1
|
Tai Y, Shang J. Wnt/β-catenin signaling pathway in the tumor progression of adrenocortical carcinoma. Front Endocrinol (Lausanne) 2024; 14:1260701. [PMID: 38269250 PMCID: PMC10806569 DOI: 10.3389/fendo.2023.1260701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine malignancy with a high rate of recurrence, a poor prognosis, and a propensity for metastasis. Currently, only mitotane has received certification from both the US Food and Drug Administration (FDA) and the European Medicines Agency for the therapy of advanced ACC. However, treatment in the advanced periods of the disorders is ineffective and has serious adverse consequences. Completely surgical excision is the only cure but has failed to effectively improve the survival of advanced patients. The aberrantly activated Wnt/β-catenin pathway is one of the catalysts for adrenocortical carcinogenesis. Research has concentrated on identifying methods that can prevent the stimulation of the Wnt/β-catenin pathway and are safe and advantageous for patients in view of the absence of effective treatments and the frequent alteration of the Wnt/β-catenin pathway in ACC. Comprehending the complex connection between the development of ACC and Wnt/β-catenin signaling is essential for accurate pharmacological targets. In this review, we summarize the potential targets between adrenocortical carcinoma and the Wnt/β-catenin signaling pathway. We analyze the relevant targets of drugs or inhibitors that act on the Wnt pathway. Finally, we provide new insights into how drugs or inhibitors may improve the treatment of ACC.
Collapse
Affiliation(s)
- Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiwen Shang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Ambulatory Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Sazdova I, Keremidarska-Markova M, Dimitrova D, Mitrokhin V, Kamkin A, Hadzi-Petrushev N, Bogdanov J, Schubert R, Gagov H, Avtanski D, Mladenov M. Anticarcinogenic Potency of EF24: An Overview of Its Pharmacokinetics, Efficacy, Mechanism of Action, and Nanoformulation for Drug Delivery. Cancers (Basel) 2023; 15:5478. [PMID: 38001739 PMCID: PMC10670065 DOI: 10.3390/cancers15225478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of EF24 to penetrate biological barriers and accumulate at tumor sites makes it advantageous for effective cancer treatment. Studies have demonstrated EF24's remarkable efficacy against various cancers, including breast, lung, prostate, colon, and pancreatic cancer. The unique mechanism of action of EF24 involves modulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, disrupting cancer-promoting inflammation and oxidative stress. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through inhibiting the NF-κB pathway and by regulating key genes by modulating microRNA (miRNA) expression or the proteasomal pathway. In summary, EF24 is a promising anticancer compound with a unique mechanism of action that makes it effective against various cancers. Its ability to enhance the effects of conventional therapies, coupled with improvements in drug delivery systems, could make it a valuable asset in cancer treatment. However, addressing its solubility and stability challenges will be crucial for its successful clinical application.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Daniela Dimitrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Jane Bogdanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Rudolf Schubert
- Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany;
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| |
Collapse
|
3
|
Ratan C, Arian AM, Rajendran R, Jayakumar R, Masson M, Mangalathillam S. Nano-based formulations of curcumin: elucidating the potential benefits and future prospects in skin cancer. Biomed Mater 2023; 18:052008. [PMID: 37582394 DOI: 10.1088/1748-605x/acf0af] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Skin cancer refers to any malignant lesions that occur in the skin and are observed predominantly in populations of European descent. Conventional treatment modalities such as excision biopsy, chemotherapy, radiotherapy, immunotherapy, electrodesiccation, and photodynamic therapy (PDT) induce several unintended side effects which affect a patient's quality of life and physical well-being. Therefore, spice-derived nutraceuticals like curcumin, which are well tolerated, less expensive, and relatively safe, have been considered a promising agent for skin cancer treatment. Curcumin, a chemical constituent extracted from the Indian spice, turmeric, and its analogues has been used in various mammalian cancers including skin cancer. Curcumin has anti-neoplastic activity by triggering the process of apoptosis and preventing the multiplication and infiltration of the cancer cells by inhibiting some signaling pathways and thus subsequently preventing the process of carcinogenesis. Curcumin is also a photosensitizer and has been used in PDT. The major limitations associated with curcumin are poor bioavailability, instability, limited permeation into the skin, and lack of solubility in water. This will constrain the use of curcumin in clinical settings. Hence, developing a proper formulation that can ideally release curcumin to its targeted site is important. So, several nanoformulations based on curcumin have been established such as nanogels, nanoemulsions, nanofibers, nanopatterned films, nanoliposomes and nanoniosomes, nanodisks, and cyclodextrins. The present review mainly focuses on curcumin and its analogues as therapeutic agents for treating different types of skin cancers. The significance of using various nanoformulations as well non-nanoformulations loaded with curcumin as an effective treatment modality for skin cancer is also emphasized.
Collapse
Affiliation(s)
- Chameli Ratan
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Arya Mangalath Arian
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rajalakshmi Rajendran
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Mar Masson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavík, Iceland
| | - Sabitha Mangalathillam
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| |
Collapse
|
4
|
Su SC, Hsin CH, Lu YT, Chuang CY, Ho YT, Yeh FL, Yang SF, Lin CW. EF-24, a Curcumin Analog, Inhibits Cancer Cell Invasion in Human Nasopharyngeal Carcinoma through Transcriptional Suppression of Matrix Metalloproteinase-9 Gene Expression. Cancers (Basel) 2023; 15:1552. [PMID: 36900342 PMCID: PMC10000445 DOI: 10.3390/cancers15051552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer metastasis is a main cause of failure in treating subjects with nasopharyngeal carcinoma (NPC) and is frequently linked to high death rates. EF-24, an analog of curcumin, has exhibited many anti-cancer properties and enhanced bioavailability over curcumin. Nevertheless, the effects of EF-24 on the invasiveness of NPC are poorly understood. In this study, we demonstrated that EF-24 effectively inhibited TPA-induced motility and invasion responses of human NPC cells but elicited very limited cytotoxicity. In addition, the TPA-induced activity and expression of matrix metalloproteinase-9 (MMP-9), a crucial mediator of cancer dissemination, were found to be reduced in EF-24-treated cells. Our reporter assays revealed that such a reduction in MMP-9 expression by EF-24 was transcriptionally mediated by NF-κB via impeding its nuclear translocation. Further chromatin immunoprecipitation assays displayed that the EF-24 treatment decreased the TPA-induced interaction of NF-κB with the MMP-9 promoter in NPC cells. Moreover, EF-24 inhibited the activation of JNK in TPA-treated NPC cells, and the treatment of EF-24 together with a JNK inhibitor showed a synergistic effect on suppressing TPA-induced invasion responses and MMP-9 activities in NPC cells. Taken together, our data demonstrated that EF-24 restrained the invasiveness of NPC cells through the transcriptional suppression of MMP-9 gene expression, implicating the usefulness of curcumin or its analogs in controlling the spread of NPC.
Collapse
Affiliation(s)
- Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Chung-Han Hsin
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yen-Ting Lu
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chun-Yi Chuang
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yu-Ting Ho
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Fang-Ling Yeh
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
5
|
Li J, Wang SH, Liu YT, Zhang Q, Zhou GZ. Inhibition of autophagic flux by the curcumin analog EF-24 and its antiproliferative effect on MCF-7 cancer cells. J Biochem Mol Toxicol 2023; 37:e23307. [PMID: 36633067 DOI: 10.1002/jbt.23307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
5-Bis[(2-fluorophenyl)methylene]-4-piperidinone (EF-24) is a curcumin analog, which was identified for its physiochemical stability and diverse pharmacological functions. In the present study, EF-24 was added to the breast cancer cell line MCF-7 and its cellular effects were characterized. The results indicated that EF-24 possessed antiproliferative and antimigratory activities on MCF-7 cells as determined by MTT assay, wound healing, and transwell assay, respectively. In addition, the autophagosomal vesicles could be detected by acridine orange staining and electron microscope analysis in EF-24-treated cells. Conversion of LC3-I to LC3-II was also investigated following EF-24 treatment of the cells. However, the expression analysis of p62 and LC3 revealed that EF-24 could inhibit autophagic flux in MCF-7 cells. Confocal microscopy suggested that EF-24 could inhibit the degradation of autophagic vesicles by blocking the fusion of autophagosomes with lysosomes. EF-24 could also induce apoptosis of MCF-7 cells as determined by Hoechst 33342 staining, flow cytometry analysis, and western blot analysis. Moreover, treatment of the cells with the autophagy inhibitor 3-MA enhanced the PARP1 cleavage of EF-24-treated MCF-7 cells, which indicated the crosstalk between autophagy and apoptosis in breast cancer cells. Additional investigation of EF-24 should be performed in future studies to assess its antiproliferation and antimigratory effects on MCF-7 cells. However, the current results provide a solid foundation for the potential in vivo anticancer activity of this compound.
Collapse
Affiliation(s)
- Jun Li
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Song-He Wang
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yang-Ting Liu
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Qin Zhang
- Division of Aquaculture and Genetic Breeding, Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Guang-Zhou Zhou
- Department of Biotechnology, College of Bioengineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
6
|
Vitalini S, Garzoli S, Sisto F, Pezzani R, Argentieri MP, Scarafoni A, Ciappellano S, Zorzan M, Capraro J, Collazuol D, Iriti M. Digestive and gastroprotective effects of Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson (syn. A. moschata Wulfen) (Asteraceae): From traditional uses to preclinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115670. [PMID: 36038090 DOI: 10.1016/j.jep.2022.115670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson (syn. A. moschata Wulfen) (Asteraceae) is an alpine endemic plant whose aerial parts are harvested by the locals mainly for the digestive properties. Despite its widespread use, few studies have been conducted to date to verify its bioactivity. AIM OF THE STUDY The purpose of the work was to meet the tradition confirming with experimental data the popular belief that the consumption of this species offers beneficial effects to the gastrointestinal system. MATERIALS AND METHODS Using Soxhlet apparatus, the dried aerial parts of A. erba-rotta subsp. moschata were successively extracted with petroleum ether (PET), dichloromethane (DCM) and methanol (MeOH). The essential oil (EO) was obtained by hydrodistillation using a Clevenger apparatus while infusion (AE) was prepared following the traditional local recipe. Their chemical characterization was performed by various techniques including SPME-GC/MS, GC/MS and HPLC/MS-MS. An in vitro biological screening was carried out. The influence of AE on lipid digestion was monitored by titration of free fatty acids (FFA) during pancreatic lipase activity with the pH-stat method. For all extracts and EO, the anti-Helicobacter pylori activity was assessed by the broth microdilution method, the influence on cell viability was evaluated against NCI-N87, OE21 and Caco-2 cell lines and a preliminary toxicity evaluation was done using Brine Shrimp lethality (BSL) assay. The anti-inflammatory potential was evidenced by interleukin IL-1- induced IL8 expression on Caco-2 cells. RESULTS AE increased by 15% the FFA releasing compared to the pancreatic lipase alone. PET, DCM and MeOH extracts as well as AE and EO were considered active against the growth of both antimicrobial susceptible and resistant strains of H. pylori with MIC values starting from 16 μg/mL. PET and DCM (IC50 = 89 μg/mL and 96 μg/mL, respectively, against Caco-2 cell line) extracts showed the high effect on cell viability while the EO reduced in 50% of cell viability at 1.48 μL/mL (NCI-N87 cells), 1.42 μL/mL (OE21 cells), and 3.44 μL/mL (Caco-2 cells) corroborating the BSL results. In different degrees, all extracts and EO inhibited the IL-1β-stimulated IL-8 production in Caco-2 cells. CONCLUSIONS The obtained data are encouraging and provide a scientific basis for the traditional use of A. erba-rotta subsp. moschata as a digestive agent although they need to be further corroborated by studies involving the investigation of both the in vivo activities and the role of the compounds detected in the extracts.
Collapse
Affiliation(s)
- Sara Vitalini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, via G. Pascal 36, 20133, Milan, Italy; National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, P. le Aldo Moro 5, 00185, Rome, Italy.
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, via G. Pascal 36, 20133, Milan, Italy.
| | - Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova, 35128, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| | - Maria Pia Argentieri
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy.
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy.
| | - Salvatore Ciappellano
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy.
| | - Maira Zorzan
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova, 35128, Italy.
| | - Jessica Capraro
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy.
| | - Daniela Collazuol
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova, 35128, Italy.
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, via G. Pascal 36, 20133, Milan, Italy; National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
7
|
Cremaschi V, Abate A, Cosentini D, Grisanti S, Rossini E, Laganà M, Tamburello M, Turla A, Sigala S, Berruti A. Advances in adrenocortical carcinoma pharmacotherapy: what is the current state of the art? Expert Opin Pharmacother 2022; 23:1413-1424. [PMID: 35876101 DOI: 10.1080/14656566.2022.2106128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Surgery, followed or not by adjuvant mitotane, is the current mainstay of therapy for patients with early-stage adrenocortical carcinoma (ACC). Mitotane, either alone or in association with EDP (Etoposide-Doxorubicin-Cisplatin) combination chemotherapy, is the standard approach for patients with metastatic ACC. AREAS COVERED The activity of newer cytotoxic drugs, radioligands, targeted therapies and immunotherapy, both in preclinical and in clinical studies, will be reviewed in this paper. EXPERT OPINION ADIUVO trial revealed that the administration of adjuvant mitotane is not advantageous in patients with good prognosis. Future strategies are to intensify efforts in adjuvant setting in patients with high risk of relapse. In patients with advanced/metastatic disease, modern targeted therapies have shown significant cytotoxicity in preclinical studies, however, studies in ACC patients reported disappointing results so far. The absence of targeted agents specifically inhibiting the major molecular pathways of ACC growth is the main cause of the failure of these drugs. Since ACC is often antigenic but poorly immunogenic, the results of immunotherapy trials appeared inferior to those achieved in the management of patients with other malignancies. Radioligand therapy may also be a promising approach. Combination of chemotherapy plus immunotherapy could be interesting to be tested in the future.
Collapse
Affiliation(s)
- Valentina Cremaschi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marta Laganà
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Antonella Turla
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|
8
|
Liu M, Zhang Z, Qin C, Lv B, Mo S, Lan T, Gao B. Effects of 4-Week Tangeretin Supplementation on Cortisol Stress Response Induced by High-Intensity Resistance Exercise: A Randomized Controlled Trial. Front Physiol 2022; 13:886254. [PMID: 35665223 PMCID: PMC9160924 DOI: 10.3389/fphys.2022.886254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
Objective: This study aimed to investigate the effects of 4-week tangeretin supplementation on the cortisol stress response induced by high-intensity resistance exercise. Methods: A randomized controlled trial of twenty-four soccer players was conducted during the winter training season. The experimental group (EG) took the oral supplement with tangeretin (200 mg/day) and the control group (CG) took placebo for 4 weeks. Before and after the 4-week intervention, all players performed a high intensity bout of resistance exercise to stimulate their cortisol stress responses. Serum cortisol, adreno-corticotropic hormone (ACTH) and superoxide dismutase (SOD) were obtained by collecting blood samples before (PRE), immediately after (P0), and 10 (P10), 20 (P20) and 30 minutes (P30) after the exercise. Results: The serum cortisol level (PRE, p = 0.017; P10, p = 0.010; P20, p = 0.014; P30, p = 0.007) and ACTH (P10, p = 0.037; P30, p = 0.049) of experimental group significantly decreased after the 4-week intervention. Compared with control group, EG displayed a significantly lower level of the serum cortisol (PRE, p = 0.036; P10, p = 0.031) and ACTH (P30, p = 0.044). Additionally, EG presented significantly higher superoxide dismutase activity level compared with CG at P30 (p = 0.044). The white blood cell of EG decreased significantly (PRE, p = 0.037; P30, p = 0.046) and was significantly lower than CG at P20 (p = 0.01) and P30 (p = 0.003). Conclusion: Four-week tangeretin supplementation can reduce serum cortisol and ACTH, which may ameliorate the cortisol stress response in soccer players during high-intensity resistance exercise training. It can also enhance antioxidant capacity, accelerate the elimination of inflammation throughout the body, and shorten recovery time after high-intensity exercise.
Collapse
Affiliation(s)
- Meng Liu
- College of Physical Education and Training, Shanghai University of Sport, Shanghai, China
- Chongqing Institute of Sport Science, Chongqing, China
| | - Zheng Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chunli Qin
- Chongqing Institute of Sport Science, Chongqing, China
| | - Bingqiang Lv
- Chongqing Institute of Sport Science, Chongqing, China
| | - Shiwei Mo
- School of Physical Education, Shenzhen University, Shenzhen, China
- *Correspondence: Shiwei Mo, ; Tao Lan, ; Binghong Gao,
| | - Tao Lan
- Sports and Art Department, Hebei Sport University, Shijiazhuang, China
- *Correspondence: Shiwei Mo, ; Tao Lan, ; Binghong Gao,
| | - Binghong Gao
- College of Physical Education and Training, Shanghai University of Sport, Shanghai, China
- *Correspondence: Shiwei Mo, ; Tao Lan, ; Binghong Gao,
| |
Collapse
|
9
|
Stelcer E, Komarowska H, Jopek K, Żok A, Iżycki D, Malińska A, Szczepaniak B, Komekbai Z, Karczewski M, Wierzbicki T, Suchorska W, Ruchała M, Ruciński M. Biological response of adrenal carcinoma and melanoma cells to mitotane treatment. Oncol Lett 2022; 23:120. [PMID: 35261634 PMCID: PMC8855164 DOI: 10.3892/ol.2022.13240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022] Open
Abstract
A previous case report described an adrenal incidentaloma initially misdiagnosed as adrenocortical carcinoma (ACC), which was treated with mitotane. The final diagnosis was metastatic melanoma of unknown primary origin. However, the patient developed rapid disease progression after mitotane withdrawal, suggesting a protective role for mitotane in a non-adrenal-derived tumor. The aim of the present study was to determine the biological response of primary melanoma cells obtained from that patient, and that of other established melanoma and ACC cell lines, to mitotane treatment using a proliferation assay, flow cytometry, quantitative PCR and microarrays. Although mitotane inhibited the proliferation of both ACC and melanoma cells, its role in melanoma treatment appears to be limited. Flow cytometry analysis and transcriptomic studies indicated that the ACC cell line was highly responsive to mitotane treatment, while the primary melanoma cells showed a moderate response in vitro. Mitotane modified the activity of several key biological processes, including ‘mitotic nuclear division’, ‘DNA repair’, ‘angiogenesis’ and ‘negative regulation of ERK1 and ERK2 cascade’. Mitotane administration led to elevated levels of DNA double-strand breaks, necrosis and apoptosis. The present study provides a comprehensive insight into the biological response of mitotane-treated cells at the molecular level. Notably, the present findings offer new knowledge on the effects of mitotane on ACC and melanoma cells.
Collapse
Affiliation(s)
- Ewelina Stelcer
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61‑001 Poznan, Poland
| | - Hanna Komarowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60‑355 Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61‑001 Poznan, Poland
| | - Agnieszka Żok
- Division of Philosophy of Medicine and Bioethics, Department of Social Sciences and Humanities, Poznan University of Medical Sciences, 60‑806 Poznan, Poland
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61‑866 Poznan, Poland
| | - Agnieszka Malińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61‑001 Poznan, Poland
| | - Beata Szczepaniak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61‑001 Poznan, Poland
| | - Zhanat Komekbai
- Department of Histology, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan
| | - Marek Karczewski
- Department of General and Transplantation Surgery, Poznan University of Medical Sciences, 60‑355 Poznan, Poland
| | - Tomasz Wierzbicki
- Department of General, Endocrinological and Gastroenterological Surgery, Poznan University of Medical Sciences, 60‑355 Poznan, Poland
| | - Wiktoria Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61‑866 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60‑355 Poznan, Poland
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61‑001 Poznan, Poland
| |
Collapse
|
10
|
Haryuna TSH, Fauziah D, Anggraini S, Harahap MPH, Harahap J. Antioxidant Effect of Curcumin on the Prevention of Oxidative Damage to the Cochlea in an Ototoxic Rat Model Based on Malondialdehyde Expression. Int Arch Otorhinolaryngol 2022; 26:e119-e124. [PMID: 35096168 PMCID: PMC8789483 DOI: 10.1055/s-0040-1722161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 10/22/2020] [Indexed: 10/28/2022] Open
Abstract
Introduction Aminoglycoside, as an antimicrobial medication, also has side-effects on the inner ears, bringing about hearing disorders. Curcumin has been proven to be a strong scavenger against various reactive oxygen species (ROS), and the increase in ROS production is considered to play an important role in the process of hearing disorder. Objective To prove that curcumin is an effective antioxidant to prevent cochlear damage based on malondialdehyde (MDA) expression. Methods The present research used 32 Rattus norvegicus , of the Wistar lineage, randomly divided into 8 groups: negative control, ototoxic control (a single dose of 40 mg/ml of gentamicin via intratympanic injection), 2 groups submitted to ototoxic control + curcumin treatment (100 mg/kg, 200 mg/kg), 2 groups who iunderwent ototoxic control + curcumin treatment for 7 days, and two groups submitted to curcumin treatment as prevention for 3 days + ototoxic induction. Results The results showed that the lowest dosage of curcumin (100 mg/kg) could decrease MDA expression on the cochlear fibroblastic wall of the ototoxic model; however using greater doses of curcumin (200 mg/kg) for 7 days would provide a better effect. Curcumin could also significantly decrease MDA expression when it was administered during the preototoxic exposure. Conclusion Curcumin can be used as a therapy for ototoxic prevention based on the decrease in MDA expression.
Collapse
Affiliation(s)
- Tengku Siti Hajar Haryuna
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Dyah Fauziah
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Sari Anggraini
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - M Pahala Hanafi Harahap
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Juliandi Harahap
- Department of Community Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| |
Collapse
|
11
|
The curcumin analog EF24 inhibits proliferation and invasion of triple-negative breast cancer cells by targeting the lncRNA HCG11/Sp1 axis. Mol Cell Biol 2021; 42:e0016321. [PMID: 34780286 DOI: 10.1128/mcb.00163-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EF24, a curcumin analog, exerts a potent anti-tumor effect on various cancers. However, whether EF24 retards the progression of triple-negative breast cancer (TNBC) remains unclear. In this study, we explored the role of EF24 in TNBC and clarified the underlying mechanism. In a mouse model of TNBC xenograft, EF24 administration reduced the tumor volume, suppressed cell proliferation, promoted cell apoptosis, and downregulated long non-coding RNA human leukocyte antigen complex group 11 (HCG11) expression. In TNBC cell lines, EF24 administration reduced cell viability, suppressed cell invasion, and downregulated HCG11 expression. HCG11 overexpression re-enhanced the proliferation and invasion of TNBC cell lines suppressed by EF24. The following mechanism research revealed that HCG11 overexpression elevated Sp1 transcription factor (Sp1) expression by reducing its ubiquitination, thereby enhanced Sp1-mediated cell survival and invasion in the TNBC cell line. Finally, the in vivo study showed that HCG11-overexpressed TNBC xenografts exhibited lower responsiveness in response to EF24 treatment. In conclusion, EF24 treatment reduced HCG11 expression, resulting in the degradation of Sp1 expression, thereby inhibiting the proliferation and invasion of TNBC cells.
Collapse
|
12
|
Steenaard RV, Ettaieb MHT, Kerkhofs TMA, Haak HR. How close are we to personalized mitotane dosing in the treatment of adrenocortical carcinoma? State of the art and future perspectives. Expert Opin Drug Metab Toxicol 2021; 17:677-683. [PMID: 33886381 DOI: 10.1080/17425255.2021.1921146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Mitotane is the only drug registered specifically for adrenocortical carcinoma. Finding the optimal dose for a patient is difficult due to large differences in bioavailability, toxicity and effect. We therefore look to improve personalized dosing of mitotane. AREAS COVERED We searched PubMed for studies related to mitotane dosing, pharmacokinetics, pharmacogenetics and combination therapy. Comparison of different dosing strategies have not resulted in an optimal advice. Several computerized pharmacokinetic models have been proposed to predict plasma levels. The current pharmacokinetic models do not explain the full variance in plasma levels. Pharmacogenetics have been proposed to find the unexplained variance. Studies on combination therapy have not yet led to a potential dose adjustment for mitotane. EXPERT OPINION Computerized pharmacokinetics models are promising tools to predict plasma levels, further validation is needed. Pharmacogenetics are introduced in these models, but more research is required before clinical application. We believe that in the near future, personalized mitotane dosage will be aided by a validated web-based pharmacokinetic model with good predictive ability based primarily on clinical characteristics, adjustable for actual plasma levels and dosage.
Collapse
Affiliation(s)
- Rebecca V Steenaard
- Department of Internal Medicine, Máxima MC, Veldhoven, Eindhoven, The Netherlands.,Maastricht University, CAPHRI School for Public Health and Primary Care, Ageing and Long-Term Care, Maastricht, The Netherlands
| | - Madeleine H T Ettaieb
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Thomas M A Kerkhofs
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Harm R Haak
- Department of Internal Medicine, Máxima MC, Veldhoven, Eindhoven, The Netherlands.,Maastricht University, CAPHRI School for Public Health and Primary Care, Ageing and Long-Term Care, Maastricht, The Netherlands.,Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
13
|
Manso J, Sharifi-Rad J, Zam W, Tsouh Fokou PV, Martorell M, Pezzani R. Plant Natural Compounds in the Treatment of Adrenocortical Tumors. Int J Endocrinol 2021; 2021:5516285. [PMID: 34567112 PMCID: PMC8463247 DOI: 10.1155/2021/5516285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Plant natural products are a plethora of diverse and complex molecules produced by the plant secondary metabolism. Among these, many can reserve beneficial or curative properties when employed to treat human diseases. Even in cancer, they can be successfully used and indeed numerous phytochemicals exert antineoplastic activity. The most common molecules derived from plants and used in the fight against cancer are polyphenols, i.e., quercetin, genistein, resveratrol, curcumin, etc. Despite valuable data especially in preclinical models on such compounds, few of them are currently used in the medical practice. Also, in adrenocortical tumors (ACT), phytochemicals are scarcely or not at all used. This work summarizes the available research on phytochemicals used against ACT and adrenocortical cancer, a very rare disease with poor prognosis and high metastatic potential, and wants to contribute to stimulate preclinical and clinical research to find new therapeutic strategies among the overabundance of biomolecules produced by the plant kingdom.
Collapse
Affiliation(s)
- Jacopo Manso
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, Padova 35128, Italy
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Wissam Zam
- Analytical and Food Chemistry Department, Faculty of Pharmacy, Tartous University, Tartous, Syria
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, Padova 35128, Italy
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| |
Collapse
|
14
|
Abstract
![]()
The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore have been studied extensively. Despite their expected
general thiol reactivity, these compounds display considerable degrees
of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570,
RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these
compounds is their targeting of the ubiquitin–proteasome system
(UPS), known to be essential for the viability of tumor cells. Gene
expression profiling experiments have shown induction of responses
characteristic of UPS inhibition, and experiments using cellular reporter
proteins have shown that proteasome inhibition is associated with
cell death. Other mechanisms of action such as reactivation of mutant
p53, stimulation of steroid receptor coactivators, and induction of
protein cross-linking have also been described. Although unsuitable
as biological probes due to widespread reactivity, dienone compounds
are cytotoxic to apoptosis-resistant tumor cells and show activity
in animal tumor models.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-58183 Linköping, Sweden.,Department of Oncology and Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| |
Collapse
|
15
|
Patti F, Palmioli A, Vitalini S, Bertazza L, Redaelli M, Zorzan M, Rubin B, Mian C, Bertolini C, Iacobone M, Armanini D, Barollo S, Airoldi C, Iriti M, Pezzani R. Anticancer Effects of Wild Mountain Mentha longifolia Extract in Adrenocortical Tumor Cell Models. Front Pharmacol 2020; 10:1647. [PMID: 32116670 PMCID: PMC7025550 DOI: 10.3389/fphar.2019.01647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/16/2019] [Indexed: 01/12/2023] Open
Abstract
Mint [Mentha longifolia (L.) Hudson] is an aromatic plant that belongs to Lamiaceae family. It is traditionally used as herbal tea in Europe, Australia and North Africa and shows numerous pharmacological effects, such as spasmolytic, antioxidant, antimicrobial and anti-hemolytic. Recently, its antiproliferative role has been suggested in a small number of tumor cell models, but no data are available on adrenocortical carcinoma, a malignancy with a survival rate at 5 years of 20%-30% which frequently metastasize. This work aimed to study the effects of Mentha longifolia L. crude extract (ME) on two adrenocortical tumor cell models (H295R and SW13 cells). Chemical composition of ME was assessed by gas-chromatography/mass spectrometry and NMR spectroscopy analysis. Brine shrimp lethality assay showed ME effects at >0.5 µg/µl (p < 0.05). Cell viability and vitality were determined by MTT, SRB, and trypan blue assays in H295R and SW13 cells. The anti-proliferative effects of ME were more evident in SW13 cells at 72 h (ME > 0.5 µg/µl, p < 0.05). Combination of ME with mitotane (approved drug for adrenocortical carcinoma) seemed not to reinforce the efficacy of the herb. As control, human fibroblasts were treated with ME with no effect on cell viability. Clonogenic assay was concordant with previous cell viability tests (ME > 0.5 µg/µl, p < 0.05), while Wright staining demonstrated the presence of both necrotic and apoptotic cells. Cell cycle analysis showed a strong increase in subG0/G1 phase, related to cell death. Furthermore, MAPK and PI3k/Akt pathways were modulated by Western blot analysis when treating cells with ME alone or combined with mitotane. The crude methanolic extract of wild mountain mint can decrease cell viability, vitality and survival of adrenocortical tumor cell models, in particular of SW13 cells. These data show the potential anticancer effects of ME, still more work is needed to corroborate these findings.
Collapse
Affiliation(s)
- Felicia Patti
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Alessandro Palmioli
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Milan State University, Milano, Italy
| | - Loris Bertazza
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Liettoli di Campolongo Maggiore, Italy
| | - Maira Zorzan
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Beatrice Rubin
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Caterina Mian
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Cristina Bertolini
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Maurizio Iacobone
- Minimally Invasive Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
| | - Decio Armanini
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Susi Barollo
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Cristina Airoldi
- BioOrgNMR Lab, Department of Biotechnology and Biosciences, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milano, Italy
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| |
Collapse
|