose group. After 15 days of continuous administration, the mixed probe drug was injected into the vein, and then a small amount of blood was collected from the orbital vein at different time points. After the samples were processed, the blood concentration of each probe drug was measured by the established HPLC method. The pharmacokinetic parameters of each probe drug were calculated using DAS software. Compared with the control group, the plasma clearance (CL) of chlorzoxazone and omeprazole decreased, and the maximum plasma concentration (Cmax) and area under the curve (AUC) increased in the TCR group. The pharmacokinetic parameters of theophylline, midazolam, metoprolol, and tolbutamide did not differ significantly. The results indicated that TCR mainly inhibited the activities of CYP2E1 and CYP2C19, but had no effect on the activities of CYP1A2, CYP2C9, CYP3A4 and CYP2D6. Extra care should be taken when drugs metabolized by CYP2C19 and CYP2E1 enzymes are used in combination with TCR, as drug-herb interactions may occur. These results can guide the clinical application of related drugs and provide valuable information for drug interactions. The main component that affects enzyme activity may be tannins in the water extract.
Collapse
Affiliation(s)
- Guodong Wu
- School of Pharmacy, Baotou Medical CollegeInner Mongolia, P. R. China
| | - Zhenyu Dong
- School of Basic Medicine and Forensic Medicine, Baotou Medical CollegeInner Mongolia, P. R. China
| | - Jiani Dong
- School of Pharmacy, Baotou Medical CollegeInner Mongolia, P. R. China
| | - Lei Wei
- School of Pharmacy, Baotou Medical CollegeInner Mongolia, P. R. China
| | - Ruixian Shi
- School of Basic Medicine and Forensic Medicine, Baotou Medical CollegeInner Mongolia, P. R. China
| | - Songsong Kang
- School of Pharmacy, Baotou Medical CollegeInner Mongolia, P. R. China
| | - Dong Zhang
- School of Basic Medicine and Forensic Medicine, Baotou Medical CollegeInner Mongolia, P. R. China
| |
Collapse
|
22
|
Didaras NA, Karatasou K, Dimitriou TG, Amoutzias GD, Mossialos D. Antimicrobial Activity of Bee-Collected Pollen and Beebread: State of the Art and Future Perspectives. Antibiotics (Basel) 2020; 9:antibiotics9110811. [PMID: 33202560 PMCID: PMC7697837 DOI: 10.3390/antibiotics9110811] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023] Open
Abstract
Bee-collected pollen (BCP) is a well-known functional food. Honey bees process the collected pollen and store it in the hive, inside the comb cells. The processed pollen is called bee- bread or ambrosia and it is the main source of proteins, lipids, vitamins, macro-and micro-elements in honey bee nutrition. During storage, beebread undergoes solid state fermentation which preserves it and increases the bioavailability of nutrients. Research on beebread has been rather limited until now. In recent years, there is an increasing interest regarding the antimicrobial properties of BCP and beebread, due to emerging antimicrobial resistance by pathogens. Both BCP and beebread exhibit antimicrobial properties against diverse pathogens, like bacteria and fungi. As is the case with other bee products, lack of antimicrobial resistance might be attributed to the synergy of more than one antimicrobial compounds within BCP and beebread. Furthermore, BCP and bee bread exert targeted activity against pathogens and affect the host microbiome in a prebiotic manner. This review aims to present up to date research findings regarding these aspects as well as to discuss current challenges and future perspectives in the field.
Collapse
Affiliation(s)
- Nikos Asoutis Didaras
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Volos, Greece; (N.A.D.); (T.G.D.)
| | - Katerina Karatasou
- Apicultural Centre of Larissa, Federation of Greek Beekeepers Associations, 41500 Larissa, Greece;
| | - Tilemachos G Dimitriou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Volos, Greece; (N.A.D.); (T.G.D.)
| | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Volos, Greece;
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Volos, Greece; (N.A.D.); (T.G.D.)
- Correspondence: ; Tel.: +30-241-056-5270
| |
Collapse
|
23
|
Yin J, Zhang X, Zhang Y, Ma Y, Li L, Li D, Zhang L, Zhang Z. Comprehensive Study of the in Vivo and in Vitro Metabolism of Dietary Isoflavone Biochanin A Based on UHPLC-Q-TOF-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12481-12495. [PMID: 31630515 DOI: 10.1021/acs.jafc.9b05776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biochanin A is a dietary isoflavone with multiple biological functions. Owing to a lack of comprehensive studies of biochanin A metabolism, this study was designed to further clarify the processes involved in biochanin A metabolism. In this study, ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was utilized to characterize the metabolism of biochanin A in vivo and in vitro. As a result, 43 metabolites in rats, 22 metabolites in liver microsomes, and 18 metabolites in intestinal flora were elucidated, and 5 metabolites were identified by comparison with standards. Oxidation, demethylation, hydrogenation, internal hydrolysis, conjugation (e.g., glucuronidation, sulfonation, glucose conjugation, methylation, and acetylation), and their composite reactions were determined to be major processes involved in biochanin A biotransformation. The results contribute to a better understanding of the pharmacological mechanism of biochanin A and provide a basis for comprehension of the safety and toxicity of biochanin A.
Collapse
Affiliation(s)
- Jintuo Yin
- Department of Pharmaceutical Analysis, School of Pharmacy , Hebei Medical University , Shijiazhuang 050017 , P. R. China
| | - Xiaowei Zhang
- The Second Hospital of Hebei Medical University , Shijiazhuang 050000 , P. R. China
| | - Yuqian Zhang
- The Second Hospital of Hebei Medical University , Shijiazhuang 050000 , P. R. China
| | - Yinling Ma
- Hebei General Hospital , Shijiazhuang , Hebei 050051 , P. R. China
| | - Luya Li
- Department of Pharmaceutical Analysis, School of Pharmacy , Hebei Medical University , Shijiazhuang 050017 , P. R. China
| | - Deqiang Li
- The Second Hospital of Hebei Medical University , Shijiazhuang 050000 , P. R. China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy , Hebei Medical University , Shijiazhuang 050017 , P. R. China
| | - Zhiqing Zhang
- The Second Hospital of Hebei Medical University , Shijiazhuang 050000 , P. R. China
| |
Collapse
|
24
|
Aladaileh SH, Abukhalil MH, Saghir SAM, Hanieh H, Alfwuaires MA, Almaiman AA, Bin-Jumah M, Mahmoud AM. Galangin Activates Nrf2 Signaling and Attenuates Oxidative Damage, Inflammation, and Apoptosis in a Rat Model of Cyclophosphamide-Induced Hepatotoxicity. Biomolecules 2019; 9:biom9080346. [PMID: 31387329 PMCID: PMC6723184 DOI: 10.3390/biom9080346] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclophosphamide (CP) is a widely used chemotherapeutic agent; however, its clinical application is limited because of its multi-organ toxicity. Galangin (Gal) is a bioactive flavonoid with promising biological activities. This study investigated the hepatoprotective effect of Gal in CP-induced rats. Rats received Gal (15, 30 and 60 mg/kg/day) for 15 days followed by a single dose of CP at day 16. Cyclophosphamide triggered liver injury characterized by elevated serum transaminases, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), and histopathological manifestations. Increased hepatic reactive oxygen species, malondialdehyde, nitric oxide, and oxidative DNA damage along with declined glutathione and antioxidant enzymes were demonstrated in CP-administered rats. CP provoked hepatic nuclear factor-kappaB (NF-κB) phosphorylation and increased mRNA abundance of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) both expression and serum levels. Gal prevented CP-induced liver injury, boosted antioxidants and suppressed oxidative stress, DNA damage, NF-κB phosphorylation and pro-inflammatory mediators. Gal diminished Bax and caspase-3, and increased B-cell lymphoma-2 (Bcl-2) in liver of CP-administered rats. In addition, Gal increased peroxisome proliferator-activated receptor gamma (PPARγ) expression and activated hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) signaling showed by the increase in Nrf2, NAD(P)H: quinone acceptor oxidoreductase-1 (NQO-1) and heme oxygenase 1 (HO-1) in CP-administered rats. These findings suggest that Gal prevents CP hepatotoxicity through activation of Nrf2/HO-1 signaling and attenuation of oxidative damage, inflammation and cell death. Therefore, Gal might represent a promising adjuvant therapy to prevent hepatotoxicity in patients on CP treatment.
Collapse
Affiliation(s)
- Saleem H Aladaileh
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
- Department of Biology, Faculty of Science, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
- Department of Biology, Faculty of Science, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
| | - Sultan A M Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
| | - Hamza Hanieh
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
- Department of Biology, Faculty of Science, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
| | - Manal A Alfwuaires
- Department of Biology, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Amer A Almaiman
- Department of Applied Medical Sciences, Community College of Unaizah, Qassim University, Buraydah 51431, Saudi Arabia
| | - May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Ayman M Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|