1
|
Chowdhary S, Arora S, Fonta I, Mosnier J, Anand A, Pradines B, Kumar V. Design, synthesis and mechanistic exploration of anti-plasmodial Indolo[2,3- b]quinoxaline-7-chloroquinoline hybrids. Future Med Chem 2024; 16:2507-2521. [PMID: 39508437 PMCID: PMC11622779 DOI: 10.1080/17568919.2024.2419354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Aim: The aim of this study is to synthesize indolo[2,3-b]quinoxaline-4-aminoquinoline-based hybrids and evaluate their effectiveness against chloroquine-susceptible (3D7) and resistant (W2) Plasmodium falciparum strains, with expected inhibition of P. falciparum chloroquine resistance transporter (PfCRT) and heme.Methods: The hybrids were synthesized and in vitro evaluated against both susceptible and resistant strains. Molecular docking and studies were conducted to assess the binding affinities for the PfCRT protein. Additionally, heme-inhibition studies using hemin chloride provided valuable insights into the interaction between the ligand and heme. The binding constant (logK) was calculated, providing quantitative details about the strength of this interaction.Conclusion: The synthesized hybrids showed reasonable potency against both P. falciparum strains. The most potent hybrid 10d, with fluorine-substitution exhibited good activity. Molecular docking studies indicated strong binding affinities for the PfCRT protein. Heme inhibition studies further supported the potential of 10d as an effective anti-plasmodial agent.
Collapse
Affiliation(s)
| | - Shagun Arora
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Eecherché Biomédicale des Armées, Marseille, France
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Centre National de Référence du Paludisme, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Eecherché Biomédicale des Armées, Marseille, France
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Centre National de Référence du Paludisme, Marseille, France
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar, India
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Eecherché Biomédicale des Armées, Marseille, France
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Centre National de Référence du Paludisme, Marseille, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
2
|
Ullah S, Mansoor F, Khan SA, Jabeen U, Almars AI, Almohaimeed HM, Basri AM, Alshabrmi FM. Exploring bi-carbazole-linked triazoles as inhibitors of prolyl endo peptidase via integrated in vitro and in silico study. Sci Rep 2024; 14:7675. [PMID: 38561470 PMCID: PMC10985113 DOI: 10.1038/s41598-024-58428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
A serine protease called prolyl endopeptidase (PEP) hydrolyses the peptide bonds on the carboxy side of the proline ring. The excessive PEP expression in brain results in neurodegenerative illnesses like dementia, Alzheimer's disease, and Parkinson's disease. Results of the prior studies on antioxidant activity, and the non-cytotoxic effect of bi-carbazole-linked triazoles, encouraged us to extend our studies towards its anti-diabetic potential. Hence, for this purpose all compounds 1-9 were evaluated to reveal their anti-prolyl endo peptidase activity. Fortunately, seven compounds resulted into significant inhibitory capability ranging from 26 to 63 µM. Among them six compounds 4-9 exhibited more potent inhibitory activity with IC50 values 46.10 ± 1.16, 42.30 ± 1.18, 37.14 ± 1.21, 26.29 ± 0.76, 28.31 ± 0.64 and 31.11 ± 0.84 µM respectively, while compound 3 was the least active compound in the series with IC50 value 63.10 ± 1.58 µM comparing with standard PEP inhibitor bacitracin (IC50 = 125 ± 1.50 µM). Moreover, mechanistic study was performed for the most active compounds 7 and 8 with Ki values 24.10 ± 0.0076 and 23.67 ± 0.0084 µM respectively. Further, the in silico studies suggested that the compounds exhibited potential interactions and significant molecular conformations, thereby elucidating the structural basis for their inhibitory effects.
Collapse
Affiliation(s)
- Saeed Ullah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Farheen Mansoor
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Salman Ali Khan
- Tunneling Group, Biotechnology Centre, Doctoral School, Silesian University of Technology, Akademicka 2, 44-100, Gliwice, Poland.
| | - Uzma Jabeen
- Department of Biochemistry, Federal Urdu University of Karachi, Gulshan-e-Iqbal, Karachi, 75300, Pakistan
| | - Amany I Almars
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed M Basri
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Ravindar L, Hasbullah SA, Rakesh KP, Raheem S, Agustar HK, Ismail N, Ling LY, Hassan NI. Exploring diverse frontiers: Advancements of bioactive 4-aminoquinoline-based molecular hybrids in targeted therapeutics and beyond. Eur J Med Chem 2024; 264:116043. [PMID: 38118392 DOI: 10.1016/j.ejmech.2023.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/22/2023]
Abstract
Amongst heterocyclic compounds, quinoline and its derivatives are advantaged scaffolds that appear as a significant assembly motif for developing new drug entities. Aminoquinoline moiety has gained significant attention among researchers in the 21stcentury. Considering the biological and pharmaceutical importance of aminoquinoline derivatives, herein, we review the recent developments (since 2019) in various biological activities of the 4-aminoquinoline scaffold hybridized with diverse heterocyclic moieties such as quinoline, pyridine, pyrimidine, triazine, dioxine, piperazine, pyrazoline, piperidine, imidazole, indole, oxadiazole, carbazole, dioxole, thiazole, benzothiazole, pyrazole, phthalimide, adamantane, benzochromene, and pyridinone. Moreover, by gaining knowledge about SARs, structural insights, and molecular targets, this review may help medicinal chemists design cost-effective, selective, safe, and more potent 4-aminoquinoline hybrids for diverse biological activities.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Saki Raheem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW, London, United Kingdom
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medicinal Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
4
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Triazole hybrid compounds: A new frontier in malaria treatment. Eur J Med Chem 2023; 259:115694. [PMID: 37556947 DOI: 10.1016/j.ejmech.2023.115694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Reviewing the advancements in malaria treatment, the emergence of triazole hybrid compounds stands out as a groundbreaking development. Combining the advantages of triazole and other moieties, these hybrid compounds offer a new frontier in the battle against malaria. Their potential as effective antimalarial agents has captured the attention of researchers and holds promise for overcoming the challenges posed by drug-resistant malaria strains. We focused on their broad spectrum of antimalarial activity of diverse hybridized 1,2,3-triazoles and 1,2,4-triazoles, structure-activity relationship (SAR), drug-likeness, bioavailability and pharmacokinetic properties reported since 2018 targeting multiple stages of the Plasmodium life cycle. This versatility makes them highly effective against both drug-sensitive and drug-resistant strains of P. falciparum, making them invaluable tools in regions where resistance is prevalent. The synergistic effects of combining the triazole moiety with other pharmacophores have resulted in even greater antimalarial potency. This approach has the potential to circumvent existing resistance mechanisms and provide a more sustainable solution to malaria treatment. While triazole hybrid compounds show great promise, further research and clinical trials are warranted to fully evaluate their safety, efficacy and long-term effects. As research progresses, these compounds can potentially revolutionize the field and contribute to global efforts to eradicate malaria, ultimately saving countless lives worldwide.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
5
|
Abdul Rahman SM, Bhatti JS, Thareja S, Monga V. Current development of 1,2,3-triazole derived potential antimalarial scaffolds: Structure- activity relationship (SAR) and bioactive compounds. Eur J Med Chem 2023; 259:115699. [PMID: 37542987 DOI: 10.1016/j.ejmech.2023.115699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Malaria is among one of the most devastating and deadliest parasitic disease in the world claiming millions of lives every year around the globe. It is a mosquito-borne infectious disease caused by various species of the parasitic protozoan of the genus Plasmodium. The indiscriminate exploitation of the clinically used antimalarial drugs led to the development of various drug-resistant and multidrug-resistant strains of plasmodium which severely reduces the therapeutic effectiveness of most frontline medicines. Therefore, there is urgent need to develop novel structural classes of antimalarial agents acting with unique mechanism of action(s). In this context, design and development of hybrid molecules containing pharmacophoric features of different lead molecules in a single entity represents a unique strategy for the development of next-generation antimalarial drugs. Research efforts by the scientific community over the past few years has led to the identification and development of several heterocyclic small molecules as antimalarial agents with high potency, less toxicity and desired efficacy. Triazole derivatives have become indispensable units in the medicinal chemistry due to their diverse spectrum of biological profiles and many triazole based hybrids and conjugates have demonstrated potential in vitro and in vivo antimalarial activities. The manuscript compiled recent developments in the medicinal chemistry of triazole based small heterocyclic molecules as antimalarial agents and discusses various reported biologically active compounds to lay the groundwork for the rationale design and discovery of triazole based antimalarial compounds. The article emphasised on biological activities, structure activity relationships, and molecular docking studies of various triazole based hybrids with heterocycles such as quinoline, artemisinins, naphthyl, naphthoquinone, etc. as potential antimalarial agents which could act on the dual stage and multi stage of the parasitic life cycle.
Collapse
Affiliation(s)
- S Maheen Abdul Rahman
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
6
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Recent developments in antimalarial activities of 4-aminoquinoline derivatives. Eur J Med Chem 2023; 256:115458. [PMID: 37163950 DOI: 10.1016/j.ejmech.2023.115458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Malaria is the fifth most lethal parasitic infection in the world. Antimalarial medications have played a crucial role in preventing and eradicating malaria. Numerous heterocyclic moieties have been incorporated into the creation of effective antimalarial drugs. The 4-aminoquinoline moiety is favoured in antimalarial drug discovery due to the diverse biological applications of its derivative. Since the 1960s, 4-aminoquinoline has been an important antimalarial drug due to its low toxicity, high tolerability, and rapid absorption after administration. This review focused on the antimalarial efficacy of the 4-aminoquinoline moiety hybridised with various heterocyclic scaffolds developed by scientists since 2018 against diverse Plasmodium clones. It could aid in the future development of more effective antimalarial agents.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
7
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
8
|
Shah BM, Modi P, Trivedi P. Recent Investigation on Synthetic ‘Triazoles’ Scaffold as Potential Pharmacological Agents: A Comprehensive Survey. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
9
|
Sovari SN, Golding TM, Mbaba M, Mohunlal R, Egan TJ, Smith GS, Zobi F. Rhenium(I) derivatives of aminoquinoline and imidazolopiperidine-based ligands: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J Inorg Biochem 2022; 234:111905. [PMID: 35752063 DOI: 10.1016/j.jinorgbio.2022.111905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 12/31/2022]
Abstract
A small library of aminoquinoline and imidazolopiperidine (IMP)-based ligands, containing the 1,2,3-triazole moiety, and their corresponding tricarbonyl rhenium complexes were synthesised and their inhibitory activities evaluated against the chloroquine-sensitive (CQS) and multidrug-resistant (MDR) strains (NF54 and K1, respectively) of P. falciparum. The quinoline-based compounds (L1, L2, ReL1, and ReL2) were at least six-fold more potent than their IMP-based counterparts (L3, L4, ReL3, and ReL4) against both strains of P. falciparum, with the most promising compound (L1) displaying activity comparable to chloroquine diphosphate (CQDP) in the MDR strain. Additionally, all of the synthesised compounds have resistance indices less than CQDP. To gain insight into a possible mechanism of action, in silico hemozoin docking simulations were performed. These studies proposed that the tested compounds may act via hemozoin inhibition, as the new aminoquinoline-derivatives, with the exception of complex ReL2 (binding affinity: -12.62 kcal/mol), showed higher binding affinities than the reference drug chloroquine (CQ, -13.56 kcal/mol). Furthermore, the ligands exhibited superior binding affinity relative to their corresponding Re(I) complexes, which is reflected in their antiplasmodial activity.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Taryn M Golding
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Roxanne Mohunlal
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
10
|
Van de Walle T, Cools L, Mangelinckx S, D'hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur J Med Chem 2021; 226:113865. [PMID: 34655985 DOI: 10.1016/j.ejmech.2021.113865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Quinoline, a privileged scaffold in medicinal chemistry, has always been associated with a multitude of biological activities. Especially in antimalarial and anticancer research, quinoline played (and still plays) a central role, giving rise to the development of an array of quinoline-containing pharmaceuticals in these therapeutic areas. However, both diseases still affect millions of people every year, pointing to the necessity of new therapies. Quinolines have a long-standing history as antimalarial agents, but established quinoline-containing antimalarial drugs are now facing widespread resistance of the Plasmodium parasite. Nevertheless, as evidenced by a massive number of recent literature contributions, they are still of great value for future developments in this field. On the other hand, the number of currently approved anticancer drugs containing a quinoline scaffold are limited, but a strong increase and interest in quinoline compounds as potential anticancer agents can be seen in the last few years. In this review, a literature overview of recent contributions made by quinoline-containing compounds as potent antimalarial or anticancer agents is provided, covering publications between 2018 and 2020.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
11
|
In-Out Surface Modification of Halloysite Nanotubes (HNTs) for Excellent Cure of Epoxy: Chemistry and Kinetics Modeling. NANOMATERIALS 2021; 11:nano11113078. [PMID: 34835842 PMCID: PMC8620462 DOI: 10.3390/nano11113078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022]
Abstract
In-out surface modification of halloysite nanotubes (HNTs) has been successfully performed by taking advantage of 8-hydroxyquinolines in the lumen of HNTs and precisely synthesized aniline oligomers (AO) of different lengths (tri- and pentamer) anchored on the external surface of the HNTs. Several analyses, including FTIR, H-NMR, TGA, UV-visible spectroscopy, and SEM, were used to establish the nature of the HNTs’ surface engineering. Nanoparticles were incorporated into epoxy resin at 0.1 wt.% loading for investigation of the contribution of surface chemistry to epoxy cure behavior and kinetics. Nonisothermal differential scanning calorimetry (DSC) data were fed into home-written MATLAB codes, and isoconversional approaches were used to determine the apparent activation energy (Eα) as a function of the extent of cure reaction (α). Compared to pristine HNTs, AO-HNTs facilitated the densification of an epoxy network. Pentamer AO-HNTs with longer arms promoted an Excellent cure; with an Eα value that was 14% lower in the presence of this additive than for neat epoxy, demonstrating an enhanced cross-linking. The model also predicted a triplet of cure (m, n, and ln A) for autocatalytic reaction order, non-catalytic reaction order, and pre-exponential factor, respectively, by the Arrhenius equation. The enhanced autocatalytic reaction in AO-HNTs/epoxy was reflected in a significant rise in the value of m, from 0.11 to 0.28. Kinetic models reliably predict the cure footprint suggested by DSC measurements.
Collapse
|
12
|
Abstract
The recently delineated structure- and reactivity-based concept of antivitamins B12 has begun to bear fruit by the generation, and study, of a range of such B12 -dummies, either vitamin B12 -derived, or transition metal analogues that also represent potential antivitamins B12 or specific B12 -antimetabolites. As reviewed here, this has opened up new research avenues in organometallic B12 -chemistry and bioinorganic coordination chemistry. Exploratory studies with antivitamins B12 have, furthermore, revealed some of their potential, as pharmacologically interesting compounds, for inducing B12 -deficiency in a range of organisms, from hospital resistant bacteria to laboratory mice. The derived capacity of antivitamins B12 to induce functional B12 -deficiency in mammalian cells and organs also suggest their valuable potential as growth inhibitors of cancerous human and animal cells.
Collapse
Affiliation(s)
- Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
13
|
Machalska E, Zajac G, Gruca A, Zobi F, Baranska M, Kaczor A. Resonance Raman Optical Activity Shows Unusual Structural Sensitivity for Systems in Resonance with Multiple Excited States: Vitamin B 12 Case. J Phys Chem Lett 2020; 11:5037-5043. [PMID: 32502349 PMCID: PMC7588133 DOI: 10.1021/acs.jpclett.0c01218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In this work, cobalamins with different upper axial substituents and a cobalamin derivative with a ring modification were studied using chiroptical spectroscopies, in particular resonance Raman optical activity (RROA), to shed light on the influence of structural modifications on RROA spectra in these strongly chiral systems in resonance with multiple excited states at 532 nm excitation. We have demonstrated that for these unique systems RROA possesses augmented structural specificity, surpassing resonance Raman spectroscopy and enabling at the same time measurement of cobalamins at fairy low concentrations of ∼10-5 mol dm-3. The enhanced structural specificity of RROA is a result of bisignate spectra due to resonance via more than one electronic state. The observation of increased structural capability of RROA for cobalamins opens a new perspective for studying chiral properties of other biological systems incorporating d-metal ions.
Collapse
Affiliation(s)
- Ewa Machalska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow 30-387, Poland
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Grzegorz Zajac
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Anna Gruca
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow 30-387, Poland
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Fabio Zobi
- Department
of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Malgorzata Baranska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow 30-387, Poland
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Agnieszka Kaczor
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow 30-387, Poland
- Jagiellonian
Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| |
Collapse
|
14
|
Salerno EV, Miller NA, Konar A, Salchner R, Kieninger C, Wurst K, Spears KG, Kräutler B, Sension RJ. Exceptional Photochemical Stability of the Co-C Bond of Alkynyl Cobalamins, Potential Antivitamins B 12 and Core Elements of B 12-Based Biological Vectors. Inorg Chem 2020; 59:6422-6431. [PMID: 32311266 PMCID: PMC7201400 DOI: 10.1021/acs.inorgchem.0c00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Alkynylcorrinoids
are a class of organometallic B12 derivatives,
recently rediscovered for use as antivitamins B12 and as
core components of B12-based biological vectors. They feature
exceptional photochemical and thermal stability of their characteristic
extra-short Co–C bond. We describe here the synthesis and structure
of 3-hydroxypropynylcobalamin (HOPryCbl) and photochemical experiments
with HOPryCbl, as well as of the related alkynylcobalamins: phenylethynylcobalamin
and difluoro-phenylethynylcobalamin. Ultrafast spectroscopic studies
of the excited state dynamics and mechanism for ground state recovery
demonstrate that the Co–C bond of alkynylcobalamins is stable,
with the Co–N bond and ring deformations mediating internal
conversion and ground state recovery within 100 ps. These studies
provide insights required for the rational design of photostable or
photolabile B12-based cellular vectors. Most alkylcobalamins are photolabile; in contrast, alkynylcobalamins
are photostable. Through time-resolved measurements, we demonstrate
for three alkynylcobalamins that the Co−C bond is stable (i.e.
“locked”), while expansion of the Co−N axial
bond (which is “unlocked”) and ring deformations mediate
internal conversion and ground state recovery within 100 ps. The barrier
for ground state recovery is independent of the R group on the alkynyl
ligand.
Collapse
Affiliation(s)
- Elvin V Salerno
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Robert Salchner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Kenneth G Spears
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States.,Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|