1
|
Benites J, Valderrama JA, Contreras Á, Enríquez C, Pino-Rios R, Yáñez O, Buc Calderon P. Discovery of New 2-Phenylamino-3-acyl-1,4-naphthoquinones as Inhibitors of Cancer Cells Proliferation: Searching for Intra-Cellular Targets Playing a Role in Cancer Cells Survival. Molecules 2023; 28:molecules28114323. [PMID: 37298798 DOI: 10.3390/molecules28114323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
A series of 2-phenylamino-3-acyl-1,4-naphtoquinones were evaluated regarding their in vitro antiproliferative activities using DU-145, MCF-7 and T24 cancer cells. Such activities were discussed in terms of molecular descriptors such as half-wave potentials, hydrophobicity and molar refractivity. Compounds 4 and 11 displayed the highest antiproliferative activity against the three cancer cells and were therefore further investigated. The in silico prediction of drug likeness, using pkCSM and SwissADME explorer online, shows that compound 11 is a suitable lead molecule to be developed. Moreover, the expressions of key genes were studied in DU-145 cancer cells. They include genes involved in apoptosis (Bcl-2), tumor metabolism regulation (mTOR), redox homeostasis (GSR), cell cycle regulation (CDC25A), cell cycle progression (TP53), epigenetic (HDAC4), cell-cell communication (CCN2) and inflammatory pathways (TNF). Compound 11 displays an interesting profile because among these genes, mTOR was significantly less expressed as compared to control conditions. Molecular docking shows that compound 11 has good affinity with mTOR, unraveling a potential inhibitory effect on this protein. Due to the key role of mTOR on tumor metabolism, we suggest that impaired DU-145 cells proliferation by compound 11 is caused by a reduced mTOR expression (less mTOR protein) and inhibitory activity on mTOR protein.
Collapse
Affiliation(s)
- Julio Benites
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Jaime A Valderrama
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Álvaro Contreras
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Ricardo Pino-Rios
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Osvaldo Yáñez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 73 Avenue E. Mounier, 1200 Brussels, Belgium
| |
Collapse
|
2
|
On the Reaction of 2-Alkanoylnaphthohydroquinones with Hydroxylamine: Access to Cytotoxic 2-(Hydroxyamino)-1,4-naphthoquinone and Their 3-(Hydroxyimino)alkyl Analogous. J CHEM-NY 2022. [DOI: 10.1155/2022/7664037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oximes are known for their anti-inflammatory, antimicrobial, antioxidant, and anticancer activities. Frequently, modification of biologically active carbonyl compounds into oximes leads to increased activity. The present study reports the reactivity of 2-alkanoylnaphthohydroquinones against hydroxylamine under aerial conditions. Results show that, depending on the structure of the hydroquinones, the reaction proceeds through two different chemical pathways to produce 2-(hydroxyamino)-1,4-naphthoquinone and their C-3 (hydroxyimino)alkyl derivatives. Both the formation of the quinoid compounds under aerial oxidation and C-C cleavage reactions of hemiaminal intermediates are discussed. In vitro screening of the substituted 1,4-naphthoquinones on a panel of cancer cells reveals moderate cytotoxic activities. Compound 19, 2-(hydroxyamino)-1,4-naphthoquinone, stands out by its anticancer potency against prostate cancer cells as shown by the lowest IC50 value (8.08 μM) and the best selectivity index (3.90).
Collapse
|
3
|
Ibacache JA, Valderrama JA, Faúndes J, Danimann A, Recio FJ, Zúñiga CA. Green Synthesis and Electrochemical Properties of Mono- and Dimers Derived from Phenylaminoisoquinolinequinones. Molecules 2019; 24:E4378. [PMID: 31801190 PMCID: PMC6930604 DOI: 10.3390/molecules24234378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
In the search for new quinoid compounds endowed with potential anticancer activity, the synthesis of novel heterodimers containing the cytotoxic 7-phenylaminoisoquinolinequinone and 2-phenylaminonaphthoquinone pharmacophores, connected through methylene and ethylene spacers, is reported. The heterodimers were prepared from their respective isoquinoline and naphthoquinones and 4,4'-diaminodiphenyl alkenes. The access to the target heterodimers and their corresponding monomers was performed both through oxidative amination reactions assisted by ultrasound and CeCl3·7H2O catalysis "in water". This eco-friendly procedure was successfully extended to the one-pot synthesis of homodimers derived from the 7-phenylaminoisoquinolinequinone pharmacophore. The electrochemical properties of the monomers and dimers were determined by cyclic and square wave voltammetry. The number of electrons transferred during the oxidation process, associated to the redox potential EI1/2, was determined by controlled potential coulometry.
Collapse
Affiliation(s)
- Juana Andrea Ibacache
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, casilla 40, Santiago 9170022, Chile; (J.F.); (A.D.)
| | - Jaime A. Valderrama
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, casilla 121, Iquique 1100000, Chile
| | - Judith Faúndes
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, casilla 40, Santiago 9170022, Chile; (J.F.); (A.D.)
| | - Alex Danimann
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, casilla 40, Santiago 9170022, Chile; (J.F.); (A.D.)
| | - Francisco J. Recio
- Facultad de Química y Farmacia, Universidad Católica de Chile, casilla 306, Santiago 7820436, Chile; (F.J.R.); (C.A.Z.)
| | - César A. Zúñiga
- Facultad de Química y Farmacia, Universidad Católica de Chile, casilla 306, Santiago 7820436, Chile; (F.J.R.); (C.A.Z.)
| |
Collapse
|