1
|
Lv F, Sun M, Qin C, Du D, Zheng X, Li W. Study of the multitarget mechanism of Astragalus (HUANGQI) in the treatment of Alzheimer's disease based on network pharmacology and molecular docking technology. PHARMACEUTICAL BIOLOGY 2024; 62:634-647. [PMID: 39066667 DOI: 10.1080/13880209.2024.2382962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/28/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
CONTEXT In China, HUANGQI is widely used for the treatment of Alzheimer's disease (AD). However, a comprehensive understanding of its mechanism of anti-AD effects is lacking. OBJECTIVE To explore the active ingredients of HUANGQI and its potential targets and mechanisms of action in AD. MATERIALS AND METHODS The active ingredients and targets of HUANGQI were screened from databases (TCSMP, ETCM, and BATMan), and AD-related genes were obtained from DrugBank and GeneCards. The same target genes were screened, and a drug-target disease network was constructed. The PPI network was constructed and GO and KEGG pathway enrichment analyses of the targets. The Cell Counting Kit-8 (CCK-8) assay was used to determine suitable HUANGQI treatment concentrations for HT-22 cells between 0-480 μg/mL. CCK-8, FITC-phalloidin and propidium iodide (PI) assays were used to examine the protective effect of (0, 60, 120, 240 μg/mL) of HUANGQI on 20 μM Aβ1-42-induced HT-22 cell cytotoxicity. RESULTS Twelve active ingredients of HUANGQI were selected, with 679 common targets associated with AD. GO and KEGG analysis revealed that the therapeutic mechanisms of HUANGQI involve TNF, AGE, the NF-κB pathway, and nuclear receptor activity-related processes. The CCK-8 assay indicated that HUANGQI was not cytotoxic to HT-22 cells at concentrations less than 240 μg/mL and was able to attenuate Aβ1-42-induced cellular damage (EC50 = 83.46 μg/mL). FITC-phalloidin and PI assays suggested that HUANGQI could alleviate 20 μM Aβ1-42-induced neuronal cell cytotoxicity in a dose-dependent manner. CONCLUSION HUANGQI has a protective effect on Aβ1-42-induced nerve cell injury; further mechanism research was needed.
Collapse
Affiliation(s)
- Feng Lv
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei Sun
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunmeng Qin
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dan Du
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangru Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Chen JK, Ramesh S, Islam MN, Shibu MA, Kuo CH, Hsieh DJY, Lin SZ, Kuo WW, Huang CY, Ho TJ. Ohwia caudata inhibits doxorubicin-induced cardiotoxicity by regulating mitochondrial dynamics via the IGF-IIR/p-Drp1/PARP signaling pathway. Biotechnol Appl Biochem 2024; 71:1181-1194. [PMID: 38837810 DOI: 10.1002/bab.2620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
The most effective drug, doxorubicin (DOX), is widely used worldwide for clinical application as an anticancer drug. DOX-induced cytotoxicity is characterized by mitochondrial dysfunction. There is no alternative treatment against DOX-induced cardiac damage despite intensive research in the present decades. Ohwia caudata has emerged as a potential herbal remedy that prevents from DOX-induced cytotoxicity owing to its pharmacological action of sustaining mitochondrial dynamics by attenuating oxidative stress and inducing cellular longevity. However, its underlying mechanisms are unknown. The novel treatment provided here depends on new evidence from DOX-treated H9c2 cells, which significantly enhanced insulin-like growth factor (IGF) II receptor (IGF-IIR) pathways that activated calcineurin and phosphorylated dynamin-related protein 1 (p-Drp1) at ser616 (p-Drp1[ser616]); cells undergo apoptosis due to these factors, which translocate to mitochondria and disrupt their function and integrity, and in terms of herbal medicine treatment, which significantly blocked these phenomena. Thus, our findings indicate that maintaining integrity of mitochondria is an essential element in lowering DOX-induced cytotoxicity, which further emphasizes that our herbal medicine can successfully block IGF-IIR pathways and could potentially act as an alternative mechanism in terms of cardioprotective against doxorubicin.
Collapse
Affiliation(s)
- Jhong-Kuei Chen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Md Nazmul Islam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Ho TJ, Tsai BCK, Debakshee G, Shibu MA, Kuo CH, Lin CH, Lin PY, Lin SZ, Kuo WW, Huang CY. Ohwia caudata aqueous extract attenuates senescence in aging adipose-derived mesenchymal stem cells. Heliyon 2024; 10:e29729. [PMID: 38698985 PMCID: PMC11064092 DOI: 10.1016/j.heliyon.2024.e29729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Stem cells exhibit pluripotency and self-renewal abilities. Adipose-derived mesenchymal stem cells can potentially be used to reconstruct various tissues. They possess significant versatility and alleviate various aging-related diseases. Unfortunately, aging leads to senescence, apoptosis, and a decline in regenerative capacity in adipose-derived mesenchymal stem cells. These changes necessitate a strategy to mitigate the effects of aging on stem cells. Ohwia caudata (O. caudata) has therapeutic effects against several illnesses. However, studies on whether O. caudata has therapeutic effects against aging are lacking. In this study, we aimed to identify potential therapeutic anti-aging effects in the crude aqueous extract of O. caudata on adipose-derived mesenchymal stem cells. Using 0.1 μM doxorubicin, we induced aging in human adipose-derived mesenchymal stem cells (hADMSCs) and evaluated whether various concentrations of O. caudata aqueous extract exhibit anti-aging effects on them. The O. caudata extract exhibited significant antioxidant effects on hADMSCs without any toxicity. Furthermore, after treatment with the O. caudata aqueous extract, the levels of mitochondrial superoxide, DNA double-strand breaks, and telomere shortening were reduced in the hADMSCs subjected to doxorubicin-induced aging. The extract also suppressed doxorubicin-induced aging by upregulating klotho and downregulating p21 in hADMSCs. These findings indicated that the O. caudata extract exhibited anti-aging properties that modulated hADMSC homeostasis. Therefore, it could be a potential candidate for restoring the self-renewal ability and multipotency of aging hADMSCs.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Goswami Debakshee
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Chih-Hsueh Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
4
|
Gan Y, Liu J, Jin M, Zhang Y, Huang S, Ma Q, Wu Y, Xu L, Bao J, Fan Y. The Role of the Gut-Joint Axis in the Care of Psoriatic Arthritis: A Two-Sample Bidirectional Mendelian Randomization Study. Dermatol Ther (Heidelb) 2024; 14:713-728. [PMID: 38451424 PMCID: PMC10965888 DOI: 10.1007/s13555-024-01121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Observational studies and clinical trials have supported the association between gut microbiota and psoriatic arthritis. However, the causal link between gut microbiota and psoriatic arthritis is still unclear. METHODS A two-sample bi-directional Mendelian randomization analysis was performed using the summary statistics of gut microbiota from the largest available genome-wide association study meta-analysis (n = 13,266) conducted by the MiBioGen consortium. The summary statistics of psoriatic arthritis were extracted directly from the FinnGen consortium, which consists of 3186 psoriatic arthritis patients and 24,086 controls. Sensitivity analyses were conducted to assess the validity of our findings. Enrichment analyses were used to investigate the biofunction and pathways. RESULTS Inverse variance weighted (IVW) estimates suggested that family Rikenellaceae (P = 0.032) and genus Ruminococcaceae UCG011 (P = 0.014) had a detrimental effect on psoriatic arthritis. We also noticed the negative association between the class Methanobacteria (P = 0.032), order Methanobacteriales (P = 0.032), family Methanobacteriaceae (P = 0.032), genus Eubacterium fissicatena group (P = 0.010), genus Methanobrevibacter (P = 0.031), and genus Butyricicoccus (P = 0.041) with psoriatic arthritis. Sensitivity analyses showed that genus Butyricicoccus had pleiotropy and heterogeneity. According to the results of reverse MR analysis, the causal effect of psoriatic arthritis was found on six taxa, respectivelyc family Clostridiaceae1, family Defluviitaleaceae, genus Butyrivibrio, genus Defluviitaleaceae UCG011, genus Clostridium sensu stricto1, and genus Ruminococcaceae UCG011. CONCLUSION This two-sample bidirectional Mendelian randomization analysis suggested that the gut microbiota had a causal effect on psoriatic arthritis and implied the potential role of probiotics in the management and prevention of psoriatic arthritis.
Collapse
Affiliation(s)
- Yihong Gan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingqun Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng Jin
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yilin Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanzuo Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yongsheng Fan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Meimei C, Jingru Z, Huijuan G, Candong L. Investigation of Ginseng-Ophiopogon Injection on Enhancing Physical Function by Pharmacogenomics and Metabolomics Evaluation. Comb Chem High Throughput Screen 2024; 27:2838-2849. [PMID: 37957852 DOI: 10.2174/0113862073244102231020050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Ginseng-ophiopogon injection (GOI) is a clinically commonly used drug for Qi deficiency syndrome characterized by decreased physical function in China. This study aimed to clarify common pharmacological mechanisms of GOI in enhancing physical function. METHODS We performed an integrative strategy of weight-loaded swimming tests in cold water (5.5°C), hepatic glycogen and superoxide dismutase (SOD) detections, GC-TOF/MS-based metabolomics, multivariate statistical techniques, network pharmacology of known targets and constituents, and KEGG pathway analysis of GOI. RESULTS Compared with the control group, GOI showed significant increases in the weightloaded swimming time, hepatic levels of glycogen and SOD. Additionally, 34 significantly differential serum metabolites referred to glycolysis, gluconeogenesis and arginine biosynthesis were affected by GOI. The target collection revealed 98 metabolic targets and 50 experimentreported drug targets of ingredients in GOI involved in enhancing physical function. Further, the PPI network analysis revealed that 8 ingredients of GOI, such as ginsenoside Re, ginsenoside Rf, ginsenoside Rg1, and notoginsenoside R1, were well-associated with 48 hub targets, which had good ability in enhancing physical function. Meanwhile, nine hub proteins, such as SOD, mechanistic target of Rapamycin (mTOR), and nitric oxide synthases, were confirmed to be affected by GOI. Finally, 98 enriched KEGG pathways (P<0.01 and FDR<0.001) of GOI were obtained from 48 hub targets of the PPI network. Among them, pathways in cancer, Chagas disease, lipid and atherosclerosis, and PI3K-Akt signaling pathway ranked top four. CONCLUSION This study provided an integrative and efficient approach to understand the molecular mechanism of GOI in enhancing physical function.
Collapse
Affiliation(s)
- Chen Meimei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Zhu Jingru
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Gan Huijuan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Li Candong
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| |
Collapse
|
6
|
Lee PY, Tsai BCK, Sitorus MA, Lin PY, Lin SZ, Shih CY, Lu SY, Lin YM, Ho TJ, Huang CY. Ohwia caudata aqueous extract attenuates doxorubicin-induced mitochondrial dysfunction in Wharton's jelly-derived mesenchymal stem cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2450-2461. [PMID: 37461261 DOI: 10.1002/tox.23880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023]
Abstract
Mitochondrial dysfunction has been linked to many diseases, including organ degeneration and cancer. Wharton's jelly-derived mesenchymal stem cells provide a valuable source for stem cell-based therapy and represent an emerging therapeutic approach for tissue regeneration. This study focused on screening the senomorphic properties of Ohwia caudata aqueous extract as an emerging strategy for preventing or treating mitochondrial dysfunction in stem cells. Wharton's jelly-derived mesenchymal stem cells were incubated with 0.1 μM doxorubicin, for 24 h to induce mitochondrial dysfunction. Next, the cells were treated with a series concentration of Ohwia caudata aqueous extract (25, 50, 100, and 200 μg/mL) for another 24 h. In addition, an untreated control group and a doxorubicin-induced mitochondrial dysfunction positive control group were maintained under the same conditions. Our data showed that Ohwia caudata aqueous extract markedly suppressed doxorubicin-induced mitochondrial dysfunction by increasing Tid1 and Tom20 expression, decreased reactive oxygen species production, and maintained mitochondrial membrane potential to promote mitochondrial stability. Ohwia caudata aqueous extract retained the stemness of Wharton's jelly-derived mesenchymal stem cells and reduced the apoptotic rate. These results indicate that Ohwia caudata aqueous extract protects Wharton's jelly-derived mesenchymal stem cells against doxorubicin-induced mitochondrial dysfunction and can potentially prevent mitochondrial dysfunction in other cells. This study provides new directions for the medical application of Ohwia caudata.
Collapse
Affiliation(s)
- Pei-Ying Lee
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Maria Angelina Sitorus
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Shang-Yeh Lu
- College of Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
7
|
Li J, Sun M, Cui X, Li C. Protective Effects of Flavonoids against Alzheimer's Disease: Pathological Hypothesis, Potential Targets, and Structure-Activity Relationship. Int J Mol Sci 2022; 23:ijms231710020. [PMID: 36077418 PMCID: PMC9456554 DOI: 10.3390/ijms231710020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with high morbidity and mortality, for which there is no available cure. Currently, it is generally believed that AD is a disease caused by multiple factors, such as amyloid-beta accumulation, tau protein hyperphosphorylation, oxidative stress, and inflammation. Multitarget prevention and treatment strategies for AD are recommended. Interestingly, naturally occurring dietary flavonoids, a class of polyphenols, have been reported to have multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this review, we summarize and discuss the existing multiple pathogenic factors of AD. Moreover, we further elaborate on the biological activities of natural flavonoids and their potential mode of action and targets in managing AD by presenting a wide range of experimental evidence. The gathered data indicate that flavonoids can be regarded as prophylactics to slow the advancement of AD or avert its onset. Different flavonoids have different activities and varying levels of activity. Further, this review summarizes the structure–activity relationship of flavonoids based on the existing literature and can provide guidance on the design and selection of flavonoids as anti-AD drugs.
Collapse
Affiliation(s)
- Jiao Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| | - Min Sun
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaodong Cui
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| |
Collapse
|
8
|
Wei Y, Gao J, Xu F, Shi J, Yu C, Gong Q. A network pharmacological approach to investigate the pharmacological effects of CZ2HF decoction on Alzheimer's disease. IBRAIN 2021; 7:153-170. [PMID: 37786799 PMCID: PMC10529192 DOI: 10.1002/j.2769-2795.2021.tb00080.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 10/04/2023]
Abstract
Background Alzheimer's disease (AD) is the most common type of dementia, which brings tremendous burden to the sufferers and society. However, ideal tactics are unavailable for AD. Our previous study has shown that CZ2HF, a Chinese herb preparation, mitigates cognitive impairment in AD rats; whereas, its detailed mechanism has not been elucidated. Methods Public databases were applied to collect and identify the chemical ingredients of eight herbs in CZ2HF. Criteria of absorption, distribution, metabolism, and excretion was used to screen oral bio-availability and drug-likeness. STITCH database and Therapeutic Target Database were applied to decipher the relationship between compounds and genes related to AD. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology term analyses were used to identify the involved signaling pathways. Cytoscape was adopted to establish the networks The molecular docking was used to validate the interactions between the candidate compounds and their potential targets. Results 914 compounds were identified in eight herbal medicines of CZ2HF. Among them, 9 compounds and 28 genes were highly involved in the pathologic process of AD. Furthermore, the mechanism of CZ2HF to AD was based on its anti-inflammatory effects mainly through lipopolysaccharide-mediated signaling pathway and TNF signaling pathway. Core genes in this network were TNF, ICAM1, MMP9 and IL-10. Conclusion This study predicts the active compounds in CZ2HF and uncovers their protein targets using holistic network pharmacology methods. It will provide a insight into the underlying mechanism of CZ2HF to AD from a multi-scale perspective.
Collapse
Affiliation(s)
- Yu Wei
- Department of Pharmacythe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jian‐Mei Gao
- Department of Clinical Pharmacotherapeutics of School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
- Department of PharmacologyKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyiGuizhouChina
| | - Fan Xu
- Spemann Graduate School of Biology and MedicineAlbert‐Ludwigs‐University FreiburgFreiburgBaden‐WürttembergGermany
| | - Jing‐Shan Shi
- Department of PharmacologyKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyiGuizhouChina
| | - Chang‐Yin Yu
- Department of Neurologythe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Qi‐Hai Gong
- Department of Clinical Pharmacotherapeutics of School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
- Department of PharmacologyKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
9
|
A Network Pharmacology-Based Approach to Investigating the Mechanisms of Fushen Granule Effects on Intestinal Barrier Injury in Chronic Renal Failure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2097569. [PMID: 33747100 PMCID: PMC7954622 DOI: 10.1155/2021/2097569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 11/25/2022]
Abstract
Purpose Fushen Granule (FSG) is a Chinese medicine prepared by doctors for treating patients with chronic renal failure, which is usually accompanied by gastrointestinal dysfunction. Here, we explore the protective effect of FSG on intestinal barrier injury in chronic renal failure through bioinformatic analysis and experimental verification. Methods In this study, information on the components and targets of FSG related to CRF is collected to construct and visualize protein-protein interaction networks and drug-compound-target networks using network pharmacological methods. DAVID is used to conduct gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, it is validated by in vitro experiments. In this study, the human intestinal epithelial (T84) cells are used and divided into four groups: control group, model group, FSG low-dose group, and FSG high-dose group. After the experiment, the activity of T84 cells is detected by a MTT assay, and the expressions of tight junction protein ZO-1, claudin-1, nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (HO-1), malondialdehyde (MDA), and cyclooxygenase-2 (COX-2) are examined by immunofluorescence and/or western blotting. Results Eighty-six potential chronic renal failure-related targets are identified by FSG; among them, nine core genes are screened. Furthermore, GO enrichment analysis shows that the cancer-related signaling pathway, the PI3K-Akt signaling pathway, the HIF1 signaling pathway, and the TNF signaling pathway may play key roles in the treatment of CRF by FSG. The MTT method showed that FSG is not cytotoxic to uremic toxin-induced injured T84 cells. The results of immunofluorescence and WB indicate that compared with the control group, protein expressions level of ZO-1, claudin-1, and Nrf2 in T84 cells is decreased and protein expressions level of HO-1, MDA, and COX-2 is increased after urinary toxin treatment. Instead, compared with the model group, protein expressions level of ZO-1, claudin-1, and Nrf2 in T84 cells is increased and protein expressions level of HO-1, MDA, and COX-2 is decreased after FSG treatment. Conclusion FSG had a protective effect on urinary toxin-induced intestinal epithelial barrier injury in chronic renal failure, and its mechanism may be related to the upregulation of Nrf2/HO-1 signal transduction and the inhibition of tissue oxidative stress and inflammatory responses. Screening CRF targets and identifying the corresponding FSG components by network pharmacological methods is a practical strategy to explain the mechanism of FSG in improving gastrointestinal dysfunction in CRF.
Collapse
|
10
|
Ma X, Yu M, Hao C, Yang W. Shikonin induces tumor apoptosis in glioma cells via endoplasmic reticulum stress, and Bax/Bak mediated mitochondrial outer membrane permeability. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113059. [PMID: 32663591 DOI: 10.1016/j.jep.2020.113059] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/09/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shikonin, one of the main active ingredients of Chinese herbal medicine Lithospermum erythrorhizon, has been widely used to treat various disease including virus infection and inflammation in clinical. Its anti-tumor activity has been recorded in "Chinese herbal medicine". Recently, some studies about its anti-glioma effects have been reported. However, little is known about the molecular pharmacological activity of Shikonin in glioma. AIM This study aimed to systematically uncover and validate the pharmacological mechanism of Shikonin against glioma. MATERIAL AND METHODS Network pharmacology approach, survival analysis, and Pearson co-expression analysis were performed to uncover and test the pharmacological mechanisms of Shikonin in glioma. Apoptosis assay, Caspase-3 activity assay and immunoblot analysis were practiced to validate the mechanisms. RESULTS Network pharmacology results suggested, anti-glioma effect of Shikonin by interfering endoplasmic reticulum (ER) stress-mediated tumor apoptosis targeting Caspase-3, and Bax/Bak-induced mitochondrial outer membrane permeabilization (MOMP) triggering cancer cell apoptosis. Survival analysis suggested the association of CASP3 with glioma (P < 0.05). Pearson correlation analysis indicated possible interaction of CASP3 with PERK through positive feedback regulation. Shikonin or in combination with 14G2a induced cell apoptosis in oligodendroglioma Hs683 cells in a dose-dependent manner with at a maximum apoptosis rate of 33%-37.5%, and 73%-77% respectively. Immunoblot analysis showed that Shikonin increased Caspase-3 activity to about 4.29 times, and increased 9 times when it combined with 14G2a. Shikonin increased also the expression levels of the proteins PERK and CHOP by about 4.4 and 5.6 folds, respectively, when it combined with 14G2a. CONCLUSIONS This study highlights the pharmacological mechanisms of Shikonin in the induction of tumor apoptosis in glioma cells.
Collapse
Affiliation(s)
- Xiaoqin Ma
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Meixiang Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
11
|
Xu M, Zhang L, Li P, Wang C, Shi Y. Network pharmacology used to decode potential active ingredients in Ferula assafoetida and mechanisms for the application to Alzheimer’s disease. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Zhang J, Liu X, Wu J, Zhou W, Tian J, Guo S, Jia SS, Meng Z, Ni M. A bioinformatics investigation into the pharmacological mechanisms of the effect of the Yinchenhao decoction on hepatitis C based on network pharmacology. BMC Complement Med Ther 2020; 20:50. [PMID: 32050950 PMCID: PMC7076901 DOI: 10.1186/s12906-020-2823-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Background Globally, more than 170 million people are infected with hepatitis C virus, a major cause of cirrhosis and hepatocellular carcinoma. The Yinchenhao Decoction (YCHD) is a classic formula comprising three herbal medicines. This decoction have long been used in China for clinically treating acute and chronic infectious hepatitis and other liver and gallbladder damp heat-accumulation disorders. Methods In this study, we identified 32 active ingredients and 200 hepatitis C proteins and established a compound-predicted target network and a hepatitis C protein–protein interaction network by using Cytoscape 3.6.1. Then, we systematically analyzed the potential targets of the YCHD for the treatment of hepatitis C. Finally, molecular docking was applied to verify the key targets. In addition, we analyzed the mechanism of action of the predicted targets by the Kyoto Encyclopedia of Genes and Genomes and gene ontology analyses. Results This study adopted a network pharmacology approach, mainly comprising target prediction, network construction, module detection, functional enrichment analysis, and molecular docking to systematically investigate the mechanisms of action of the YCHD in hepatitis C. The targets of the YCHD in the treatment of hepatitis C mainly involved PIK3CG, CASP3, BCL2, CASP8, and MMP1. The module and pathway enrichment analyses showed that the YCHD had the potential to influence varieties of biological pathways, including the TNF signaling pathway, Ras signaling pathway, PI3K-Akt signaling pathway, FoxO signaling pathway, and pathways in cancer, that play an important role in the pathogenesis of hepatitis C. Conclusion The results of this study preliminarily verified the basic pharmacological effects and related mechanisms of the YCHD in the treatment of hepatitis C.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China.
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou City, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Shan Shan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| |
Collapse
|
13
|
Identifying Synergistic Mechanisms of Multiple Ingredients in Shuangbai Tablets against Proteinuria by Virtual Screening and a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1027271. [PMID: 32025234 PMCID: PMC6984745 DOI: 10.1155/2020/1027271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/08/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
Shuangbai Tablets (SBT), a traditional herbal mixture, has shown substantial clinical efficacy. However, a systematic mechanism of its active ingredients and pharmacological mechanisms of action against proteinuria continues being lacking. A network pharmacology approach was effectual in discovering the relationship of multiple ingredients and targets of the herbal mixture. This study aimed to identify key targets, major active ingredients, and pathways of SBT against proteinuria by network pharmacology approach combined with thin layer chromatography (TLC). Human phenotype (HP) disease analysis, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and molecular docking were used in this study. To this end, a total of 48 candidate targets of 118 active ingredients of SBT were identified. Network analysis showed PTGS2, ESR1, and NOS2 to be the three key targets, and beta-sitosterol, quercetin, and berberine were the three major active ingredients; among them one of the major active ingredients, quercetin, was discriminated by TLC. These results of the functional enrichment analysis indicated that the most relevant disease including these 48 candidate proteins is proteinuria, SBT treated proteinuria by sympathetically regulating multiple biological pathways, such as the HIF-1, RAS, AGE-RAGE, and VEGF signaling pathways. Additionally, molecular docking validation suggested that major active ingredients of SBT were capable of binding to HIF-1A and VEGFA of the main pathways. Consequently, key targets, major active ingredients, and pathways based on data analysis of SBT against proteinuria were systematically identified confirming its utility and providing a new drug against proteinuria.
Collapse
|