1
|
Fawzi M, Bimoussa A, Laamari Y, Oussidi AN, Oubella A, Ketatni EM, Saadi M, Ammari LE, Morjani H, Ait Itto MY, Auhmani A. New (S)-verbenone-isoxazoline-1,3,4-thiadiazole hybrids: synthesis, anticancer activity and apoptosis-inducing effect. Future Med Chem 2023; 15:1603-1619. [PMID: 37772541 DOI: 10.4155/fmc-2023-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Background: This study aimed to develop novel isoxazoline-1,3,4-thiadiazole hybrids from (S)-verbenone for potential anticancer treatment, particularly focusing on cytotoxic and apoptotic effects in hormone-sensitive MCF-7 and triple-negative MDA-MB-231 breast cancer cells. Methods & results: (S)-verbenone was used to synthesize hybrids through 1,3-dipolar cycloaddition, followed by thorough characterization. The compounds were screened across cancer cell lines, showing significant anticancer effects. Compound 8b notably induced apoptosis via the caspase-3/7 pathway and cell cycle arrest, displaying noteworthy cytotoxicity against MCF-7 and MDA-MB-231 cells. Conclusion: These findings underscore the potential of (S)-verbenone isoxazoline-1,3,4-thiadiazole derivatives for breast cancer therapy due to their remarkable apoptotic activity. This study highlights a promising avenue for advancing breast cancer treatment using these derivatives, founded on (S)-verbenone, showcasing their distinct potential for inducing apoptosis.
Collapse
Affiliation(s)
- Mourad Fawzi
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Abdoullah Bimoussa
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Yassine Laamari
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Abdellah N'ait Oussidi
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Ali Oubella
- Laboratory of Organic & Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, IBNOU ZOHR University, Agadir, 80000, Morocco
| | - El Mostafa Ketatni
- Laboratory of Molecular Chemistry, Materials & Catalysis, Faculty of Sciences, & Technics, Sultan Moulay Slimane University, Beni-Mellal, BP 523, 23000, Morocco
| | - Mohamed Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, PO Box 1014, Rabat, Morocco
| | - Lahcen El Ammari
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, PO Box 1014, Rabat, Morocco
| | - Hamid Morjani
- Unité BioSpecT, EA7506, SFR CAP-Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51100, France
| | - Moulay Youssef Ait Itto
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Aziz Auhmani
- Laboratory of Molecular Chemistry, Unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| |
Collapse
|
2
|
Yang T, Tian Y, Yang Y, Tang M, Shi M, Chen Y, Yang Z, Chen L. Design, synthesis, and pharmacological evaluation of 2-(1-(1,3,4-thiadiazol-2-yl)piperidin-4-yl)ethan-1-ol analogs as novel glutaminase 1 inhibitors. Eur J Med Chem 2022; 243:114686. [DOI: 10.1016/j.ejmech.2022.114686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022]
|
3
|
Rashdan H, Abdelmonsef A. Towards Covid-19 TMPRSS2 enzyme inhibitors and antimicrobial agents: Synthesis, antimicrobial potency, molecular docking, and drug-likeness prediction of thiadiazole-triazole hybrids. J Mol Struct 2022; 1268:133659. [PMID: 35818577 PMCID: PMC9255848 DOI: 10.1016/j.molstruc.2022.133659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 02/08/2023]
Abstract
1,3,4-Thiadiazole analogues 3 and 4 were synthesised via the reaction of 1-(5-methyl-1-(5-(methylthio)-1,3,4-thiadiazol-2-yl)-1H-1,2,3-triazol-4-yl)ethan-1one 2 with vanillin or thiophene-2-carboxaldhyde, respectively through chalcone reaction. Compounds 3 and 4 were submitted to react with thiosemicarbazide affording 5-(4‑hydroxy-3-methoxyphenyl)-3-(5-methyl-1-(5-(methylthio)-1,3,4-thiadiazol-2-yl)-1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (5) give 3-(5-methyl-1-(5-(methylthio)-1,3,4-thiadiazol-2-yl)-1H-1,2,3-triazol-4-yl)-5-(thiophen-2-yl)-4,5 dihydro-1H-pyrazole-1-carbothioamide (6), respectively. The letters were reacted with N-(4-chlorophenyl)-2-oxopropanehydrazonoyl chloride to give compounds 7 and 8. The chemical compositions of the novel compounds were affirmed by spectral and microanalytical data. Meanwhile, all the newly synthesized compounds have been screened for their ability to prevent the proliferation of different pathogens named Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Candida albicans in vitro. Additionally, the potency of the newly synthesized compounds to be anti-COVID-19 candidates was studied through a molecular docking study. The newly prepared molecules 2-8 were studied in silico against transmembrane serine protease 2 (TMPRSS2) to identify their potential therapeutic activity against Coronavirus. Moreover, the drug-likeness of the compounds was tested theoretically by ADMET studies. Compound 8 exhibited a better binding affinity (-9.1 kcal/mol) against the target enzyme TMPRSS2. Additionally, it respects Lipinski's rule of five and has acceptable ADMET properties, indicating that compound 8 could be interesting for the treatment of Covid-19.
Collapse
Affiliation(s)
- H.R.M. Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Institute, Dokki, Cairo 12622, Egypt,Corresponding author
| | - A.H. Abdelmonsef
- Chemistry Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
4
|
Novel Thiadiazole-Based Molecules as Promising Inhibitors of Black Fungi and Pathogenic Bacteria: In Vitro Antimicrobial Evaluation and Molecular Docking Studies. Molecules 2022; 27:molecules27113613. [PMID: 35684551 PMCID: PMC9182183 DOI: 10.3390/molecules27113613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Novel 1,3,4-thiadiazole derivatives were synthesized through the reaction of methyl 2-(4-hydroxy-3-methoxybenzylidene) hydrazine-1-carbodithioate and the appropriate hydrazonoyl halides in the presence of a few drops of diisopropylethylamine. The chemical structure of the newly fabricated compounds was inferred from their microanalytical and spectral data. With the increase in microbial diseases, fungi remain a devastating threat to human health because of the resistance of microorganisms to antifungal drugs. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) have higher mortality rates in many populations. The present study aimed to find new antifungal agents using the disc diffusion method, and minimal inhibitory concentration (MIC) values were estimated by the microdilution assay. An in vitro experiment of six synthesized chemical compounds exhibited antifungal activity against Rhizopus oryzae; compounds with an imidazole moiety, such as the compound 7, were documented to have energetic antibacterial, antifungal properties. As a result of these findings, this research suggests that the synthesized compounds could be an excellent choice for controlling black fungus diseases. Furthermore, a molecular docking study was achieved on the synthesized compounds, of which compounds 2, 6, and 7 showed the best interactions with the selected protein targets.
Collapse
|
5
|
Sabt A, Abdelrahman MT, Abdelraof M, Rashdan HRM. Investigation of Novel Mucorales Fungal Inhibitors: Synthesis, In‐Silico Study and Anti‐Fungal Potency of Novel Class of Coumarin‐6‐Sulfonamides‐Thiazole and Thiadiazole Hybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202200691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department National Research Center Dokki Giza 12622 Egypt
| | - Mohamad T. Abdelrahman
- Radioisotopes Department Nuclear Research Centre Egyptian Atomic Energy Authority Cairo Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department Biotechnology Research Institute National Research Centre 33 El Bohouth St. (Former El Tahrir St.) Giza P.O. 12622 Egypt
| | - Huda R. M. Rashdan
- Chemistry of Natural and Microbial Products Department Pharmaceutical and Drug Industries Research Institute National Research Centre, Dokki Cairo 12622 Egypt E-mail: hr.rashdan.nrc.sci.eg
| |
Collapse
|
6
|
Triazoles Synthesis & Applications as Nonsteroidal Aromatase Inhibitors for Hormone-Dependent Breast Cancer Treatment. HETEROATOM CHEMISTRY 2022. [DOI: 10.1155/2022/5349279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the last few years, nonsteroidal aromatase inhibitors (AIs) have been emerged as promising agents for treating hormone-dependent breast cancer in postmenopausal women because of their inhibitory effect on estrogen synthesis. Indeed, these compounds can block the activity of aromatase, the enzyme that intervenes in the last steps of estrogen production pathway. Triazoles are the core structures of nonsteroidal AIs. The nitrogen atom of the triazole moiety plays a fundamental role in the aromatase functionality by interacting with the iron ions of the heme group. In general, AIs possess numerous advantages as they quench the last step of estrogen synthesis without any inhibitory effects on the production of other steroids produced via the same pathway. Some AIs as anastrozole, letrozole, and vorozole have already been approved by the Food and Drug Administration in the treatment of breast cancer. The previously mentioned compounds present severe and adverse effects as polycystic ovary syndrome (PCOS), resistance onset on long-term treatments, and a higher risk of bone fractures. This review focuses intensively on the role of AIs in the treatment of hormone-sensitive types of cancers, especially the role of triazoles as nonsteroidal AIs. Also, the review provides an overview about the chemistry of triazoles along with the different methods by which the
-triazoles and s-triazoles are synthesized.
Collapse
|
7
|
Wilcke T, Postole A, Krüsmann M, Karg M, Müller TJJ. Amphipolar, Amphiphilic 2,4-diarylpyrano[2,3- b]indoles as Turn-ON Luminophores in Acidic and Basic Media. Molecules 2022; 27:2354. [PMID: 35408766 PMCID: PMC9000430 DOI: 10.3390/molecules27072354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
A versatile amphiphilic pyrano[2,3-b]indole for halochromic turn-ON luminescence in acidic or basic media is accessed by an insertion-coupling-cycloisomerization and adjusting solubilizing and phenolic functionalities. While almost non-emissive in neutral solutions, treatment with acids or bases like trifluoroacetic acid (TFA) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) reveals distinct luminescence at wavelengths of 540 nm or 630 nm in propan-2-ol, respectively. Turn-ON emission can be detected at pH values as mild as pH = 5.31 or 8.70. Quantum yields in propan-2-ol are substantial for protonated (Φf = 0.058) and deprotonated (Φf = 0.059) species. Photometrically, pKa1 of 3.5 and pKa2 of 10.5 were determined in propan-2-ol. With lipophilic polyether sidechains and hydrophilic protonation and deprotonation sites the molecule can be regarded as amphipolar, which results in good solubility properties for different organic solvents. In aqueous media, an organic co-solvent like propan-2-ol (35%) or tetrahydrofuran (25%) is needed, and the solution can be diluted with pure water without precipitation of the compound. At higher concentrations of water, a turbid solution is formed, which indicates the formation of micellar structures or clusters. With dynamic light scattering we could show that these clusters increase in size with increasing water content.
Collapse
Affiliation(s)
- Tobias Wilcke
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (T.W.); (A.P.)
| | - Alexandru Postole
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (T.W.); (A.P.)
| | - Marcel Krüsmann
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (M.K.); (M.K.)
| | - Matthias Karg
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (M.K.); (M.K.)
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (T.W.); (A.P.)
| |
Collapse
|
8
|
New 1,3,4-Thiadiazole Derivatives with Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061814. [PMID: 35335177 PMCID: PMC8955053 DOI: 10.3390/molecules27061814] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
We designed and synthesized the 1,3,4-thiadiazole derivatives differing in the structure of the substituents in C2 and C5 positions. The cytotoxic activity of the obtained compounds was then determined in biological studies using MCF-7 and MDA-MB-231 breast cancer cells and normal cell line (fibroblasts). The results showed that in both breast cancer cell lines, the strongest anti-proliferative activity was exerted by 2-(2-trifluorometylophenylamino)-5-(3-methoxyphenyl)-1,3,4-thiadiazole. The IC50 values of this compound against MCF-7 and MDA-MB-231 breast cancer cells were 49.6 µM and 53.4 µM, respectively. Importantly, all new compounds had weaker cytotoxic activity on normal cell line than on breast cancer cell lines. In silico studies demonstrated a possible multitarget mode of action for the synthesized compounds. The most likely mechanism of action for the new compounds is connected with the activities of Caspase 3 and Caspase 8 and activation of BAX proteins.
Collapse
|
9
|
Solvent-Free Synthesis, In Vitro and In Silico Studies of Novel Potential 1,3,4-Thiadiazole-Based Molecules against Microbial Pathogens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020342. [PMID: 35056655 PMCID: PMC8779762 DOI: 10.3390/molecules27020342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
A new series of 1,3,4-thiadiazoles was synthesized by the reaction of methyl 2-(4-hydroxy-3-methoxybenzylidene) hydrazine-1-carbodithioate (2) with selected derivatives of hydrazonoyl halide by grinding method at room temperature. The chemical structures of the newly synthesized derivatives were resolved from correct spectral and microanalytical data. Moreover, all synthesized compounds were screened for their antimicrobial activities using Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis, Staphylococcus aureus, and Candida albicans. However, compounds 3 and 5 showed significant antimicrobial activity against all tested microorganisms. The other prepared compounds exhibited either only antimicrobial activity against Gram-positive bacteria like compounds 4 and 6, or only antifungal activity like compound 7. A molecular docking study of the compounds was performed against two important microbial enzymes: tyrosyl-tRNA synthetase (TyrRS) and N-myristoyl transferase (Nmt). The tested compounds showed variety in binding poses and interactions. However, compound 3 showed the best interactions in terms of number of hydrogen bonds, and the lowest affinity binding energy (−8.4 and −9.1 kcal/mol, respectively). From the in vitro and in silico studies, compound 3 is a good candidate for the next steps of the drug development process as an antimicrobial drug.
Collapse
|
10
|
Rashdan HRM, Abdelmonsef AH, Abou-Krisha MM, Yousef TA. Synthesis, Identification, Computer-Aided Docking Studies, and ADMET Prediction of Novel Benzimidazo-1,2,3-triazole Based Molecules as Potential Antimicrobial Agents. Molecules 2021; 26:7119. [PMID: 34885701 PMCID: PMC8659132 DOI: 10.3390/molecules26237119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
2-azido-1H-benzo[d]imidazole derivatives 1a,b were reacted with a β-ketoester such as acetylacetone in the presence of sodium ethoxide to obtain the desired molecules 2a,b. The latter acted as a key molecule for the synthesis of new carbazone derivatives 4a,b that were submitted to react with 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride to obtain the target thiadiazole derivatives 6a,b. The structures of the newly synthesized compounds were inferred from correct spectral and microanalytical data. Moreover, the newly prepared compounds were subjected to molecular docking studies with DNA gyrase B and exhibited binding energy that extended from -9.8 to -6.4 kcal/mol, which confirmed their excellent potency. The compounds 6a,b were found to be with the minimum binding energy (-9.7 and -9.8 kcal/mol) as compared to the standard drug ciprofloxacin (-7.4 kcal/mol) against the target enzyme DNA gyrase B. In addition, the newly synthesized compounds were also examined and screened for their in vitro antimicrobial activity against pathogenic microorganisms Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Among the newly synthesized molecules, significant antimicrobial activity against all the tested microorganisms was obtained for the compounds 6a,b. The in silico and in vitro findings showed that compounds 6a,b were the most active against bacterial strains, and could serve as potential antimicrobial agents.
Collapse
Affiliation(s)
- Huda R. M. Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Institute, Dokki, Cairo 12622, Egypt
| | - Aboubakr H. Abdelmonsef
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (A.H.A.); (M.M.A.-K.)
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (A.H.A.); (M.M.A.-K.)
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Tarek A. Yousef
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Mansoura Laboratory, Department of Toxic and Narcotic Drug, Forensic Medicine, Medicolegal Organization, Ministry of Justice, Mansoura 35511, Egypt
| |
Collapse
|
11
|
Rashdan HRM, Shehadi IA, Abdelrahman MT, Hemdan BA. Antibacterial Activities and Molecular Docking of Novel Sulfone Biscompound Containing Bioactive 1,2,3-Triazole Moiety. Molecules 2021; 26:molecules26164817. [PMID: 34443405 PMCID: PMC8399954 DOI: 10.3390/molecules26164817] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a new synthetic 1,2,3-triazole-containing disulfone compound was derived from dapsone. Its chemical structure was confirmed using microchemical and analytical data, and it was tested for its in vitro antibacterial potential. Six different pathogenic bacteria were selected. MICs values and ATP levels were determined. Further, toxicity performance was measured using MicroTox Analyzer. In addition, a molecular docking study was performed against two vital enzymes: DNA gyrase and Dihydropteroate synthase. The results of antibacterial abilities showed that the studied synthetic compound had a strong bactericidal effect against all tested bacterial strains, as Gram-negative species were more susceptible to the compound than Gram-positive species. Toxicity results showed that the compound is biocompatible and safe without toxic impact. The molecular docking of the compound showed interactions within the pocket of two enzymes, which are able to stabilize the compound and reveal its antimicrobial activity. Hence, from these results, this study recommends that the established compound could be an outstanding candidate for fighting a broad spectrum of pathogenic bacterial strains, and it might therefore be used for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Huda R. M. Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
- Correspondence:
| | - Ihsan A. Shehadi
- Chemistry Department, College of Science, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mohamad T. Abdelrahman
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo 12311, Egypt;
| | - Bahaa A. Hemdan
- Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El Buhouth Street, Cairo 12622, Egypt;
| |
Collapse
|
12
|
Synthesis, Molecular Docking Studies and In Silico ADMET Screening of New Heterocycles Linked Thiazole Conjugates as Potent Anti-Hepatic Cancer Agents. Molecules 2021; 26:molecules26061705. [PMID: 33803823 PMCID: PMC8003218 DOI: 10.3390/molecules26061705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022] Open
Abstract
Thiazoles are important scaffolds in organic chemistry. Biosynthesis of thiazoles is considered to be an excellent target for the design of novel classes of therapeutic agents. In this study, a new series of 2-ethylidenehydrazono-5-arylazothiazoles 5a–d and 2-ethylidenehydrazono-5-arylazo- thiazolones 8a–d were synthesized via the cyclocondensation reaction of the appropriate hydrazonyl halides 4a–d and 7a–d with ethylidene thiosemicarbazide 3, respectively. Furthermore, the thiosemicarbazide derivative 3 was reacted with different bromoacetyl compounds 10–12 to afford the respective thiazole derivatives 13–15. Chemical composition of the novel derivatives was established on bases of their spectral data (FTIR, 1H-NMR, 13C-NMR and mass spectrometry) and microanalytical data. The newly synthesized derivatives were screened for their in vitro anti-hepatic cancer potency using an MTT assay. Moreover, an in silico technique was used to assess the interaction modes of the compounds with the active site of Rho6 protein. The docking studies of the target Rho6 with the newly synthesized fourteen compounds showed good docking scores with acceptable binding interactions. The presented results revealed that the newly synthesized compounds exhibited promising inhibition activity against hepatic cancer cell lines (HepG2).
Collapse
|
13
|
Rashdan HR, Shehadi IA, Abdelmonsef AH. Synthesis, Anticancer Evaluation, Computer-Aided Docking Studies, and ADMET Prediction of 1,2,3-Triazolyl-Pyridine Hybrids as Human Aurora B Kinase Inhibitors. ACS OMEGA 2021; 6:1445-1455. [PMID: 33490804 PMCID: PMC7818638 DOI: 10.1021/acsomega.0c05116] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/23/2020] [Indexed: 06/01/2023]
Abstract
A novel series of 1,2,3-triazolyl-pyridine hybrids were prepared through the reaction of the triazole derivative (1) with the appropriate aldehyde (2a-g) and malononitrile or ethyl cyanoacetate in the presence of ammonium acetate in refluxed acetic acid. The chemical composition of the products was established on the basis of spectral and elemental analyses. Aurora B kinase is a protein with diverse biological actions in controlling tumorigenesis by inhibiting apoptosis and promoting proliferation and metastasis, making it an emerging target for diseases such as hepatocellular carcinoma (HCC). Alteration in the target protein expression causes unequal distribution of genetic information, causing HCC. The new compounds were tested for their antihepatic cancer activity, and some of them had strong efficacy against human hepatoblastoma (HepG2) cell lines.
Collapse
Affiliation(s)
- Huda R.M. Rashdan
- Chemistry
of Natural and Microbial Products Department, Pharmaceutical and Drug
Industries Research Division, National Research
Centre, Dokki, Cairo 12622, Egypt
| | - Ihsan A. Shehadi
- Chemistry
Department, Faculty of Science, University
of Sharjah, Sharjah 27272, UAE
| | | |
Collapse
|
14
|
Janowska S, Paneth A, Wujec M. Cytotoxic Properties of 1,3,4-Thiadiazole Derivatives-A Review. Molecules 2020; 25:molecules25184309. [PMID: 32962192 PMCID: PMC7570754 DOI: 10.3390/molecules25184309] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
During recent years, small molecules containing five-member heterocyclic moieties have become the subject of considerable growing interest for designing new antitumor agents. One of them is 1,3,4-thiadiazole. This study is an attempt to collect the 1,3,4-thiadiazole and its derivatives, which can be considered as potential anticancer agents, reported in the literature in the last ten years.
Collapse
|
15
|
New Potent 5α- Reductase and Aromatase Inhibitors Derived from 1,2,3-Triazole Derivative. Molecules 2020; 25:molecules25030672. [PMID: 32033281 PMCID: PMC7037409 DOI: 10.3390/molecules25030672] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/13/2023] Open
Abstract
This work describes the utility of pyrazole-4-carbaldehyde 1 as starting material for the synthesis of a novel potent series of 5α-reductase and aromatase inhibitors derived from 1,2,3-triazole derivative. Condensation of 1 with active methylene and different amino pyrazoles produced the respective Schiff bases 2-4, 8 and 9. On the other hand, 1 was reacted with ethyl cyanoacetate and thiourea in one-pot reaction to afford the pyrazolo-6- thioxopyridin-2-[3H]-one (10). Moreover, α-β unsaturated chalcone derivative 11 was prepared via the reaction of compound 1 with P-methoxy acetophenone, which in turn reacted with each of ethyl cyanoacetate, malononitrile, hydrazine hydrate, and thiosemicarbazide to afford the corresponding pyridine and pyrazole derivatives 13, 14, 17, and 20. The structure of newly synthesized compounds was characterized by analytical and spectroscopic data (IR, MS and NMR). All new compounds were evaluated against 5α-reductase and aromatase inhibitors and the results showed that many of these compounds inhibit 5α-reductase and aromatase activity; compound 13 was found to be the highest potency among the tested samples comparing with the reference drugs.
Collapse
|
16
|
Zhang L, Yu Y, Tang Q, Yuan J, Ran D, Tian B, Pan T, Gan Z. TiCl4 mediated facile synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1700521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lin Zhang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yu Yu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qiang Tang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jianyong Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Dongzhi Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Binghua Tian
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Tao Pan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zongjie Gan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|