1
|
Singh S, Singh TG. Unlocking the mechanistic potential of Thuja occidentalis for managing diabetic neuropathy and nephropathy. J Tradit Complement Med 2024; 14:581-597. [PMID: 39850604 PMCID: PMC11752125 DOI: 10.1016/j.jtcme.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 01/25/2025] Open
Abstract
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. Thuja occidentalis, a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition. The present comprehensive review evaluates the therapeutic potential of Thuja occidentalis in managing diabetic neuropathy and nephropathy, with a particular emphasis on elucidating the underlying cellular and molecular mechanisms. The review delves into the active constituents of Thuja occidentalis, such as essential oils, flavonoids, tannins, and proanthocyanidin compounds, which have demonstrated antioxidant, anti-inflammatory, and other beneficial properties in preclinical studies. Importantly, the review provides an in-depth analysis of the intricate signaling pathways modulated by Thuja occidentalis, including NF-κB, PI3K-Akt, JAK-STAT, JNK, MAPK/ERK, and Nrf2 cascades. These pathways are intricately linked to oxidative stress, inflammation, and apoptosis processes, which play pivotal roles in the pathogenesis of diabetic neuropathy and nephropathy. Furthermore, the review critically evaluates the evidence-based toxicological data of Thuja occidentalis as a more effective and comprehensive therapeutic strategy in diabetes complications. Therefore, the current review aims to provide a comprehensive understanding of the therapeutic potential of Thuja occidentalis as an adjunctive treatment strategy for diabetic neuropathy and nephropathy while highlighting the need for further research to optimize its clinical translation.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
2
|
Czerniewicz P, Sytykiewicz H, Chrzanowski G. The Effect of Essential Oils from Asteraceae Plants on Behavior and Selected Physiological Parameters of the Bird Cherry-Oat Aphid. Molecules 2024; 29:1673. [PMID: 38611952 PMCID: PMC11013816 DOI: 10.3390/molecules29071673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Essential oils (EOs), including those from the Asteraceae plants, have been shown to have promising insecticidal activity against a wide range of insect pests. Understanding the mechanism of action of EOs is one of the studied aspects. The present study aimed to evaluate the effect of essential oils from Achillea millefolium, Santolina chamaecyparissus, Tagetes patula and Tanacetum vulgare on the settling and probing behavior of the bird cherry-oat aphid (Rhopalosiphum padi L.). In addition, the effect of the oils on the activity of such enzymes as trypsin, pepsin and α- and β-glucosidase involved in the metabolism of proteins and sugars of the insects was examined. The leaf-choice bioassays demonstrated that the studied EOs limited aphid settling for at least 24 h after the treatment. The application of EOs also inferred with aphid probing behavior by reducing the total probing time and total duration of phloem sap ingestion. Aphids spent more time in the search phase due to an increase in the number and total duration of pathway phases. Moreover, the activity of the studied proteases and glucosidases significantly decreased in R. padi females exposed to the EOs. The enzyme inhibition varied depending on the applied oil and exposure time. Generally, the EOs with stronger deterrent activity also showed higher inhibitory effects. The results suggest that the tested EOs disrupt key digestive processes in R. padi which may be an important factor determining their aphicidal activity.
Collapse
Affiliation(s)
- Paweł Czerniewicz
- Institute of Biological Sciences, Faculty of Natural Sciences, University of Siedlce, Prusa 14, 08-110 Siedlce, Poland;
| | - Hubert Sytykiewicz
- Institute of Biological Sciences, Faculty of Natural Sciences, University of Siedlce, Prusa 14, 08-110 Siedlce, Poland;
| | - Grzegorz Chrzanowski
- Institute of Biotechnology, University of Rzeszow, Zelwerowicza 8B, 35-601 Rzeszow, Poland;
| |
Collapse
|
3
|
Gospodarek J, Krajewska A, Paśmionka IB, Bruździńska J, Tamiru G. Potential of Thuja occidentalis L. Essential Oil and Water Extracts against Field Crop Pests. Molecules 2024; 29:1457. [PMID: 38611736 PMCID: PMC11013141 DOI: 10.3390/molecules29071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Thuja occidentalis L. essential oil (EOTO) and its compounds, such as terpinyl acetate, bornyl acetate, and β-thujone, are claimed to be highly effective against some storage pests, sanitary insects, or pests of fruit trees, while data about its use in protecting field crops are very scarce. There is also a lack of information in the literature about the insecticidal value of water extracts from T. occidentalis (WETOs). Both essential oils (EOs) and water extracts (WEs) from various plants have advantages and disadvantages in terms of their use as insecticides. EOs are generally more effective, but their preparation is more complicated and quite expensive. In turn, WEs are simple to prepare and cheap, but they often have limited effectiveness. Moreover, significant differences in responses exist depending on the species of the donor plant, the method of preparing the extract, its concentration, the species of the pest being controlled, the developmental stage, and even the gender of the pest. The goals of the research were to assess the effect of EOTO and WETOs prepared from dry and fresh matter on the mortality, feeding, and body mass changes of important crop pests, i.e., the black bean aphid, pea leaf weevil, and Colorado potato beetle (CPB), respectively, as well as on the mortality and voracity of non-target organism Asian lady beetle young larvae. EOTO showed significant aphicidal activity with LC50 = 0.8267% and 0.2453% after 42 h of the experiment for nymphs and wingless females of black bean aphid, respectively. Adults of CPB were more resistant to EOTO than aphids, with LC50 values for females equal to 1.5327% and 1.3113% after 48 h and after 72 h of the experiment. There was no significant effect of EOTO on CPB foraging. Calculated LC50 values for pea leaf weevil adults were lower than those for CPB (0.9638% and 0.8573% for males after 12 h and 24 h, respectively). In the case of this pest, a clear reduction in foraging was obtained, with higher concentrations of EOTO resulting in more pronounced reductions in foraging behavior. Concentrations of EOTO above 0.5%, which showed efficacy against the aphid, were lethal to 3-day-old larvae of the Asian lady beetle. WETOs, in turn, showed significant potential in inhibiting adult pea leaf weevil feeding, with very low or no effectiveness in reducing A. fabae and CPB, respectively.
Collapse
Affiliation(s)
- Janina Gospodarek
- Department of Microbiology and Biomonitoring, University of Agriculture, al. A. Mickiewicza 21, 31-120 Krakow, Poland; (I.B.P.); (J.B.); (G.T.)
| | - Agnieszka Krajewska
- Department of Biotechnology and Food Science, Lodz University of Technology, 90-530 Lodz, Poland;
| | - Iwona B. Paśmionka
- Department of Microbiology and Biomonitoring, University of Agriculture, al. A. Mickiewicza 21, 31-120 Krakow, Poland; (I.B.P.); (J.B.); (G.T.)
| | - Joanna Bruździńska
- Department of Microbiology and Biomonitoring, University of Agriculture, al. A. Mickiewicza 21, 31-120 Krakow, Poland; (I.B.P.); (J.B.); (G.T.)
| | - Gedyon Tamiru
- Department of Microbiology and Biomonitoring, University of Agriculture, al. A. Mickiewicza 21, 31-120 Krakow, Poland; (I.B.P.); (J.B.); (G.T.)
| |
Collapse
|
4
|
Paprocka M, Dancewicz K, Kordan B, Damszel M, Sergiel I, Biesaga M, Mroczek J, Arroyo Garcia RA, Gabryś B. Probing behavior of Aphis fabae and Myzus persicae on three species of grapevines with analysis of grapevine leaf anatomy and allelochemicals. THE EUROPEAN ZOOLOGICAL JOURNAL 2023. [DOI: 10.1080/24750263.2022.2162615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- M. Paprocka
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| | - K. Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| | - B. Kordan
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury, Olsztyn, Poland
| | - M. Damszel
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury, Olsztyn, Poland
| | - I. Sergiel
- Department of Biotechnology, University of Zielona Góra, Zielona Góra, Poland
| | - M. Biesaga
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - J. Mroczek
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - R. A. Arroyo Garcia
- CSIC-INIA (CPGP) Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Madrid, Spain
| | - B. Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
5
|
Li J, Kang Z, Yu H, Feng Y, Zhang X, Zhao Y, Dong L, Zhang L, Dong J, Li Y, Ma S. Potent insecticidal activity of Eleocharis dulcis (Burm. f.) Trin peel extract and its main components against aphids. PEST MANAGEMENT SCIENCE 2023; 79:1295-1304. [PMID: 36349434 DOI: 10.1002/ps.7282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Aphids are significant pests of cash crops and food farm crops. Botanical insecticides are safe for aphid control, especially for organic farming. In this study, Eleocharis dulcis (Burm. f.) Trin. peel extract (EDPE), a new botanical insecticide, was investigated for its active compositions against several agricultural aphids. RESULTS The results showed that the EDPE had high insecticidal activity against Sitobion avenae Fabricius, Aphis gossypii Glover, Megoura crassicauda Mordvilko, and Acyrthosiphon pisum Harris, with half-lethal concentration (LC50 ) values of 95.92, 81.04, 140.31, and 255.73 mg/L after 48 h of treatment. In the pot culture assay, the aphicidal effects of 25% EDPE soluble liquid (SL) at a concentration of 0.016% were 68.98 ± 5.61%, 79.33 ± 8.27%, and 88.82 ± 3.91% after the first, third, and seventh days of treatment, respectively. Nine compounds were identified by bioactivity-directed fractionation: 4',5'-dimethoxy-6,6-dimethylpyranoisoflavone (1), 3-methoxy-4-hydroxylonchocarpin (2), 4-hydroxylonchocarpin (3), 4-methoxylonchocarpin (4), barbigerone (5), lonchocarpusone (6), 6a,12a-dehydrodeguelin (7), 13-homo-13-oxa-6a, 12a-dehydrodeguelin (8) and deguelin (9). Among them, 4-hydroxylonchocarpin (3) showed the highest aphidicidal activity against M. crassicauda, S. avenae, and A. pisum, with LC50 values of 97.24, 140.63, and 112.31 mg/L, respectively. CONCLUSION These data contribute to a better understanding of the aphicidal activity of EDPE and its main component, 4-hydroxylonchocarpin. This will help to develop new botanical insecticides to contro aphids. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhanhai Kang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Hualong Yu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yingjian Feng
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xinxin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yujing Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Lili Dong
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Lihui Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jingao Dong
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yaofa Li
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Shujie Ma
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Lazarević J, Kostić I, Šešlija Jovanović D, Ćalić D, Milanović S, Kostić M. Pure Camphor and a Thujone-Camphor Mixture as Eco-Friendly Antifeedants against Larvae and Adults of the Colorado Potato Beetle. PLANTS (BASEL, SWITZERLAND) 2022; 11:3587. [PMID: 36559699 PMCID: PMC9783734 DOI: 10.3390/plants11243587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The Colorado potato beetle (CPB) is a serious pest of economically important Solanaceae species. The use of essential oil compounds in pest management has been proposed as an alternative to harmful chemical insecticides that disturb human health and ecosystem functioning. We examined the antifeedant activity of three concentrations (0.125%, 0.25% and 0.5%) of pure camphor and a thujone-camphor mixture against 3rd instar larvae and adults. Their efficacy was evaluated according to the degree of leaf damage and avoidance of treated leaves by the CPB. Treatment of potato leaves significantly reduced leaf damage compared to the control. Leaf protection increased at higher concentrations of the examined compounds. Camphor was more effective against larvae and the thujone-camphor mixture was more effective against adults. Additionally, adults moved faster towards the control leaf disc in the two-choice olfactometer assay if an alternative disc was treated with a thujone-camphor mixture, whereas larvae responded similarly to the two potential repellents. However, after contact with the leaf disc treated with the highest compound concentration, the larvae escaped faster from the thujone-camphor mixture than from pure camphor. In conclusion, both examined compounds are promising eco-friendly antifeedants, but their efficacy depends on the developmental stage of the beetle, compound type and applied concentration.
Collapse
Affiliation(s)
- Jelica Lazarević
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Igor Kostić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Darka Šešlija Jovanović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Dušica Ćalić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 61300 Brno, Czech Republic
| | - Miroslav Kostić
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Antifeedant Potential of Geranylacetone and Nerylacetone and Their Epoxy-Derivatives against Myzus persicae (Sulz.). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248871. [PMID: 36558003 PMCID: PMC9784399 DOI: 10.3390/molecules27248871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Geranylacetone and nerylacetone are natural sesquiterpenoids, which play various roles in plant-insect interactions, including the deterrent and repellent effects on herbivores. The structural modifications of natural compounds often change their biological activities. The aim of the study was to evaluate the effect of geranylacetone, nerylacetone and their epoxy-derivatives on the probing and settling behavior of Myzus persicae (Sulz.) (Hemiptera: Aphididae). The no-choice test using the Electrical Penetration Graph (EPG) technique showed that the probes before the first phloem phase were usually shorter than 3 min, which means that they were terminated within the epidermis and/or outer layers of mesophyll. This resulted in a tendency to delay the initiation of the phloem phase in aphids, which reflects a weak preingestive deterrent activity of the studied compounds at the level of non-vascular tissues. Most M. persicae showed bouts of sustained phloem sap ingestion. However, the 24-h free-choice test demonstrated that aphids did not settle on the leaves treated with geranylacetone, nerylacetone, and their epoxy-derivatives. The refusal to settle after the consumption of phloem sap on treated plants indicated that the studied compounds had postingestive deterrent activity. The epoxidation of geranylacetone and nerylacetone did not evoke significant changes in their activity profiles.
Collapse
|
8
|
Deshoux M, Monsion B, Pichon E, Jiménez J, Moreno A, Cayrol B, Thébaud G, Mugford ST, Hogenhout SA, Blanc S, Fereres A, Uzest M. Role of Acrostyle Cuticular Proteins in the Retention of an Aphid Salivary Effector. Int J Mol Sci 2022; 23:ijms232315337. [PMID: 36499662 PMCID: PMC9736059 DOI: 10.3390/ijms232315337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
To avoid the activation of plant defenses and ensure sustained feeding, aphids are assumed to use their mouthparts to deliver effectors into plant cells. A recent study has shown that effectors detected near feeding sites are differentially distributed in plant tissues. However, the precise process of effector delivery into specific plant compartments is unknown. The acrostyle, a cuticular organ located at the tip of maxillary stylets that transiently binds plant viruses via its stylin proteins, may participate in this specific delivery process. Here, we demonstrate that Mp10, a saliva effector released into the plant cytoplasm during aphid probing, binds to the acrostyles of Acyrthosiphon pisum and Myzus persicae. The effector probably interacts with Stylin-03 as a lowered Mp10-binding to the acrostyle was observed upon RNAi-mediated reduction in Stylin-03 production. In addition, Stylin-03 and Stylin-01 RNAi aphids exhibited changes in their feeding behavior as evidenced by electrical penetration graph experiments showing longer aphid probing behaviors associated with watery saliva release into the cytoplasm of plant cells. Taken together, these data demonstrate that the acrostyle also has effector binding capacity and supports its role in the delivery of aphid effectors into plant cells.
Collapse
Affiliation(s)
- Maëlle Deshoux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Baptiste Monsion
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Elodie Pichon
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Jaime Jiménez
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
| | - Bastien Cayrol
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Gaël Thébaud
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Sam T. Mugford
- John Innes Centre, Department of Crop Genetics, Norwich NR4 7UH, UK
| | | | - Stéphane Blanc
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Alberto Fereres
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
- Correspondence: (A.F.); (M.U.)
| | - Marilyne Uzest
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
- Correspondence: (A.F.); (M.U.)
| |
Collapse
|
9
|
Tucker KR, Steele CH, McDermott EG. Aedes aegypti (L.) and Anopheles stephensi Liston (Diptera: Culicidae) Susceptibility and Response to Different Experimental Formulations of a Sodium Ascorbate Toxic Sugar Bait. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1710-1720. [PMID: 35861727 DOI: 10.1093/jme/tjac101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Attractive toxic sugar baits (ATSBs) require target insects to locate, orient toward, and feed on an insecticidal sugar solution to control populations. Formulating these baits with different attractants and phagostimulants can increase their efficacy by causing insects to choose the ATSB over competing natural sugar sources, and to ingest more of the bait solution. We tested formulations of a 20% sodium ascorbate (SA) ATSB solution using different sugars, adenosine triphosphate (ATP), gallic acid, and six plant volatile compounds to determine their effect on adult Aedes aegypti (L.) and Anopheles stephensi Liston mortality. Baits formulated with fructose or sucrose had no effect on either species, neither did the addition of ATP. Gallic acid increased the survival of Ae. aegypti. Four of the six volatile compounds increased mortality in at least one species. We also examined An. stephensi response to baits formulated with each of the six volatile compounds. Anisaldehyde significantly increased the number of mosquitoes responding toward the SA-ATSB, but increasing the amount had no effect. Addition of anisaldehyde also significantly increased An. stephensi feeding rates on the SA-ATSB, though mosquitoes will avoid the toxic bait if a nontoxic sugar source is available. Formulation of SA-ATSBs with synthetic blends of attractive compounds can increase bait efficacy and consistency, though further research is needed to assess their performance in the field in the presence of natural sugar sources.
Collapse
Affiliation(s)
- Katherine R Tucker
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cassandra H Steele
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Emily G McDermott
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
10
|
Kurtca M, Tumen I, Keskin H, Tabanca N, Yang X, Demirci B, Kendra PE. Chemical Composition of Essential Oils from Leaves and Fruits of Juniperus foetidissima and Their Attractancy and Toxicity to Two Economically Important Tephritid Fruit Fly Species, Ceratitis capitata and Anastrepha suspensa. Molecules 2021; 26:molecules26247504. [PMID: 34946585 PMCID: PMC8704769 DOI: 10.3390/molecules26247504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
The present study analyzed the chemical composition of Juniperus foetidissima Willd. essential oils (EOs) and evaluated their attractancy and toxicity to two agriculturally important tephritid fruit flies. The composition of hydrodistilled EOs obtained from leaves (JFLEO) and fruits (JFFEO) of J. foetidissima was analyzed by GC-FID and GC-MS. The main compounds were α-pinene (45%) and cedrol (18%) in the JFLEO and α-pinene (42%), α-thujone (12%), and β-thujone (25%) in the JFFEO. In behavioral bioassays of the male Mediterranean fruit fly, Ceratitis capitata (Wiedemann), both JFLEO and JFFEO showed strong attraction comparable to that observed with two positive controls, Melaleuca alternifolia and Tetradenia riparia EOs. In topical bioassays of the female Caribbean fruit fly, Anastrepha suspensa (Loew), the toxicity of JFFEO was two-fold higher than that of JFLEO, with the LD50 values being 10.46 and 22.07 µg/µL, respectively. This could be due to differences in chemical components between JFLEO and JFFEO. The JFFEO was dominated by 48% monoterpene hydrocarbons (MH) and 46% oxygenated monoterpenes (OM), while JFLEO consisted of 57% MH, 18% OM, and 20% oxygenated sesquiterpenes (OS). This is the first study to evaluate the attractancy and toxicity of J. foetidissima EOs to tephritid fruit flies. Our results indicate that JFFEO has the potential for application to the management of pest tephritid species, and further investigation is warranted.
Collapse
Affiliation(s)
- Mehmet Kurtca
- Department of Chemistry, Faculty of Science, Selcuk University, 42130 Konya, Turkey;
| | - Ibrahim Tumen
- Faculty of Health Sciences, Bandirma Onyedi Eylul University, 10200 Bandirma, Turkey
- Correspondence: (I.T.); (P.E.K.)
| | - Hasan Keskin
- Department of Forest Products Chemistry, Faculty of Forestry, Bartin University, 74100 Bartin, Turkey;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), 13601 Old Cutler Rd., Miami, FL 33158, USA; (N.T.); (X.Y.)
| | - Xiangbing Yang
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), 13601 Old Cutler Rd., Miami, FL 33158, USA; (N.T.); (X.Y.)
| | - Betul Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey;
| | - Paul E. Kendra
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), 13601 Old Cutler Rd., Miami, FL 33158, USA; (N.T.); (X.Y.)
- Correspondence: (I.T.); (P.E.K.)
| |
Collapse
|
11
|
Stec K, Kordan B, Gabryś B. Effect of Soy Leaf Flavonoids on Pea Aphid Probing Behavior. INSECTS 2021; 12:756. [PMID: 34442322 PMCID: PMC8396875 DOI: 10.3390/insects12080756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Flavonoids detected in soybean Glycine max (L.) Merr. (Fabaceae) cause various alterations in the metabolism, behavior, and development of insect herbivores. The pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) poses potential threat to soybeans, but the effect of individual flavonoids on its feeding-associated behavior is relatively unknown. We monitored probing behavior (stylet penetration activities) of A. pisum on its preferred host plant, Pisum sativum L. untreated (control) and treated with 0.1% ethanolic solutions of flavonoids apigenin, daidzein, genistein, and kaempferol. We applied the electrical penetration graph (electropenetrography, EPG) technique, which visualizes the movements of aphid stylets within plant tissues. None of the applied flavonoids affected the propensity to probe the plants by A. pisum. However, apigenin enhanced the duration of probes in non-phloem tissues, which caused an increase in the frequency and duration of stylet mechanics derailment and xylem sap ingestion but limited the ingestion of phloem sap. Daidzein caused a delay in reaching phloem vessels and limited sap ingestion. Kaempferol caused a reduction in the frequency and duration of the phloem phase. Genistein did not affect aphid probing behavior. Our findings provide information for selective breeding programs of resistant plant cultivars to A. pisum.
Collapse
Affiliation(s)
- Katarzyna Stec
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland;
| | - Bożena Kordan
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland;
| | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland;
| |
Collapse
|
12
|
Dancewicz K, Gabryś B, Morkunas I, Samardakiewicz S. Probing behavior of Adelges laricis Vallot (Hemiptera: Adelgidae) on Larix decidua Mill: Description and analysis of EPG waveforms. PLoS One 2021; 16:e0251663. [PMID: 34003844 PMCID: PMC8130970 DOI: 10.1371/journal.pone.0251663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2021] [Indexed: 01/10/2023] Open
Abstract
Adelgidae are a sister group of Aphididae and Phylloxeridae within Hemiptera, Aphidoidea and occur exclusively on Pinaceae. The piercing-sucking mouthparts of Adelgidae are similar to those of aphids and it is believed that adelgids ingest sap from both the non-vascular and vascular (phloem) tissues. The aim of the present study was to identify and characterize the adelgid stylet activities during their penetration in plant tissues. The probing behavior of Adelges laricis Vallot (Hemiptera: Adelgidae) on European larch Larix decidua Mill. and sucrose diets was monitored using the DC-EPG (Electrical Penetration Graph technique = electropenetrography). The EPG waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces, and associated with putative behavioral activities based on analogy with aphid activities. Waveform frequency, duration, and sequence were analysed as well. A. laricis generated EPG signals at two clearly distinct voltage levels positive and negative, suggesting extracellular and intracellular stylet penetration, respectively. The adelgid EPG patterns were ascribed to four behavioral phases, which were non-probing, pathway, phloem, and xylem phases. Non-probing referred to the position of the stylets outside the plant tissues. Pathway phase was represented by three waveform patterns that visualized extracellular stylet penetration in non-vascular tissues without potential drops (AC1), with serial short (1.2–1.5 s) potential drops (AC2), and with ‘aphid-like’ (5–10 s) potential drops (AC3). Phloem phase comprised three waveform patterns at intracellular level, which in all probability represented phloem salivation (AE1), and phloem sap passive (AE2) and active ingestion (AE3). AE3 was a newly described waveform, previously unreported from Hemiptera. Waveform AG represented the ingestion of xylem sap. The comparative analysis demonstrated that the gymnosperm-associated adelgids show certain similarities in probing behavior typical of aphids and phylloxerids on angiosperm plants. The present work is the first detailed analysis of specific adelgid stylet activities on gymnosperms.
Collapse
Affiliation(s)
- Katarzyna Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
- * E-mail:
| | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
13
|
Dancewicz K, Szumny A, Wawrzeńczyk C, Gabryś B. Repellent and Antifeedant Activities of Citral-Derived Lactones against the Peach Potato Aphid. Int J Mol Sci 2020; 21:E8029. [PMID: 33126590 PMCID: PMC7663017 DOI: 10.3390/ijms21218029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Citral is well known for its antimicrobial, antifungal, and insecticidal activities. Natural sesquiterpene α-methylenelactones also exhibit a broad spectrum of biological activities. The aim of the study was to explore the effect of structural changes to citral molecules on citral behavior-modifying activity towards Myzus persicae. Specifically, the effects of the introduction of a γ-lactone moiety and methylene groups in α and γ positions of the lactone ring were investigated. The lactones were obtained in five-step (saturated lactone and γ-methylenelactone) or six-step (α-methylenelactone and α,γ-dimethylenelactone) syntheses from citral. The synthetic procedures and physical and spectral data of the lactones are presented. The settling behavior of freely moving aphids in choice and no-choice situations was monitored. The probing behavior of tethered M. persicae using the Electrical Penetration Graph (EPG) technique was also analyzed. Citral appeared a strong repellent and pre-ingestive and ingestive probing deterrent to M. persicae. The incorporation of a lactone moiety caused the loss of the repellent activity. α-Methylenelactone inhibited aphid settling and probing activities at pre-ingestive and ingestive phases. The saturated γ-lactone and α,γ-dimethylenelactone were the settling post-ingestive deterrents to M. persicae, which did not affect aphid probing activity. γ-Methylenelactone did not affect aphid behavior.
Collapse
Affiliation(s)
- Katarzyna Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland;
| | - Antoni Szumny
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.S.); (C.W.)
| | - Czesław Wawrzeńczyk
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.S.); (C.W.)
| | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland;
| |
Collapse
|
14
|
Lee JY, Park H, Lim W, Song G. Therapeutic potential of α,β-thujone through metabolic reprogramming and caspase-dependent apoptosis in ovarian cancer cells. J Cell Physiol 2020; 236:1545-1558. [PMID: 33000501 DOI: 10.1002/jcp.30086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/21/2023]
Abstract
The therapeutic potential of α,β-thujone, a functional compound found in many medicinal plants of the Cupressaceae, Asteraceae, and Lamiaceae families, has been demonstrated, including in inflammation and cancers. However, its pharmacological functions and mechanisms of action in ovarian cancer remain unclear. We investigated the anticancer properties of α,β-thujone in ES2 and OV90 human ovarian cancer cells and its effect on sensitization to cisplatin. α,β-thujone inhibited cancer cell proliferation and induced cell death through caspase-dependent intrinsic apoptotic pathways. Moreover, α,β-thujone-mediated endoplasmic reticulum stress was associated with the loss of mitochondrial functions and altered metabolic landscape of ovarian cancer cells. α,β-Thujone attenuated blood vessel formation in transgenic zebrafish, implying it has significant antiangiogenic potential. In addition, α,β-thujone sensitized ovarian cancer cells to cisplatin, causing synergistic pharmacological effects. Collectively, our results suggest that α,β-thujone has therapeutic potential in human ovarian cancer and functions via regulating multiple intracellular stress-associated metabolic reprogramming and caspase-dependent apoptotic pathways.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hahyun Park
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Effect of Naringenin and Its Derivatives on the Probing Behavior of Myzus persicae (Sulz.). Molecules 2020; 25:molecules25143185. [PMID: 32668610 PMCID: PMC7397070 DOI: 10.3390/molecules25143185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/18/2022] Open
Abstract
Substances that alter insect behavior have attracted a lot of attention as potential crop protection agents. Naringenin (5,7,4′-trihydroxyflavanone) is a naturally occurring bioactive flavanone. We evaluated the influence of naringenin on aphid activities during individual phases of probing and feeding and the effect of structural modifications of naringenin on its activity towards aphids. We monitored the probing behavior of Myzus persicae (Sulz.) (Hemiptera: Aphididae) using the Electrical Penetration Graph (EPG) technique. The chemical modifications were the substitution of hydrogen atoms with methyl, ethyl or pentyl groups and the replacement of the carbonyl group in naringenin and its derivatives with an oxime moiety. Depending on the substituents, the activity of naringenin-derived compounds varied in potency and mode of action. Naringenin was an attractant of moderate activity, which enhanced sap ingestion. The naringenin derivative with two methyl groups—7,4′-di-O-methylnaringenin—was a deterrent, which hindered aphid probing in non-phloem tissues. Naringenin oxime derivatives with methyl substituents—7,4′-di-O-methylnaringenin oxime, 7-O-methylnaringenin oxime, and 5,7,4′-tri-O-methylnaringenin oxime—and the derivative with a pentyl substituent—7-O-pentylnaringenin oxime—were strong attractants which stimulated aphid probing in non-phloem tissues and the ingestion of phloem sap.
Collapse
|