1
|
Monica S, Bancalari E, Siroli L, Tekiner IH, Tainsa M, Ennahli S, Bertani G, Gatti M. Lactic acid fermentation of non-conventional plant-based protein extract. Food Res Int 2025; 208:116174. [PMID: 40263788 DOI: 10.1016/j.foodres.2025.116174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The increasing demand for plant-based foods necessitates the development of effective preservation methods to ensure safety and quality. This study evaluated the effectiveness of biopreservation using eight plant-based protein extracts (PBPEs) (pea, faba, soy, potato, pumpkin, hazelnuts, rice, and hemp) fermented with 12 different lactic acid bacteria (LAB) strains from four species. The effectiveness of LAB biopreservation was assessed both at the endpoint and in real-time using impedometric analysis and was found to depend on both the matrix and the strain. Among the 12 LAB strains, Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus showed the highest adaptability, particularly in soy, faba, and hemp protein extracts, highlighting their potential as effective biopreservative agents for diverse PBPEs. Given the distinctive advantage of biopreservation in enhancing organoleptic properties, this aspect was also evaluated for the two most effective LAB strains. Fermentation with L. delbrueckii subsp. bulgaricus 1932 and L. plantarum 4193 significantly improved the aroma profile of fermented PBPEs (pea, faba, soy, pumpkin, rice, and hemp) where they exhibited the best adaptability. Notably, levels of hexanal and hexanoic acid, compounds often associated with off-flavors, were markedly reduced, enhancing the organoleptic properties of the final products. These findings emphasize the dual benefits of LAB fermentation as a natural preservative and flavor enhancer, with promising implications for its application in the food industry.
Collapse
Affiliation(s)
- Saverio Monica
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy
| | - Elena Bancalari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy.
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Ismail Hakkı Tekiner
- Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Istanbul 34303, Türkiye
| | - Marwa Tainsa
- Department of Agroalimentary, Saad Dahleb University, BP-270 Blida, Algeria
| | - Said Ennahli
- National School of Agriculture of Meknes, Meknes, Morocco
| | - Gaia Bertani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy
| | - Monica Gatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 49/A, ,43124, Parma, Italy
| |
Collapse
|
2
|
Sudheer A, Dastidar DG, Ghosh G, Taj Z, Nidhin IK, Chattopadhyay I. Comprehensive genomics, probiotic, and antibiofilm potential analysis of Streptococcus thermophilus strains isolated from homemade and commercial dahi. Sci Rep 2025; 15:7089. [PMID: 40016393 PMCID: PMC11868508 DOI: 10.1038/s41598-025-90999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
This study investigated the probiotic properties and antibiofilm potential of Streptococcus thermophilus strains obtained from homemade and commercial dahi. The S. thermophilus strain from homemade dahi had greater acid tolerance than the commercial strain, indicating a greater capacity to live in the acidic environments of the stomach. The commercial strain had increased survivability in bile salts and was more hydrophobic than the homemade strain. These findings suggest improved adaptability and increased colonization in the gut. The genomes of both strains included genes associated with probiotic characteristics implying that the two strains may provide unique probiotic advantages. These findings highlight the importance of cell-free supernatants (CFS) of these strains in reducing biofilm formation of pathogenic bacteria. Gas chromatography-mass spectrometry demonstrated that 2, 4-di-tert-butylphenol was a shared metabolite in the CFSs of both strains; however, 2-butanol was found only in the CFS of the homemade dahi strain. In-silico investigations revealed that compounds have drug-like characteristics, suggesting that they could be used for treating biofilm-associated diseases. This study highlights the health advantages of probiotics found in traditional dahi, but it also provides a way to develop natural antibacterial medicines.
Collapse
Affiliation(s)
- Aiswarya Sudheer
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science & Technology, 57/F Nilgunj Road, Panihati, Kolkata, 700114, India
| | - Gourav Ghosh
- Guru Nanak Institute of Pharmaceutical Science & Technology, 57/F Nilgunj Road, Panihati, Kolkata, 700114, India
| | - Zarin Taj
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Illathu Kandy Nidhin
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 005, India.
| |
Collapse
|
3
|
Murtaza MS, Yaqoob S, Mubeen B, Sameen A, Murtaza MA, Rehman A, Alsulami T, Korma SA, Khalifa I, Ma YK. Investigating the triple-frequency ultrasound-assisted fermented rice lees: Impact on physicochemical, structural, morphological, and metabolic properties. ULTRASONICS SONOCHEMISTRY 2025; 112:107176. [PMID: 39612754 PMCID: PMC11635024 DOI: 10.1016/j.ultsonch.2024.107176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
This study examined the effect of triple-frequency ultrasound treatment (TFUT)-assisted lactic acid bacteria (LAB-L. plantarum and L. helveticus fermentation for 24-h and 48-h) on the chemical, structural, morphological, metabolic, and sensory properties of rice lees (RL). Ultrasonicated-assisted RL fermented with L. helveticus (URLH-48) had the greatest total phenolic contents (TPC) (112.1 mg GAE/m), total flavonoid contents (TFC) (163.62 mg RE/mL), and proanthocyanidin contents (PAC) (728.34 mg/mL) compared to RL (control) and other treatments. Furthermore, URLH-48 demonstrated an increase in the concentrations of quinic acid (486.96 mg/L) and gallic acid (201.42 mg/L), as determined by HPLC-UV analysis. Additionally, FTIR spectral analyses demonstrated that TFUT-assisted fermented RL exhibited a greater degree of flexibility and mobility in its secondary structures compared to RL (control). The amino acid's profile of RL was significantly increased as LAB degraded the RL proteins, and the function of TFUT facilitates bacterial activity. Moreover, SEM observation provides convincing evidence that TFUT improves and speeds up the breakdown of proteins' structures, resulting in irregular and dense structures. Correlation and molecular docking research suggest that TFUT has different impacts on specific RL and fermented RL characteristics. The analyses conducted using GC-MS and E-nose indicated the generation of highly volatile flavor compounds through fermentation. The sensory evaluation results show an increase in liking following fermentation and TFUT-assisted fermentation, which is attributed to the production of flavor compounds. Consequently, the combined use of TFUT-assisted fermentation markedly improves the polyphenolic composition, antioxidant capacity, flavor profile, micromorphology, and overall quality of RL, which may enhance their functionality and broaden their applications in the food industry.
Collapse
Affiliation(s)
- Mian Shamas Murtaza
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, Zhenjiang, China; Department of Food Science and Technology, MNS University of Agriculture, Multan, Pakistan
| | - Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Bismillah Mubeen
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Aysha Sameen
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Tawfiq Alsulami
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ibrahim Khalifa
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, Zhenjiang, China; Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Yong Kun Ma
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, Zhenjiang, China.
| |
Collapse
|
4
|
Loughrin JH, Agga GE. The Effect of Mono- and Di-Saccharides on the Microbiome of Dairy Cow Manure and Its Odor. Microorganisms 2024; 13:52. [PMID: 39858820 PMCID: PMC11767979 DOI: 10.3390/microorganisms13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
In a previous experiment, we showed that the odor of Bos taurus manure slurries could be improved by anaerobic incubation with the sugars glucose, lactose, and sucrose. This improvement was due to reductions in the concentrations of malodorants, including dimethyl disulfide, p-cresol, p-ethylphenol, indole, and skatole, and a shift to the production of fruity esters, including ethyl butyrate and propyl propanoate. Due to large concentrations of lactic acid produced by the sugar-amended manure slurries, we inferred that lactic acid bacteria were involved in improving the manure slurry odor. Here, through 16S rRNA amplicon sequencing for microbiome analysis, we show that lactic acid bacterial growth was promoted by the addition of all three sugars. Lactobacillus buchneri and an unknown Lactobacillus sp. were the most prominent lactic acid bacteria stimulated by sugar addition. Lactobacillales were found only in trace abundances in unamended manure slurries. The relative abundance of orders such as Clostridiales, Bifidobacteriales, and Erysipelotrichales were not noticeably affected by sugar amendment. However, the disaccharides lactose and sucrose seemed to increase the relative abundance of Bifidobacterium, whereas the monosaccharide glucose did not. We conclude that lactic acid bacteria are the primary bacteria involved in improving odor in dairy cow manure slurries and present strategies to enhance their abundance in animal wastes.
Collapse
Affiliation(s)
- John H. Loughrin
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, 2413 Nashville Road, Suite B5, Bowling Green, KY 42101, USA;
| | | |
Collapse
|
5
|
Wu Y, Zhao M, Li S, Liu S, Gao S, Liu R, Wu M, Yu H, Ge Q. Storage Stability Enhancement of Lactic Acid Beverage Using Anti-MDA Lactiplantibacillus plantarum NJAU-01: The Antioxidant's Role. Foods 2024; 14:52. [PMID: 39796342 PMCID: PMC11720519 DOI: 10.3390/foods14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
This study evaluated the inhibitory efficacy of Lactiplantibacillus plantarum NJAU-01 (NJAU-01) on oxidation associated with malondialdehyde (MDA) and utilized the bacteria in a functional lactic acid beverage. The antioxidant capacity of the bacteria was measured in vitro, the production conditions (inoculum, fermentation time, and sugar addition) of the lactic acid beverage were optimized, and the effects of NJAU-01 on antioxidant, flavor profile, and storage stability of lactic acid beverages were investigated. The results revealed that NJAU-01 exhibited a high tolerance towards MDA at 40 mM, and that it also exhibited outstanding antioxidant capacity in vitro and antioxidant enzyme activity throughout its growth stage. The beverage demonstrated an elevated antioxidant capacity and efficiently eliminated MDA. Additionally, the NJAU-01 lactic acid beverage could be stored at 4 °C for 21 days, exhibiting stable sensory attributes and strong resistance against lipid peroxidation. The study yielded insights into the role of NJAU-01 in improving the storage stability of lactic acid beverages thereby contributing to a deeper understanding of the specific mechanisms by which probiotics enhance beverage quality. These findings can facilitate a more effective utilization of this knowledge in the food industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China (S.G.); (R.L.); (M.W.); (H.Y.)
| |
Collapse
|
6
|
Caponio GR, Annunziato A, Vacca M, Difonzo G, Celano G, Minervini F, Ranieri M, Valenti G, Tamma G, De Angelis M. Nutritional, antioxidant and biological activity characterization of orange peel flour to produce nutraceutical gluten-free muffins. Food Funct 2024; 15:8459-8476. [PMID: 39052071 DOI: 10.1039/d4fo01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Celiac disease - a prevalent food intolerance - requires strict adherence to a lifelong gluten-free (GF) diet as the only effective treatment. However, GF products often lack soluble fibre and have a high glycaemic index. Consequently, there is a pressing need in the food industry to develop GF products with improved nutritional profiles. In this context, the impact of incorporating orange peel flour (OPF) into muffins undergoing sourdough fermentation was examined, focusing on their technological, antioxidant, and nutritional characteristics. The functional properties of OPF were investigated using human colon carcinoma HCT8 cells as a model system. Treatment with OPF extract demonstrated a notable reduction in malignant cell viability and intracellular ROS levels, indicating potent antioxidant capabilities. Western blot analysis revealed significant alterations in key signalling pathways, including increased phosphorylation of NF-kB at serine 536 and reduced intracellular levels of caspase-3, alongside increased phosphorylation of RIPK3 and MLKL, suggesting potential involvement in necroptosis. OPF incorporation in muffins with sourdough increased antioxidant activity, reduced glycaemic index, and affected the volatile profile. Furthermore, based on simulated colonic fermentation, muffins with OPF showed a slight prebiotic effect, supported by the significant increase in bacillus-shaped lactic acid bacteria and Clostridia population. Overall, OPF-enriched muffins demonstrated considerable antioxidant effects and impacts on cell viability, underscoring their potential as functional ingredients in GF products. These findings signify the prospect of OPF enhancing the nutritional profiles and conferring health benefits of GF muffins.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Fabio Minervini
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Marianna Ranieri
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Giovanna Valenti
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Grazia Tamma
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
7
|
Diez-Ozaeta I, Vázquez-Araújo L, Estrada O, Puente T, Regefalk J. Exploring the Role of Lactic Acid Bacteria Blends in Shaping the Volatile Composition of Fermented Dairy and Rice-Based Beverages: A Step towards Innovative Plant-Based Alternatives. Foods 2024; 13:664. [PMID: 38472776 DOI: 10.3390/foods13050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Plant-based products are currently gaining consumers' attention due mainly to the interest in reducing the consumption of foods of animal origin. A comparison of two fermentative processes utilizing dairy milk and a rice beverage was conducted in the present study, using a commercial lactic acid bacteria strain combination (CH) and a selected mixture of lactic acid bacteria from yogurt (LLV). Cell viability and physicochemical characteristics (total soluble solids, pH, total acidity) were determined to describe the samples before and after fermentation, as well as the volatile composition (gas chromatography-mass spectrometry) and the sensory profile (Rate-All-That-Apply test). Results of the analyses showed significant differences among samples, with a clear effect of the raw material on the volatile profile and the sensory characterization, as well as a significant effect of the microbial combination used to ferment the matrices. In general, the selected LLV strains showed a greater effect on both matrices than the commercial combination. Dairy samples were characterized by a volatile profile represented by different chemical families (ketones, lactones, acids, etc.), which contributed to the common descriptive attributes of milk and yogurt (e.g., dairy, cheese). In contrast, rice beverages were mainly characterized by the presence of aldehydes and alcohols (cereal, legume, nutty).
Collapse
Affiliation(s)
- Iñaki Diez-Ozaeta
- BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, 20009 Donostia-San Sebastián, Spain
| | - Laura Vázquez-Araújo
- BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, 20009 Donostia-San Sebastián, Spain
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, 20009 Donostia-San Sebastián, Spain
| | - Olaia Estrada
- BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, 20009 Donostia-San Sebastián, Spain
| | - Telmo Puente
- BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, 20009 Donostia-San Sebastián, Spain
| | - John Regefalk
- BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, 20009 Donostia-San Sebastián, Spain
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, 20009 Donostia-San Sebastián, Spain
| |
Collapse
|
8
|
Effects of Lactobacillus curvatus HY7602-Fermented Antlers in Dexamethasone-Induced Muscle Atrophy. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study assessed the improvements yielded by Lactobacillus curvatus HY7602-fermented antlers (FA) in dexamethasone-induced muscle atrophy and the effects of bioactive compounds increased by fermentation. Dexamethasone-treated C2C12 myoblast cells were treated with FA and non-fermented antlers (NFA). FA showed inhibitory effects on muscle protein degradation in the C2C12 cells. Hsb:ICR mice were orally administered saline (control(CON) and dexamethasone only (DEX)), oxymetholone (DEX+OXY), NFA (DEX+NFA), and FA (DEX+FA) via gavage. Before the end of the experiment, dexamethasone was intraperitoneally (IP) injected into the mice, except in the control group, to induce muscle atrophy. Compared with the DEX group, the DEX+FA group exhibited a significant prevention in the reduction of hindlimb strength, calf thickness, calf muscle weight, and the cross-sectional area of muscle fibers (p < 0.05). The FA-induced improvements in muscle atrophy were associated with a decreased gene expression of protein degradation and growth inhibition, and an increased gene expression of protein synthesis and growth factors. Sialic acid, a bioactive compound associated with muscles, was increased by 51.41% after fermentation and suppressed the expression of protein degradation genes in the C2C12 cells. L. curvatus HY7602-fermented antlers with increased sialic acid after fermentation may therefore be useful for preventing and improving muscle atrophy.
Collapse
|
9
|
Vasilica B(TB, Chiș MS, Alexa E, Pop C, Păucean A, Man S, Igual M, Haydee KM, Dalma KE, Stănilă S, Socaci S, Fărcaș A, Berbecea A, Popescu I, Muste S. The Impact of Insect Flour on Sourdough Fermentation-Fatty Acids, Amino-Acids, Minerals and Volatile Profile. INSECTS 2022; 13:576. [PMID: 35886752 PMCID: PMC9322958 DOI: 10.3390/insects13070576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023]
Abstract
Acheta domesticus (L.1758) has been recently accepted by the European Union as a novel food, being the third insect that has been approved for human consumption. Nowadays, researchers' attention is focused on exploiting new protein sustainable sources, and, therefore, insect flour has gained more and more interest. Organic acids, fatty acids, amino acids, aroma volatile compounds, and minerals were analyzed through HPLC-RID (High-performance liquid chromatography), GC-MS (Gas chromatography-mass spectrometry), LC-MS (Liquid chromatography-mass spectrometry), ITEX/GC-MS and AAS (Atomic Absorption Spectrophotometry), respectively. Fermentation of the insect flour with Lactobacillus plantarum ATCC 8014 strain (Lp) leads to an increase in organic acids such as lactic, acetic, and oxalic, whilst citric acid decreases its value. SFA (saturated fatty acids) and MUFA (monosaturated fatty acids) groups were positively influenced by Lp fermentation; meanwhile, PUFA (polysaturated fatty acids) decreased during fermentation. A positive trend was observed for amino acids, aroma volatile content, and minerals enhancement during insect sourdough fermentation, mainly at 24 h of fermentation. Acheta domesticus (A. domesticus) sourdough fermentation represents a new tool that needs to be further exploited aiming to improve the nutritional qualities of the final products.
Collapse
Affiliation(s)
- Beldean (Tătar) Bianca Vasilica
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manăștur Street, 400372 Cluj-Napoca, Romania; (B.B.V.); (A.P.); (S.M.); (S.M.)
| | - Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manăștur Street, 400372 Cluj-Napoca, Romania; (B.B.V.); (A.P.); (S.M.); (S.M.)
| | - Ersilia Alexa
- Department of Food Control, Faculty of Agro-Food Technologies, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 30064 Timisoara, Romania;
| | - Carmen Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.P.); (S.S.); (A.F.)
| | - Adriana Păucean
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manăștur Street, 400372 Cluj-Napoca, Romania; (B.B.V.); (A.P.); (S.M.); (S.M.)
| | - Simona Man
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manăștur Street, 400372 Cluj-Napoca, Romania; (B.B.V.); (A.P.); (S.M.); (S.M.)
| | - Marta Igual
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Kovacs Melinda Haydee
- NCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (K.M.H.); (K.E.D.)
| | - Kovacs Emoke Dalma
- NCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (K.M.H.); (K.E.D.)
| | - Sorin Stănilă
- Department of Technical Sciences and Soil Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur Street, No. 3-5, 400372 Cluj-Napoca, Romania
| | - Sonia Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.P.); (S.S.); (A.F.)
| | - Anca Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.P.); (S.S.); (A.F.)
| | - Adina Berbecea
- Department of Soil Sciences, Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 30064 Timisoara, Romania; (A.B.); (I.P.)
| | - Iuliana Popescu
- Department of Soil Sciences, Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 30064 Timisoara, Romania; (A.B.); (I.P.)
| | - Sevastița Muste
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manăștur Street, 400372 Cluj-Napoca, Romania; (B.B.V.); (A.P.); (S.M.); (S.M.)
| |
Collapse
|
10
|
Indrati N, Sumpavapol P, Samakradhamrongthai RS, Phonsatta N, Poungsombat P, Khoomrung S, Panya A. Volatile and non‐volatile compound profiles of commercial sweet pickled mango and its correlation with consumer preference. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Niken Indrati
- Food Microbiology and Safety Laboratory Food Science and Technology Program Faculty of Agro‐Industry Prince of Songkla University Songkhla 90110 Thailand
| | - Punnanee Sumpavapol
- Food Microbiology and Safety Laboratory Food Science and Technology Program Faculty of Agro‐Industry Prince of Songkla University Songkhla 90110 Thailand
| | | | - Natthaporn Phonsatta
- Food Biotechnology Research Team Functional Ingredients and Food Innovation Research Group National Center for Genetic Engineering and Biotechnology (BIOTEC) Thailand Science Park Pathum Thani 12120 Thailand
| | - Patcha Poungsombat
- Metabolomics and Systems Biology Department of Biochemistry Faculty of Medicine Siriraj Hospital Mahidol University Bangkok 10700 Thailand
- Faculty of Medicine Siriraj Hospital Siriraj Metabolomics and Phenomics Center Mahidol University Bangkok 10700 Thailand
| | - Sakda Khoomrung
- Metabolomics and Systems Biology Department of Biochemistry Faculty of Medicine Siriraj Hospital Mahidol University Bangkok 10700 Thailand
- Faculty of Medicine Siriraj Hospital Siriraj Metabolomics and Phenomics Center Mahidol University Bangkok 10700 Thailand
| | - Atikorn Panya
- Food Biotechnology Research Team Functional Ingredients and Food Innovation Research Group National Center for Genetic Engineering and Biotechnology (BIOTEC) Thailand Science Park Pathum Thani 12120 Thailand
| |
Collapse
|
11
|
The Volatile Compounds and Aroma Description in Various Rhizopus oligosporus Solid-State Fermented and Nonfermented Rice Bran. FERMENTATION 2022. [DOI: 10.3390/fermentation8030120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rice bran is known to have beneficial nutrients. Current studies suggest that solid-state fermentation affects the rice bran’s volatile profile. The aim of this study is to identify the volatile compounds and aroma description of fermented and nonfermented rice bran (FRB and NFRB) of Ciherang, Inpari30, IR64 and Inpari42. The fermentation was conducted using Rhizopus oligosporus solid-state fermentation. Headspace-solid phase microextraction coupled with GC/MS was performed, and the aroma was translated by 10 trained panelists through quantitative descriptive analysis (QDA). The result showed that 72 and 68 compounds were identified in FRB and NFRB, respectively. They are aldehydes, ketones, alcohols, acids, esters, fatty acid, phenol, benzenes, furan, thiazole, pyrazines, pyridine, lactones, terpenes, and hydrocarbons. The PCA showed that FRB was dominated by alcohols, whereas NFRB was dominated by aldehydes. The QDA described nine aromas, i.e., rancid, smoky, musty, grassy, green, earthy, cereal, and sweet in NFRB. The fermentation process added fermented attributes to the aroma description to FRB and enhanced the rancid, smoky, and musty aromas. These studies indicated that fermented rice bran might increase the volatile compound of rice bran. Thus, it may provide opportunities to develop the production of fermented rice bran as a functional ingredient.
Collapse
|
12
|
Makinei L, Hazarika M. Flavour network-based analysis of food pairing: Application to the recipes of the sub-cuisines from Northeast India. Curr Res Food Sci 2022; 5:1038-1046. [PMID: 35789802 PMCID: PMC9249598 DOI: 10.1016/j.crfs.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022] Open
Abstract
The flavour network-based analysis of food pairing was applied to the sub-cuisines from Northeast India to examine the food pairing behaviour in terms of the co-occurrence of ingredients with the shared flavouring compounds in food recipes. The method applied was based on an existing procedure in computational gastronomy, wherein the preference for positive pairing is attributed to dairy-based ingredients and negative pairing behaviour is attributed primarily to spice based ingredients. Recipe data was subjected to backbone extraction, projection of the recipe-ingredient-compound tri-partite network, and analysis for prevalence and authenticity of ingredients. Further, the average flavour sharing index of the cuisine was determined with the help of the flavour profiles of the ingredients. The extent of deviation for the original cuisine in comparison to a random cuisine was used to determine the degree of bias in the food pairing behaviour, with the sign as the indicator of the nature of pairing. The analysis identified the ingredients responsible to exhibit a positive or negative pairing pattern in the sub-cuisines. The ingredients from the spice category were the most prevalent and have resulted in the negative pairing behaviour in the cuisines. This role of spices in effecting a negative pairing behaviour is in line with the earlier reports for other Indian regional cuisines. Network theory was applied to explore the flavour pairing behaviour in recipes from Northeast regional sub-cuisines. Cooking oil and ingredients from the spice category were the prevalent ingredients. Prevalence of spices have led to negative food pairing patterns in most of the regional sub-cuisines. Limited usage of dairy ingredients is also a reason for the non - positive food pairing behaviors in the sub-cuisines.
Collapse
|
13
|
Dhong KR, Park HJ. Pediococcus Pentosaceus from the Sweet Potato Fermented Ger-Minated Brown Rice Can Inhibit Type I Hypersensitivity in RBL-2H3 Cell and BALB/c Mice Models. Microorganisms 2021; 9:microorganisms9091855. [PMID: 34576749 PMCID: PMC8469544 DOI: 10.3390/microorganisms9091855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/20/2022] Open
Abstract
In this study, the effect of GBR fermented with the Pediococcus pentosaceus SP024 strain on IgE/Ag mediated passive cutaneous anaphylaxis (PCA) was investigated. Protocatechuic acid and trans-ferulic acid levels in GBR-SP024 increased more than those in unfermented GBR, respec-tively. The inhibitory activity of GBR-SP024 on β-hexosaminidase release and the level of proin-flammatory cytokine mRNA expression (tumor necrosis factor-α (TNF-α) and interleukin 4 (IL-4)) was observed in IgE/Ag-stimulated RBL-2H3 cells. Western blot analysis showed that GBR-SP024 significantly inhibited the phosphorylation of the linker for activation of T cell (LAT) and nuclear factor-κB (NF-κB) in IgE/Ag-stimulated RBL-2H3 cells. Further, we investigated the anti-allergic effect of GBR-SP024 using PCA murine model. The number of infiltrated immune cells and degranulated mast cells in GBR-SP024 treated dermis was lower than that in the GBR-treated mice. In addition, mRNA expression of 5-lipoxygenase (5-LOX) in the dermis of ear tissue declined in the GBR-SP024–treated group, compared to that in the GBR group. GBR-SP024 was also more effective than GBR at reducing the levels of IL-33 protein expression in IgE/Ag-stimulated BALB/c mice. Our study suggests the potential usage of GBR-SP024 as a dietary supplement or an adjuvant for treating IgE-dependent-allergic diseases.
Collapse
Affiliation(s)
- Kyu-Ree Dhong
- Department of Life Science, College of BioNano, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
- Correspondence: ; Tel.: +82-31-750-5382
| |
Collapse
|
14
|
Ghamry M, Li L, Zhao W. A metabolomics comparison of Lactobacillus communities isolated from breast milk and camel milk and Lactobacillus apis isolated from bee gut during cereals-based fermentation vs. Lactobacillus plantarum as a reference. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Nada A, Rahmawati NTI, Oktriani A, David W, Astuti RM, Handoko DD, Kusbiantoro B, Budijanto S, Shirakawa H. Volatile Compounds, Sensory Profile and Phenolic Compounds in Fermented Rice Bran. PLANTS 2021; 10:plants10061073. [PMID: 34071857 PMCID: PMC8229494 DOI: 10.3390/plants10061073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/02/2022]
Abstract
Rice bran (RB), a by-product of the rice milling process, is a rich source of bioactive compounds. Current studies have suggested that fermentation can enhance the bioactivities of RB. This study is aimed to analyse the volatile compounds and sensory profile of fermented RB from two cultivars (Inpari 30 and Cempo Ireng) that are well-known in Indonesia, as well as to measure total phenolic content (TPC) and antioxidant activity. Volatile compounds of fermented RB were analyzed using gas chromatography-mass spectrometry combined with headspace-solid phase microextraction. The optimum TPC and antioxidant activity were observed after 72 h fermentation of RB. The 55 volatile compounds were identified in fermented and non-fermented RB. They were classified into alcohols, aldehydes, acids, ketones, phenols, esters, benzene, terpenes, furans, lactone, pyridines, pyrazines, and thiazoles. Volatile compounds were significantly different among the varieties. The sensory analysis showed that the panelists could differentiate sensory profiles (color, taste, flavor, and texture) between the samples. Fermentation can enhance the acceptance of RB. These studies may provide opportunities to promote the production of fermented RB as a functional ingredient with enhanced bioactivity for health promotion.
Collapse
Affiliation(s)
- Annisa Nada
- Department of Food Technology, Universitas Bakrie, Jakarta 12920, Indonesia; (A.N.); (N.T.I.R.); (A.O.); (W.D.); (R.M.A.)
| | - Nuraini Tiara Indah Rahmawati
- Department of Food Technology, Universitas Bakrie, Jakarta 12920, Indonesia; (A.N.); (N.T.I.R.); (A.O.); (W.D.); (R.M.A.)
| | - Annisa Oktriani
- Department of Food Technology, Universitas Bakrie, Jakarta 12920, Indonesia; (A.N.); (N.T.I.R.); (A.O.); (W.D.); (R.M.A.)
| | - Wahyudi David
- Department of Food Technology, Universitas Bakrie, Jakarta 12920, Indonesia; (A.N.); (N.T.I.R.); (A.O.); (W.D.); (R.M.A.)
| | - Rizki Maryam Astuti
- Department of Food Technology, Universitas Bakrie, Jakarta 12920, Indonesia; (A.N.); (N.T.I.R.); (A.O.); (W.D.); (R.M.A.)
| | - Dody Dwi Handoko
- Laboratory of Flavor Analysis, Indonesian Center for Rice Research, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Subang, Jawa Barat 41256, Indonesia; (D.D.H.); (B.K.)
| | - Bram Kusbiantoro
- Laboratory of Flavor Analysis, Indonesian Center for Rice Research, Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Subang, Jawa Barat 41256, Indonesia; (D.D.H.); (B.K.)
| | - Slamet Budijanto
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor 16680, Indonesia;
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan;
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
16
|
Cuvas-Limon RB, Nobre C, Cruz M, Rodriguez-Jasso RM, Ruíz HA, Loredo-Treviño A, Texeira JA, Belmares R. Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview. Crit Rev Food Sci Nutr 2020; 61:2984-3006. [PMID: 32662286 DOI: 10.1080/10408398.2020.1791050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fermented food has been present throughout history, since fermentation not only helps preserving food, but also provides specific organoleptic characteristics typically associated to these foods. Most of the traditional fermented foods and artisanal beverages are produced by spontaneous generation, meaning no control of the microbiota, or the substrate used. Nevertheless, even not being standardized, they are an important source of bioactive compounds, such as antioxidant compounds, bioactive beeps, short chain fatty acids, amino acids, vitamins, and minerals. This review compiles a list of relevant traditional fermented beverages around the world, aiming to detail the fermentation process itself-including source of microorganisms, substrates, produced metabolites and the operational conditions involved. As well as to list the bioactive compounds present in each fermented food, together with their impact in the human health. Traditional fermented beverages from Mexico will be highlighted. These compounds are of high interest for the food, pharmaceutical and cosmetics industry. To scale-up the home fermentation processes, it is necessary to fully understand the microbiology and biochemistry behind these traditional products. The use of good quality raw materials with standardized methodologies and defined microorganisms, may improve and increase the production of the desirable bioactive compounds and open a market for novel functional products.
Collapse
Affiliation(s)
- R B Cuvas-Limon
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mario Cruz
- Department of Food Science and Technology, Antonio Narro Autonomous Agricultural University, Saltillo, Coahuila, Mexico
| | - Rosa M Rodriguez-Jasso
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Héctor A Ruíz
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Araceli Loredo-Treviño
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - J A Texeira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ruth Belmares
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
17
|
Valorization of Nile tilapia (Oreochromis niloticus) fish head for a novel fish sauce by fermentation with selected lactic acid bacteria. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109539] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Effect of Rice Flour Fermentation with Lactobacillus spicheri DSM 15429 on the Nutritional Features of Gluten-Free Muffins. Foods 2020; 9:foods9060822. [PMID: 32580442 PMCID: PMC7353660 DOI: 10.3390/foods9060822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Lactobacillus Spicheri DSM 15429 strain was used to ferment rice flour, aiming at exploiting its influence on the amino-acids, minerals, lactic acid, total phenols, and antioxidant activity of the rice sourdough and gluten-free muffins. Gluten-free muffins were prepared by using 15% rice sourdough fermented with the above strain of lactic acid bacteria and compared with rice spontaneous fermentation. Methods like LC-MS (Liquid chromatography–mass spectrometry), AA (atomic absorption), HPLC (High-performance liquid chromatography), Folin–Ciocalteu, and 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity (DPPH) were used to fulfill the aim of the study. The addition of rice sourdough fermented with LAB was reflected in the chemical composition of the final baked good, improving its amount on bioactive compounds such as amino acids, mineral bioavailability, total phenols, and antioxidant activity. Total phenols and antioxidant activity increased their amount by 70.53% and 73.70%, respectively, meanwhile, lactic acid, minerals, and amino-acids increased their values at least twice. Thus, rice fermented with Lactobacilus spicheri DSM 15429 strain could be a tool to further increase the nutritional value of gluten-free baked products.
Collapse
|
19
|
Mosso AL, LeBlanc JG, Motta C, Castanheira I, Ribotta P, Sammán N. Effect of fermentation in nutritional, textural and sensorial parameters of vegan-spread products using a probiotic folate-producing Lactobacillus sakei strain. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Textural and Sensory Features Changes of Gluten Free Muffins Based on Rice Sourdough Fermented with Lactobacillus spicheri DSM 15429. Foods 2020; 9:foods9030363. [PMID: 32245079 PMCID: PMC7143808 DOI: 10.3390/foods9030363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Gluten free products available on the market have a low textural quality associated with high crumbly structure, low-flavor, aroma, poor mouthfeel, less appearance, in comparison with the conventional final baked products. The aim of this study was to assess the influence of rice sourdough fermented with Lactobacillus spicheri DSM 15429 strain on textural, volatile profile, and sensorial properties of gluten free muffins in order to obtain baked goods with improved quality characteristics. Lactobacillus spicheri is a novel strain isolated from industrial rice sourdough but unexploited for bakery products manufacturing. The results showed that Lactobacillus spicheri DSM 15429 was able to growth in the rice flour influencing the texture and the volatile profile of gluten free muffins as well as their sensory characteristics. Both, textural parameters and volatiles recorded significant differences comparing to muffins obtained with a spontaneously fermented rice sourdough. Hardness and cohesiveness decreased while springiness and resilience of gluten free muffins improved their values. The volatile profile of gluten free muffins was significantly improved by utilization of the rice sourdough fermented with Lactobacilus spicheri DSM 15429. 3-methylbutanal, 2-methylbutanal, acetophenone and limonene were the main volatile derivatives responsible for aroma and odor scores of sensory analysis.
Collapse
|