1
|
Tiwari D, Narang R, Sudhakar K, Singh V, Lal S, Devgun M. 1,3,4-oxadiazole derivatives as potential antimicrobial agents. Chem Biol Drug Des 2022; 100:1086-1121. [PMID: 35676800 DOI: 10.1111/cbdd.14100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 05/12/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023]
Abstract
Due to the emergence of drug-resistant microbial strains, different research groups are continuously developing novel drug molecules against already exploited and unexploited targets. 1,3,4-Oxadiazole derivatives exhibited noteworthy antimicrobial activities. The presence of 1,3,4-oxadiazole moiety in antimicrobial agents can modify their polarity and flexibility, which significantly improves biological activities due to various bonded and non-bonded interactions viz. hydrogen bond, steric, electrostatic, and hydrophobic with target sites. The present review elaborates the therapeutic targets and mode of interaction of 1,3,4-oxadiazoles as antimicrobial agents. 1,3,4-oxadiazole derivatives target enoyl reductase (InhA), 14α-demethylase in the mycobacterial cell; GlcN-6-P synthase, thymidylate synthase, peptide deformylase, RNA polymerase, dehydrosqualene synthase in bacterial strains; ergosterol biosynthesis pathway, P450-14α demethylase, protein-N-myristoyltransferase in fungal strains; FtsZ protein, interfere with purine and functional protein synthesis in plant bacteria. The present review also summarizes the effect of different moieties and functional groups on the antimicrobial activity of 1,3,4-oxadiazole derivatives.
Collapse
Affiliation(s)
- Deeksha Tiwari
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Sukhbir Lal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India
| | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
2
|
Wu G, Zhu Z, Li J, Luo X, Zhu W, Liao G, Xia J, Zhang W, Pan W, Li T, Wu S. Design, synthesis and antibacterial evaluation of pleuromutilin derivatives. Bioorg Med Chem 2022; 59:116676. [PMID: 35220163 DOI: 10.1016/j.bmc.2022.116676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
We report herein the design, synthesis, and structure-activity relationship studies of pleuromutilin derivatives containing urea/thiourea functionalities. The antibacterial activities of these new pleuromutilin derivatives were evaluated in vitro against Gram-positive pathogens (GPPs) (Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium) and Mycoplasma pneumoniae by the broth dilution method. Most of the targeted compounds exhibit good potency in inhibiting the growth of pathogens including Methicillin-susceptible S. aureus (MSSA, ATCC29213, MIC: 0.0625-16 μg/mL), Methicillin-resistant S. aureus (MRSA, ATCC43300, MIC: 0.125-16 μg/mL) and M. pneumoniae (ATCC15531 MIC: 0.125-1 μg/mL, ATCC29342 MIC: 0.0625-0.25 μg/mL and drug resistant strain MIC: 0.5-2 μg/mL). In particular, the compounds 6m and 6n containing phenyl-urea group showed excellent activity with the MIC value less than 0.0625 μg/mL against S. aureus ATCC29213. The compound 6h exhibited better activity than tiamulin against Methicillin-resistant S. aureus ATCC43300.
Collapse
Affiliation(s)
- Guangxu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jishun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xinyu Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wenyong Zhu
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming 650031, Chin
| | - Guoyang Liao
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming 650031, Chin
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Tianlei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
3
|
Yarmohammadi E, Beyzaei H, Aryan R, Moradi A. Ultrasound-assisted, low-solvent and acid/base-free synthesis of 5-substituted 1,3,4-oxadiazole-2-thiols as potent antimicrobial and antioxidant agents. Mol Divers 2021; 25:2367-2378. [PMID: 32770458 DOI: 10.1007/s11030-020-10125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023]
Abstract
One of the goals of green chemistry is to use environmentally friendly solvents or remove and reduce the volume of harmful spent solvents. In this study, a novel process for the synthesis of 5-substituted 1,3,4-oxadiazole-2-thiol derivatives was proposed via ultrasound-assisted reaction of aryl hydrazides with CS2 (1:1 molar ratio) in some drops of DMF in the absence of basic or acidic catalysts. They were produced in good to excellent yields under easy workup and purification conditions. In order to prove the usefulness of the prepared compounds, their antioxidant, antibacterial, and antifungal potentials were screened by DPPH free radical scavenging, serial twofold microdilution and streak plate methods. Acceptable to significant inhibitory activities were observed with synthesized heterocycles. The results showed that 5-(4-fluorophenyl)-1,3,4-oxadiazole-2-thiol (3c) is an broad-spectrum antimicrobial agent. Many of them displayed remarkable antioxidant properties comparable to standard controls (ascorbic acid and α-tocopherol). Synthesized 1,3,4-oxadiazoles are also potent candidates to treat cancer, Parkinson, inflammatory, and diabetes diseases. Eighteen 5-substituted 1,3,4-oxadiazole-2-thiol derivatives as potent antimicrobial and antioxidant agents were prepared via a new, efficient and green procedure.
Collapse
Affiliation(s)
- Elahe Yarmohammadi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Reza Aryan
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Ashraf Moradi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
4
|
Glomb T, Świątek P. Antimicrobial Activity of 1,3,4-Oxadiazole Derivatives. Int J Mol Sci 2021; 22:6979. [PMID: 34209520 PMCID: PMC8268636 DOI: 10.3390/ijms22136979] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The worldwide development of antimicrobial resistance forces scientists to search for new compounds to which microbes would be sensitive. Many new structures contain the 1,3,4-oxadiazole ring, which have shown various antimicrobial activity, e.g., antibacterial, antitubercular, antifungal, antiprotozoal and antiviral. In many publications, the activity of new compounds exceeds the activity of already known antibiotics and other antimicrobial agents, so their potential as new drugs is very promising. The review of active antimicrobial 1,3,4-oxadiazole derivatives is based on the literature from 2015 to 2021.
Collapse
Affiliation(s)
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
5
|
Samigullina AI, Krutov IA, Gavrilova EL, Gubaidullin AT. Conformational Behavior of N1-(Diphenylphosphoryl)acetyl-N4-phenyl-thiosemicarbazide in Various Crystal Environments. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kadagathur M, Shaikh AS, Jadhav GS, Sigalapalli DK, Shankaraiah N, Tangellamudi ND. Cyclodesulfurization: An Enabling Protocol for Synthesis of Various Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202100201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Manasa Kadagathur
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Arbaz Sujat Shaikh
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Govinda Shivaji Jadhav
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Neelima D. Tangellamudi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
7
|
Chaudhry F, Munawar MA, Khan MA. Facile Synthesis of Isoniazid Derivatives – 1-[2-(3-Aryl(Hetaryl)-1-Phenyl-1H-Pyrazol-4-yl)-5-(Pyridin-4-yl)-1,3,4-Oxadiazol-3(2H)-yl]Ethanones. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Song ZL, Zhu Y, Liu JR, Guo SK, Gu YC, Han X, Dong HQ, Sun Q, Zhang WH, Zhang MZ. Diversity-oriented synthesis and antifungal activities of novel pimprinine derivative bearing a 1,3,4-oxadiazole-5-thioether moiety. Mol Divers 2020; 25:205-221. [PMID: 32056130 DOI: 10.1007/s11030-020-10048-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
Based on the strategy of diversity-oriented synthesis and the structures of natural product pimprinine and streptochlorin, two series of novel pimprinine derivatives containing 1,3,4-oxadiazole-5-thioether moieties were efficiently synthesized under the optimized reaction conditions. Biological assays conducted at Syngenta showed the designed derivatives displayed an altered pattern of biological activity, of which 5h was identified as the most promising compound with strong activity against Pythium dissimile and also a broad antifungal spectrum in primary screening. Further structural optimization of pimprinine and streptochlorin derivatives is well under way, aiming to discover synthetic analogues with improved antifungal activity. Two series of novel pimprinine derivatives containing 1,3,4-oxadiazole-5-thioether moieties were efficiently synthesized through diversity-oriented synthesis strategy under the optimized conditions. Biological assays showed the designed derivatives exhibited potential activity.
Collapse
Affiliation(s)
- Zi-Long Song
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yun Zhu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing-Rui Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu-Ke Guo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China.
| | - Hong-Qiang Dong
- College of Plant Science, Tarim University, Alaer, 843300, Xinjiang, China
| | - Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|