1
|
Yu A, Sun L, Chen L, Wang D, Li Z, Wang Y, Wang Z, Lin S. The biological functions of proanthocyanidin and its application in pig production. Front Vet Sci 2025; 12:1565501. [PMID: 40144517 PMCID: PMC11938249 DOI: 10.3389/fvets.2025.1565501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Proanthocyanidins (PACs) are natural polyphenolic compounds widely distributed in various plants, which are mixtures of oligomers and polymers formed by the polymerization of different numbers of catechins and epicatechins. PACs exhibit a range of biological activities, including antioxidant, anti-inflammatory, anti-cancer, anti-atherosclerotic, hypoglycemic, and antihypertensive effects, as well as the ability to regulate intestinal flora and promote fat metabolism. These properties render PACs highly promising for applications in the food, pharmaceutical, and cosmetic industries, garnering substantial interest from researchers globally. Additionally, PACs demonstrate significant nutritional benefits in animal husbandry. Dietary PACs can enhance animal growth, mitigate oxidative stress, decrease feeding expenses, and offer an environmentally friendly, antibiotic-free alternative. Therefore, PACs have great application potential in the field of pig production. This article reviews the basic properties, biological functions, and research status and application in pig production of PACs, aiming to provide theoretical guidance for the development of substitute antibiotic feed additives.
Collapse
Affiliation(s)
- Aiying Yu
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, China
| | - Lian Chen
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dan Wang
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhiyi Li
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuan Wang
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenjiang Wang
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sen Lin
- Key Laboratory of Urban Agriculture in South China, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
2
|
Rohida B, Farman M, George A. Unraveling the bioactive constituents of Typha elephantina: A comprehensive phytochemical analysis by tandem mass spectrometry. PLoS One 2024; 19:e0311549. [PMID: 39636832 PMCID: PMC11620470 DOI: 10.1371/journal.pone.0311549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/22/2024] [Indexed: 12/07/2024] Open
Abstract
Phytochemicals derived from plants have gained significant attention in recent years due to their diverse therapeutic properties. Typha elephantina is an aquatic plant having ameliorative characteristics like antioxidant, anti-inflammatory and analgesic etc. This research aims to conduct a comprehensive phytochemical investigation by Tandem mass spectrometry on the aerial parts and roots of Typha elephantina with a focus on identifying and characterizing the bioactive compounds present in it. Maceration in methanol, preliminary, MS/MS analyses and DPPH antioxidant assay were carried out on this plant. This study led to the elucidation of 62 chemical constituents for the first time in Typha elephantina. 36 phytochemical compounds from aerial parts and 26 from roots i.e.,p-coumaric acid, caffeic acid, dihydrocaffeic acid, ferulic acid derivative, dehydroascorbic acid derivative, 1-O-coumaroyl glycerol, glucaroyl-4-hydroxy benzoate, apigenin derivative, 3-O-glucopyranosyl isorhamnetin, isovitexin derivative, rutin, isorhamnetin diglycosides, verbascoside, forsythoside A, pinocembrin, dihydro quercetin, prunetin, ampelopsin, daidzein, genistein, catechin and procyanidin B1 were detected within this plant specimen. The DPPH assay results showed that aerial parts TE(1), TE(2) showed more antioxidant activity than roots TER/MeOH. These might be responsible for the understanding of the therapeutic potential of Typha elephantina and provide a foundation for future pharmacological studies.
Collapse
Affiliation(s)
- Bibi Rohida
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Muhammad Farman
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Alina George
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
3
|
Zhao YM, Li YN, Ma R, Ji CL, Mu YH, Xu R, Sun LW, Liu FB. Matrix-assisted laser desorption ionization mass spectrometry imaging reveals the spatial distribution of compounds that may exacerbate inflammation in garden ginseng and ginseng under forest. Talanta 2024; 279:126594. [PMID: 39053359 DOI: 10.1016/j.talanta.2024.126594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Ginseng, a highly esteemed herbal medicine, has been utilized over 5000 years, predominantly in Far Eastern countries. Ginseng is categorized into garden ginseng (GG) and ginseng under forest (FG). However, in contrast to FG, excessive intake of GG may lead to potential adverse effects due to disruption of epithelial cell integrity, and the specific population groups that may be at higher risk. In this work, untargeted metabolomics were used to determine the heterogeneity between GG and FG, the data indicates that the content of Ethyl caffeate, Homoorientin, Citric acid and Quinic acid in GG were higher than in FG. Mass spectrometry imaging showed that ethyl caffeate and Homoorientin were concentrated on the brownish yellow exocarp of the primary root. Our experiments demonstrated that excessive exposure to ethyl caffeate and Homoorientin exacerbated the inflammatory response of HUVECs and reduced the expression of cell junctions. This suggest that the compounds causing adverse effects from excessive intake of GG are mainly concentrated in the yellow exocarp of the primary root of GG. These results suggest that untargeted metabolomics coupled with MALDI-MSI can visualize the spatial distribution of endogenous differential molecules of the same herb in different growth environments or developmental stages.
Collapse
Affiliation(s)
- Yi-Ming Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Ying-Na Li
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Chun-Lei Ji
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Yan-Hong Mu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Rong Xu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Li-Wei Sun
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Fang-Bing Liu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
4
|
Salih E, Mgbeahuruike EE, Prévost-Monteiro S, Sipari N, Väre H, Novak B, Julkunen-Tiitto R, Fyhrqvist P. Polyphenols and Phenolic Glucosides in Antibacterial Twig Extracts of Naturally Occurring Salix myrsinifolia (Salisb.), S. phylicifolia (L.) and S. starkeana (Willd.) and the Cultivated Hybrid S. x pendulina (Wender.). Pharmaceutics 2024; 16:916. [PMID: 39065613 PMCID: PMC11280161 DOI: 10.3390/pharmaceutics16070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Salix species occurring in Finland have not been well studied for their antimicrobial potential, despite their frequent use for lung and stomach problems in traditional medicine. Thus, twig extracts of three species of Salix that are found naturally in Finland and one cultivated species were screened for their antimicrobial properties against human pathogenic bacteria. S. starkeana and S. x pendulina were screened for antibacterial effects for the first time. (2) Methods: An agar diffusion and a microplate method were used for the screenings. Time-kill effects were measured using a plate-count and a microplate method. A DPPH-method using a qualitative TLC-analysis was used to detect antioxidant compounds in antimicrobial extracts. Metabolites from a S. myrsinifolia extract showing good antibacterial effects were identified using UPLC/QTOF-MS. (3) Results: A methanol extract of S. starkeana was particularly active against B. cereus (MIC 625 µg/mL), and a methanol extract of S. myrsinifolia showed good activity against S. aureus and B. cereus (MIC 1250 µg/mL) and showed bactericidal effects during a 24 h incubation of B. cereus. Moreover, a decoction of S. myrsinifolia resulted in good growth inhibition against P. aeruginosa. Our UPLC/QTOF-MS results indicated that proanthocyanidins (PAs), and especially the dimer procyanidin B1 (m/z 577) and other procyanidin derivatives, including highly polymerized proanthocyanidins, were abundant in S. myrsinifolia methanol extracts. Procyanidin B1 and its monomer catechin, as well as taxifolin and p-hydroxycinnamic acid, all present in S. myrsinifolia twigs, effectively inhibited B. cereus (MIC 250 µg/mL). (4) Conclusions: This study indicates that Finnish Salix species contain an abundance of antibacterial condensed tannins, phenolic acids and other polyphenols that deserve further research for the antibacterial mechanisms of action.
Collapse
Affiliation(s)
- Enass Salih
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| | - Eunice Ego Mgbeahuruike
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| | | | - Nina Sipari
- Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00100 Helsinki, Finland;
| | - Henry Väre
- Botanical Museum, Finnish Museum of Natural History, University of Helsinki, 00100 Helsinki, Finland;
| | - Brigita Novak
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, 80100 Joensuu, Finland;
| | - Pia Fyhrqvist
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| |
Collapse
|
5
|
Ikeda T, Kotani M. Thin-section- and matrix-free mass spectrometry imaging: Reproducible sample transfer using novel platinum-coated porous plate formed of glass beads. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9697. [PMID: 38356087 DOI: 10.1002/rcm.9697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) typically requires sample preparation such as sectioning and spraying of the matrix. Sample transfer using a Pt-coated porous plate formed of glass beads simplifies preparation and enables reproducible MSI measurements. METHODS The surface of a sintered-glass-bead porous plate was coated with Pt on one side of the plate. Polymer additives and the cross-section of a strawberry were chosen as the sample and transferred to the Pt-coated surface of the plate. This process was completely thin-section- and matrix-free. The prepared plates were analyzed using a commercial MALDI time-of-flight instrument. RESULTS Several constituents of the polymer additives (Irgafos 168 and Irganox 1010) and strawberry metabolites (hexose, citric acid, and sucrose) were detected without organic matrices. These ion images were obtained with a special distribution of the retained constituents. Duplicate prepared plates using the same strawberry cross-section reproduced the ion images. CONCLUSIONS A sample transfer process using a Pt-coated porous plate formed of glass beads was demonstrated as an alternative preparation method for MSI. This process has the potential to simplify MSI preparation and achieve easily reproducible MSI measurements.
Collapse
Affiliation(s)
- Takamasa Ikeda
- Hamamatsu Photonics KK, Iwata, Shizuoka, Japan
- The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka, Japan
| | | |
Collapse
|
6
|
Freha M, El-Amine Nouairi M, Bellil A. Method for quantifying catechin in a strawberry extract by measuring optical absorbance, at high sensitivity, under the effect of wavelength and concentration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123797. [PMID: 38134658 DOI: 10.1016/j.saa.2023.123797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Catechin is considered a powerful antioxidant, and its rapid quantification could help urgently prevent inflammatory and coronary heart diseases. Consequently, the UV-Vis absorption spectrophotometry assay technique could serve this need for rapid detection. For this reason, we have carefully studied the possibility of dosing this antioxidant found in strawberry extract with precision, despite its chemical complexity. In the dosage technique used; sometimes the dilution of the solutions could be the way to resolve a specific quantification problem such as catechin in strawberry extract. This is quite particular, when the optical extinction coefficient of the target substance is very low compared to the extinction coefficients of the other chemical compounds in the complex mixture, because at a certain dilution the absorption spectrum of the molecule could appear, specifically, with its total spectral form or at least at one of these wavelengths. In this article, we will study the possibility of rapidly measuring catechin from strawberry extract by spectrophotometry in UV-VIS, while reformulating the Beer-Lambert law in a new form where the extinction coefficient did not depend not only of the chemical nature of the solute and the solvent but also of the excitation wavelength (ε(λ), Eq. (9)). A catechin-methanol solution is taken as a reference to study the spectral variation due to the various dilutions of the solution and the determination of a limiting concentration where the excitation wavelength becomes constant (203 nm), thus the extinction coefficient of the catechin, denoted ε0, but the measurement sensitivity is suddenly reduced. A semi-empirical relationship is determined by linearization of the absorbance function which depended on the concentration (C) and the excitation wavelength (ε(λ)). A separation process will be exposed to recover the strawberry extract, as well as its spectral analysis. Finally, a procedure for analyzing any strawberry extract will be presented at the end of this scientific article.
Collapse
Affiliation(s)
- Mohammed Freha
- Faculty of Exact Sciences, Department of Chemistry, Algeria; Process Engineering and Solution Chemistry Laboratory (LGPCS), Algeria
| | - Mohammed El-Amine Nouairi
- Faculty of Sciences & Technology, Department of Science and Technology, Algeria; Process Engineering and Solution Chemistry Laboratory (LGPCS), Algeria.
| | - Ali Bellil
- Faculty of Sciences & Technology, Department of Process Engineering, Algeria; Process Engineering and Solution Chemistry Laboratory (LGPCS), Algeria
| |
Collapse
|
7
|
Otify AM, Mohamed OG, El-Amier YA, Saber FR, Tripathi A, Younis IY. Bioherbicidal Activity and Metabolic Profiling of Allelopathic Metabolites of Three Cassia species using UPLC-qTOF-MS/MS and Molecular Networking. Metabolomics 2023; 19:16. [PMID: 36892715 DOI: 10.1007/s11306-023-01980-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
INTRODUCTION Compared to synthetic herbicides, natural products with allelochemical properties can inhibit weed germination, aiding agricultural output with less phytotoxic residue in water and soil. OBJECTIVES To identify natural product extracts of three Cassia species; C. javanica, C. roxburghii, and C. fistula and to investigate the possible phytotoxic and allelopathic potential. METHODS Allelopathic activity of three Cassia species extracts was evaluated. To further investigate the active constituents, untergated metabolomics using UPLC-qTOF-MS/MS and ion-identity molecular networking (IIMN) approach was performed to identify and determine the distribution of metabolites in different Cassia species and plant parts. RESULTS We observed in our study that the plant extracts showed consistent allelopathic activity against seed germination (P < 0.05) and the inhibition of shoot and root development of Chenopodium murale in a dose-dependent manner. Our comprehensive study identified at least 127 compounds comprising flavonoids, coumarins, anthraquinones, phenolic acids, lipids, and fatty acid derivatives. We also report the inhibition of seed germination, shoot growth, and root growth when treated with enriched leaf and flower extracts of C. fistula, and C. javanica, and the leaf extract of C. roxburghii. CONCLUSION The present study recommends further evaluation of Cassia extracts as a potential source of allelopathic compounds in agricultural systems.
Collapse
Affiliation(s)
- Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yasser A El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
8
|
Tzima K, Putsakum G, Rai DK. Antioxidant Guided Fractionation of Blackberry Polyphenols Show Synergistic Role of Catechins and Ellagitannins. Molecules 2023; 28:molecules28041933. [PMID: 36838920 PMCID: PMC9967577 DOI: 10.3390/molecules28041933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
In the present study, blackberry extract was prepared using a previously optimized solid-liquid extraction method in 70% aqueous acetone aimed at the recovery of its principal phenolics. Subsequently, 0.5 g of freeze-dried extract was subjected to flash chromatography fractionation, which was conducted on a C18 column using a binary solvent system of water and methanol at 10 mL/min. The total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) activities of the obtained 42 flash fractions were determined, and a strong positive correlation (r ≥ 0.986) was exhibited among them. Furthermore, the graph of the antioxidant indices of the flash fractions resembled the flash chromatogram, suggesting a good correlation among the compounds within the chromatographic peaks and the antioxidant indices. LC-MS/MS identified as many 28 phenolics, including cinnamtannin A2 reported for the first time in blackberries. This study further established the role of dominant anthocyanins (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside), but uniquely those of ellagitannins and catechins on the antioxidant capacity of blackberries.
Collapse
|
9
|
Krstić ĐD, Ristivojević PM, Gašić UM, Lazović M, Fotirić Akšić MM, Milivojević J, Morlock GE, Milojković-Opsenica DM, Trifković JĐ. Authenticity assessment of cultivated berries via phenolic profiles of seeds. Food Chem 2023; 402:134184. [DOI: 10.1016/j.foodchem.2022.134184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
|
10
|
Zhang C, Ren H, Yao X, Wang K, Chang J, Shao W. Metabolomics and Transcriptomics Analyses Reveal Regulatory Networks Associated with Fatty Acid Accumulation in Pecan Kernels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16010-16020. [PMID: 36472227 DOI: 10.1021/acs.jafc.2c06947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pecans are a globally important tree nut crop. Pecan nuts are rich in fatty acids (FAs), proteins, and flavonoids in addition to thiamine and numerous micronutrients. Although several of these nutriments have been studied in this plant, the comprehensive metabolite variations and molecular mechanisms associated with them have not been fully elucidated. In this study, untargeted metabolomics and transcriptomics were integrated to reveal the metabolite accumulation patterns and their associated molecular mechanisms during pecan kernel development. In total, 4260 (under positive mode) and 2726 (under negative mode) high quality features were retained. Overall, 163 differentially accumulated metabolites were identified. Most components were classified into the categories "organic acids and derivatives" and "lipids and lipid-like molecules." The accumulation patterns of amino acids, FAs, carbohydrates, organic acids, vitamins, flavonoids, and phenylpropanoids alongside embryo development were determined. Furthermore, transcriptomes from four pecan kernel developmental stages were used to assess transcript expression levels. Coexpression analyses were performed between FAs and their related genes. This study provides a comprehensive overview of the metabolic changes and regulations during pecan kernel development. We believe that the identification of nutriment accumulation trends and hub genes associated with the biosynthesis of the components will be valuable for genetically improving this plant.
Collapse
Affiliation(s)
- Chengcai Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, Zhejiang Province 311400, China
| | - Huadong Ren
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, Zhejiang Province 311400, China
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, Zhejiang Province 311400, China
| | - Kailiang Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, Zhejiang Province 311400, China
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang District, Hangzhou, Zhejiang Province 311400, China
| | - Weizhong Shao
- Forestry Bureau of Jiande, Jiande, Zhejiang Province 311600, China
| |
Collapse
|
11
|
Iannuzzo F, Piccolo V, Novellino E, Schiano E, Salviati E, Summa V, Campiglia P, Tenore GC, Maisto M. A Food-Grade Method for Enhancing the Levels of Low Molecular Weight Proanthocyanidins with Potentially High Intestinal Bioavailability. Int J Mol Sci 2022; 23:13557. [PMID: 36362344 PMCID: PMC9657391 DOI: 10.3390/ijms232113557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/02/2023] Open
Abstract
Proanthocyanidins (PACs) are a group of bioactive molecules found in a variety of plants and foods. Their bioavailability depends on their molecular size, with monomers and dimers being more bioavailable than those that have a higher polymerization degree. This study aimed to develop a method to convert high-molecular-weight PACs to low-molecular-weight ones in a grape seed extract (GSE) from Vitis vinifera L. Therefore, GSE was subjected to alkaline treatment (ATGSE), and its difference in chemical composition, compared to GSE, was evaluated using a molecular networking (MN) approach based on results obtained from HPLC-ESI HRMS/MS characterization analysis. The network analysis mainly noted the PAC cluster with about 142 PAC compounds identified. In particular, the obtained results showed a higher content of monomeric and dimeric PACs in ATGSE compared to GSE, with 58% and 49% monomers and 31% and 24% dimers, respectively. Conversely, trimeric (9%), polymeric (4%), and galloylated PACs (14%) were more abundant in GSE than in ATGSE (6%, 1%, and 4%, respectively). Moreover, in vitro antioxidant and anti-inflammatory activities were investigated, showing the high beneficial potential of both extracts. In conclusion, ATGSE could represent an innovative natural matrix rich in bioavailable and bioaccessible PACs for nutraceutical applications with potential beneficial properties.
Collapse
Affiliation(s)
- Fortuna Iannuzzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy
| | - Vincenzo Piccolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy
| | - Ettore Novellino
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Elisabetta Schiano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy
| | - Emanuela Salviati
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy
| |
Collapse
|
12
|
Balkrishna A, Verma S, Tiwari D, Srivastava J, Varshney A. UPLC-QToF-MS based fingerprinting of polyphenolic metabolites in the bark extract of Boehmeria rugulosa Wedd. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4890. [PMID: 36353856 DOI: 10.1002/jms.4890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Boehmeria rugulosa Wedd. is an evergreen tree of Urticaceae family. Its bark has been extensively used in ethno-medicinal system for various ailments such as bone fracture, sprain, snakebite, and wound healing. Phyto-metabolites, which are considered as the principle components for biological activities, have been least explored for this plant. The present work investigated metabolite profiling of the stem bark of B. rugulosa in water extract using Ultra Performance Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry (UPLC-QToF-MS) technique coupled with the UNIFI platform. We identified, for the first time, 20 polyphenolic metabolites belonging to seven groups: caffeoylquinic acids, coumaroylquinic acids, flavan-3-ols, oligomeric flavonoids, caffeic acid derivatives, coumaric acid derivative, and flavone glycoside in the B. rugulosa extract. UNIFI informatics-coupled UPLC-QToF-MS platform aids in the quick identification and fragmentation pattern of metabolites, with higher degree of reproducibility. The present study provides a chemical and therapeutic basis for further exploration of B. rugulosa as a valuable source of phytochemicals that could be instrumental in deciphering its ethno-medicinal utility for various human diseases.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Patanjali Yog Peeth (UK) Trust, Glasgow, UK
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Deepti Tiwari
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
13
|
El-Banna AA, Darwish RS, Ghareeb DA, Yassin AM, Abdulmalek SA, Dawood HM. Metabolic profiling of Lantana camara L. using UPLC-MS/MS and revealing its inflammation-related targets using network pharmacology-based and molecular docking analyses. Sci Rep 2022; 12:14828. [PMID: 36050423 PMCID: PMC9436993 DOI: 10.1038/s41598-022-19137-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Lantana camara L. is widely used in folk medicine for alleviation of inflammatory disorders, but studies that proved this folk use and that revealed the molecular mechanism of action in inflammation mitigation are not enough. Therefore, this study aimed to identify L. camara phytoconstituents using UPLC-MS/MS and explain their multi-level mechanism of action in inflammation alleviation using network pharmacology analysis together with molecular docking and in vitro testing. Fifty-seven phytoconstituents were identified in L. camara extract, from which the top hit compounds related to inflammation were ferulic acid, catechin gallate, myricetin and iso-ferulic acid. Whereas the most enriched inflammation related genes were PRKCA, RELA, IL2, MAPK 14 and FOS. Furthermore, the most enriched inflammation-related pathways were PI3K-Akt and MAPK signaling pathways. Molecular docking revealed that catechin gallate possessed the lowest binding energy against PRKCA, RELA and IL2, while myricetin had the most stabilized interaction against MAPK14 and FOS. In vitro cytotoxicity and anti-inflammatory testing indicated that L. camara extract is safer than piroxicam and has a strong anti-inflammatory activity comparable to it. This study is a first step in proving the folk uses of L. camara in palliating inflammatory ailments and institutes the groundwork for future clinical studies.
Collapse
Affiliation(s)
- Alaa A El-Banna
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa A Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt.,Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abdelrahman M Yassin
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt.,Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
14
|
Hybrid Nanoparticles of Proanthocyanidins from Uncaria tomentosa Leaves: QTOF-ESI MS Characterization, Antioxidant Activity and Immune Cellular Response. PLANTS 2022; 11:plants11131737. [PMID: 35807688 PMCID: PMC9268950 DOI: 10.3390/plants11131737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Previous studies in Uncaria tomentosa have shown promising results concerning the characterization of polyphenols with leaves yielding more diverse proanthocyanidins and higher bioactivities values. However, the polyphenols-microbiota interaction at the colonic level and their catabolites avoid the beneficial effects that can be exerted by this medicinal plant when consumed. In this regard, a new generation of hybrid nanoparticles has demonstrated improvements in natural compounds’ activity by increasing their bioavailability. In this line, we report a detailed study of the characterization of a proanthocyanidin-enriched extract (PA-E) from U. tomentosa leaves from Costa Rica using UPLC-QTOF-ESI MS. Moreover, two types of hybrid nanoparticles, a polymeric-lipid (F-1) and a protein-lipid (F-2) loaded with PA-E were synthesized and their characterization was conducted by dynamic light scattering (DLS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR), high-resolution transmission electron microscopy (HR-TEM), and encapsulation efficiency (%EE). In addition, in vitro release, antioxidant activity through 2,2-diphenyl-1-picrylhidrazyl (DPPH) as well as in vivo delayed-type hypersensitivity (DTH) reaction was evaluated. Results allowed the identification of 50 different compounds. The PA-E loaded nanoparticles F-1 and F-2 achieved encapsulation efficiency of ≥92%. The formulations exhibited porosity and spherical shapes with a size average of 26.1 ± 0.8 and 11.8 ± 3.3 nm for F-1 and F-2, respectively. PA-E increased its release rate from the nanoparticles compared to the free extract in water and antioxidant activity in an aqueous solution. In vivo, the delayed-type hypersensitive test shows the higher immune stimulation of the flavan-3-ols with higher molecular weight from U. tomentosa when administered as a nanoformulation, resulting in augmented antigen-specific responses. The present work constitutes to our knowledge, the first report on these bioactivities for proanthocyanidins from Uncaria tomentosa leaves when administrated by nanosystems, hence, enhancing the cellular response in mice, confirming their role in immune modulation.
Collapse
|
15
|
Zhu Z, Zhong B, Yang Z, Zhao W, Shi L, Aziz A, Rauf A, Aljohani AS, Alhumaydhi FA, Suleria HAR. LC-ESI-QTOF-MS/MS Characterization and Estimation of the Antioxidant Potential of Phenolic Compounds from Different Parts of the Lotus ( Nelumbo nucifera) Seed and Rhizome. ACS OMEGA 2022; 7:14630-14642. [PMID: 35557671 PMCID: PMC9088796 DOI: 10.1021/acsomega.1c07018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/08/2022] [Indexed: 06/01/2023]
Abstract
Edible lotus (Nelumbo nucifera G.) is widely consumed in Asian countries and treated as a functional food and traditional medicinal herb due to its abundant bioactive compounds. Lotus rhizome peels, rhizome knots, and seed embryos are important byproducts and processing waste of edible lotus (Nelumbo nucifera G.) with commercial significance. Nevertheless, the comprehensive phenolic profiling of different parts of lotus is still scarce. Thus, this study aimed to review the phenolic contents and antioxidant potential in lotus seeds (embryo and cotyledon) and rhizomes (peel, knot, and pulp) grown in Australia. In the phenolic content and antioxidant potential estimation assays by comparing to the corresponding reference standards, the lotus seed embryo exhibited the highest total phenolic content (10.77 ± 0.66 mg GAE/gf.w.), total flavonoid content (1.61 ± 0.03 mg QE/gf.w.), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (9.66 ± 0.10 mg AAE/gf.w.), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging activity (14.35 ± 0.20 mg AAE/gf.w.), and total antioxidant capacity (6.46 ± 0.30 mg AAE/g), while the highest value of ferric ion reducing antioxidant power (FRAP) activity and total tannin content was present in the lotus rhizome knot (2.30 ± 0.13 mg AAE/gf.w.). A total of 86 phenolic compounds were identified in five parts of lotus by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), including phenolic acids (20), flavonoids (51), lignans (3), stilbenes (2), and other polyphenols (10). The most phenolic compounds, reaching up to 68%, were present in the lotus seed embryo (59). Furthermore, the lotus rhizome peel and lotus seed embryo exhibit significantly higher contents of selected polyphenols than other lotus parts according to high-performance liquid chromatography (HPLC) quantification analysis. The results highlighted that byproducts and processing waste of edible lotus are rich sources of phenolic compounds, which may be good candidates for further exploitation and utilization in food, animal feeding, and pharmaceutical industries.
Collapse
Affiliation(s)
- Zihan Zhu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Biming Zhong
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- CAS
Key Laboratory of Quantitative Engineering Biology, Synthetic Biochemistry
Center, Shenzhen Institute of Synthetic
Biology, Shenzhen Institute of Advanced Technology, Chinese Academy
of Sciences, Shenzhen 518055, China
| | - Zihong Yang
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Wanrong Zhao
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Linghong Shi
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ahsan Aziz
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Swabi, Anbar-23561 KPK, Pakistan
| | - Abdullah S.M. Aljohani
- Department
of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Hafiz Ansar Rasul Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
16
|
Heger T, Zatloukal M, Kubala M, Strnad M, Gruz J. Procyanidin C1 from Viola odorata L. inhibits Na +,K +-ATPase. Sci Rep 2022; 12:7011. [PMID: 35487935 PMCID: PMC9055044 DOI: 10.1038/s41598-022-11086-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/13/2022] [Indexed: 01/30/2023] Open
Abstract
Members of the Viola genus play important roles in traditional Asian herbal medicine. This study investigates the ability of Viola odorata L. extracts to inhibit Na+,K+-ATPase, an essential animal enzyme responsible for membrane potential maintenance. The root extract of V. odorata strongly inhibited Na+,K+-ATPase, while leaf and seeds extracts were basically inactive. A UHPLC-QTOF-MS/MS metabolomic approach was used to identify the chemical principle of the root extract’s activity, resulting in the detection of 35,292 features. Candidate active compounds were selected by correlating feature area with inhibitory activity in 14 isolated fractions. This yielded a set of 15 candidate compounds, of which 14 were preliminarily identified as procyanidins. Commercially available procyanidins (B1, B2, B3 and C1) were therefore purchased and their ability to inhibit Na+,K+-ATPase was investigated. Dimeric procyanidins B1, B2 and B3 were found to be inactive, but the trimeric procyanidin C1 strongly inhibited Na+,K+-ATPase with an IC50 of 4.5 µM. This newly discovered inhibitor was docked into crystal structures mimicking the Na3E1∼P·ADP and K2E2·Pi states to identify potential interaction sites within Na+,K+-ATPase. Possible binding mechanisms and the principle responsible for the observed root extract activity are discussed.
Collapse
Affiliation(s)
- Tomas Heger
- Department of Experimental Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Martin Kubala
- Department of Experimental Physics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University, Olomouc, Czech Republic
| | - Jiri Gruz
- Department of Experimental Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
17
|
Cynara de Oliveira Salles R, Perêa Muniz M, de Cássia Saraiva Nunomura R, Massayoshi Nunomura S. Geographical origin of guarana seeds from untargeted UHPLC-MS and chemometrics analysis. Food Chem 2022; 371:131068. [PMID: 34571409 DOI: 10.1016/j.foodchem.2021.131068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
Guarana is one of the most popular functional foods in the Amazon and widely used in the world. This work aimed to study the chemical composition of guarana produced by the main producing states and try to associate their geographical origin. We report an untargeted metabolomic analytical method performed by UHPLC-ESI-IT-MS and multivariate analysis (chemometrics) of guarana seeds, which was able to separate the samples according to their geographical origin. Previously, full chromatogram range was analyzed, and it could be observed that the two main compounds, catechin and epicatechin, have introduced large data variance in PCA analysis not related to the geographical origin of samples. After exclusion of the corresponding peaks, it was possible to obtain three main clusters corresponding to samples from Amazonas, Bahia and Mato Grosso. Thirteen dimers and trimers of procyanidins type A and B were identified by PCA and UHPLC-ESI-Q-TOF-MS/MS, as chemical markers of geographic origin.
Collapse
Affiliation(s)
| | - Magno Perêa Muniz
- Coordination of Technology and Innovation, National Institute for Amazonian Research, Manaus, Amazonas, Brazil
| | | | - Sergio Massayoshi Nunomura
- Coordination of Technology and Innovation, National Institute for Amazonian Research, Manaus, Amazonas, Brazil.
| |
Collapse
|
18
|
Leng Z, Zhong B, Wu H, Liu Z, Rauf A, Bawazeer S, Suleria HAR. Identification of Phenolic Compounds in Australian-Grown Bell Peppers by Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry and Estimation of Their Antioxidant Potential. ACS OMEGA 2022; 7:4563-4576. [PMID: 35155947 PMCID: PMC8829910 DOI: 10.1021/acsomega.1c06532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 05/05/2023]
Abstract
Bell peppers are widely considered as healthy foods that can provide people with various phytochemicals, especially phenolic compounds, which contribute to the antioxidant property of bell peppers. Nevertheless, the acknowledgment of phenolic compounds in bell peppers is still limited. Therefore, this study aimed to determine the phenolic content and the antioxidant potential in pulps and seeds of different bell peppers (green, yellow, and red) by several in vitro assays followed by the characterization and quantification of individual phenolics using liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS) and high-performance liquid chromatography photodiode array (HPLC-PDA) quantification, respectively. The captured results showed that the pulp of red bell peppers exhibited the highest phenolic content in the total polyphenol content (1.03 ± 0.07 mg GAE/gf.w.), total flavonoid content (137.43 ± 6.35 μg QE/gf.w.), and total tannin content (0.22 ± 0.01 mg CE/gf.w.) as well as the most antioxidant potential in all antioxidant capacity estimation assays including total antioxidant capacity (3.56 ± 0.01 mg AAE/gf.w.), 2,2'-diphenyl-1-picrylhydrazyl (0.89 ± 0.01 mg AAE/gf.w.), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (1.36 ± 0.12 mg AAE/gf.w.), and ferric reducing antioxidant power (0.15 ± 0.01 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS isolated and identified a total of 59 phenolic compounds, including flavonoids (21), phenolic acids (20), other phenolic compounds (12), lignans (5), and stilbenes (1) in all samples. According to HPLC-PDA quantification, the seed portions showed a significantly higher amount of phenolic compounds. These findings indicated that the waste of bell peppers can be a potential source of phenolic compounds, which can be utilized as antioxidant ingredients in foods and nutritional products.
Collapse
Affiliation(s)
- Zexing Leng
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Biming Zhong
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hanjing Wu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ziyao Liu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa 23561, Pakistan
| | - Sami Bawazeer
- Department
of Pharmacognosy, Faculty of Pharmacy, Umm
Al-Qura University, P.O. Box 42, Makkah 21421, Kingdom of Saudi Arabia
| | - Hafiz Ansar Rasul Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
19
|
Enomoto H. Unique distribution of ellagitannins in ripe strawberry fruit revealed by mass spectrometry imaging. Curr Res Food Sci 2021; 4:821-828. [PMID: 34841268 PMCID: PMC8606305 DOI: 10.1016/j.crfs.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Ellagitannins (ETs) are hydrolysable tannins composed of a polyol core, primarily glucose, which is esterified with hexahydroxydiphenic acid (HHDP), and in some cases, gallic acid. ETs are the major phenolic compounds found in strawberries and may contribute to the health-related properties of strawberries, because of their strong antioxidative activity. However, their distribution in the strawberry fruit remains unclear. In this study, matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI–MSI) was used to visualize ETs in ripe strawberry fruits. Five peaks, corresponding to the m/z values of ET [M−H]− ions detected in the MALDI–MS spectrum of strawberry extracts, were identified as strictinin, pedunculagin, casuarictin, davuriicin M1, and an unknown ET using MALDI–tandem MS (MS/MS). In addition, liquid chromatography–electrospray ionization–MS/MS of the extracts revealed the presence of pedunculagin isomers and the unknown ET. Ion images of these five ETs were reconstructed using MALDI–MSI. Strictinin was widely distributed in and around the achene seed coats, while the other ETs were dispersed in and around the seed coats, and at the bottom of the receptacle; pedunculagin was distributed in the epidermis and pith, whereas casuarictin, the unknown ET, and davuriicin M1 were distributed in the pith. Moreover, MALDI–MSI of a casuarictin standard indicated that in-source fragmentation weakly affected the ion images. The results suggest that the distribution of ETs depends on the presence or absence of their constituents, namely galloyl units, HHDP, and bis-HHDP. To the best of my knowledge, this is the first report on the visualization of ETs in plant tissues using MSI, MALDI–MSI may be a useful tool for analyzing the distribution of ETs in the strawberry fruit. The ellagitannins (ETs) in strawberry fruits were identified. MALDI-MS/MS and LC-MS/MS were used. The ETs identified in the fruits were visualized using MALDI-MSI. The ETs showed unique distributions in the seeds and the lower receptacle. The distribution of ETs depends on their constituents: galloyl units and HHDP.
Collapse
Key Words
- CMC, carboxymethylcellulose
- DAN, 1,5-diaminonaphthalene
- Distribution
- ET, ellagitannin
- Ellagitannin
- HHDP, hexahydroxydiphenic acid
- ITO, indium–tin oxide
- LC, liquid chromatography
- Liquid chromatography-mass spectrometry
- MALDI, matrix-assisted laser desorption/ionization
- MSI, mass spectrometry imaging
- Mass spectrometry imaging
- Matrix-assisted laser desorption/ionization
- RT, retention time
- Strawberry
- TOF, time-of-flight
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, 320-8551, Japan
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan.
| |
Collapse
|
20
|
Zhao WH, Zhang YD, Shi YP. Visualizing the spatial distribution of endogenous molecules in wolfberry fruit at different development stages by matrix-assisted laser desorption/ionization mass spectrometry imaging. Talanta 2021; 234:122687. [PMID: 34364486 DOI: 10.1016/j.talanta.2021.122687] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Wolfberry fruit has been attracting attention for centuries in Asian countries as a traditional herbal medicine and valuable nourishing tonic. Revealing the spatial distribution changes of important endogenous molecules during plant development is of great significance for investigating the physiological roles, nutritional and potential functional values of phytochemicals in wolfberry fruit. However, their spatial distribution information during fruit development has not been extensively explored due to the lack of efficient analytical techniques. In this work, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was performed to visualize the spatial distribution of the endogenous molecules during fruit development. From the mass spectrum imaging, the choline, betaine and citric acid were distributed evenly throughout the entire fruit at all development stages. The hexose was distributed in the endocarp and flesh tissue, while sucrose was located in the seeds. Additionally, several phenolic acids and flavonoids were accumulated in the exocarp during fruit development, which indicated that they seemingly played protective roles in wolfberry fruit growth progress against abiotic and biotic stress. From the collected data, we found that the signal intensities of citric acid were decreased, while choline, betaine, hexose and sucrose were increased with fruit development. These results indicate that MALDI-MSI may become a favorable tool for studying of the spatial distribution and effective use of endogenous molecules, which provide a simple and intuitive way for authenticity identification, classification of drug food homologous foods and further understanding the physiological roles of endogenous molecules.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| |
Collapse
|
21
|
Hu W, Han Y, Sheng Y, Wang Y, Pan Q, Nie H. Mass spectrometry imaging for direct visualization of components in plants tissues. J Sep Sci 2021; 44:3462-3476. [PMID: 34245221 DOI: 10.1002/jssc.202100138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry is considered the most informative technique for components identification and has been widely adopted in plant sciences. However, the spatial distribution of compounds in the plant, which is vital for the exploration of plant physiological mechanisms, is missed in MS analysis. In recent years, mass spectrometry imaging has brought a great breakthrough in plant analysis because it can determine both the molecular compositions and spatial distributions, which is conducive to understand functions and regulation pathways of specific components in plants. Mass spectrometry imaging analysis of plant tissue is toward high sensitivity, high spatial resolution, and even single-cell analysis. Despite many challenges and technical barriers, such as difficulties of sample pretreatment caused by morphological diversity of plant tissues, obstacles for high spatial resolution imaging, and so on, lots of researches have contributed to remarkable progress, including improvement in tissue preparation, matrix innovation, and ionization mode development. This review focuses on the advances of mass spectrometry imaging analysis of plants in the last 5 years, including commonly used ionization techniques, technical advances, and recent applications of mass spectrometry imaging in plants.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yiqi Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
22
|
Enomoto H. Adhesive film applications help to prepare strawberry fruit sections for desorption electrospray ionization-mass spectrometry imaging. Biosci Biotechnol Biochem 2021; 85:1341-1347. [DOI: 10.1093/bbb/zbab033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT
Desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) is a powerful tool to analyze the distribution of metabolites in biological tissues. Cryosectioning of biological tissues is usually required prior to DESI-MSI, but it can be difficult for tissues that are fragile, hard, and have a high-water content. The Kawamoto method uses transparent adhesive films to prepare cryosections; however, its application for plant tissues, such as strawberry tissues, in DESI-MSI has not been verified. In this study, strawberry cryosections maintained original structures were prepared using adhesive film. Subsequently, numerous peaks were detected for the sections using the positive and negative ion modes of DESI-MSI. Several primary and specialized metabolites, such as amino acids, sugars, organic acids, and flavonoids, were identified and visualized. These results suggest the use of adhesive films when cryosectioning could improve DESI-MSI analysis of the metabolites in strawberry fruits and various tissues of other plant species.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Japan
| |
Collapse
|
23
|
High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants (Basel) 2021; 10:antiox10020234. [PMID: 33557299 PMCID: PMC7914583 DOI: 10.3390/antiox10020234] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries.
Collapse
|
24
|
Yun N, Kim HJ, Park SC, Park G, Kim MK, Choi YH, Jang YP. Localization of Major Ephedra Alkaloids in Whole Aerial Parts of Ephedrae Herba Using Direct Analysis in Real Time-Time of Flight-Mass Spectrometry. Molecules 2021; 26:molecules26030580. [PMID: 33499348 PMCID: PMC7865826 DOI: 10.3390/molecules26030580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mass spectrometry-based molecular imaging has been utilized to map the spatial distribution of target metabolites in various matrixes. Among the diverse mass spectrometry techniques, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is the most popular for molecular imaging due to its powerful spatial resolution. This unparalleled high resolution, however, can paradoxically act as a bottleneck when the bio-imaging of large areas, such as a whole plant, is required. To address this issue and provide a more versatile tool for large scale bio-imaging, direct analysis in real-time-time of flight-mass spectrometry (DART-TOF-MS), an ambient ionization MS, was applied to whole plant bio-imaging of a medicinal plant, Ephedrae Herba. The whole aerial part of the plant was cut into 10–20 cm long pieces, and each part was further cut longitudinally to compare the contents of major ephedra alkaloids between the outer surface and inner part of the stem. Using optimized DART-TOF-MS conditions, molecular imaging of major ephedra alkaloids of the whole aerial part of a single plant was successfully achieved. The concentration of alkaloids analyzed in this study was found to be higher on the inner section than the outer surface of stems. Moreover, side branches, which are used in traditional medicine, represented a far higher concentration of alkaloids than the main stem. In terms of the spatial metabolic distribution, the contents of alkaloids gradually decreased towards the end of branch tips. In this study, a fast and simple macro-scale MS imaging of the whole plant was successfully developed using DART-TOF-MS. This application on the localization of secondary metabolites in whole plants can provide an area of new research using ambient ionization mass spectroscopy and an unprecedented macro-scale view of the biosynthesis and distribution of active components in medicinal plants.
Collapse
Affiliation(s)
- Nayoung Yun
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Hoegi-dong 1, Dongdaemun-gu, Seoul 02447, Korea; (N.Y.); (S.C.P.); (G.P.); (M.K.K.)
| | - Hye Jin Kim
- Division of Pharmacognosy, College of Pharmacy, Kyung Hee University, Hoegi-dong 1, Dongdaemun-gu, Seoul 02447, Korea; (H.J.K.); (Y.H.C.)
| | - Sang Cheol Park
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Hoegi-dong 1, Dongdaemun-gu, Seoul 02447, Korea; (N.Y.); (S.C.P.); (G.P.); (M.K.K.)
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Hoegi-dong 1, Dongdaemun-gu, Seoul 02447, Korea; (N.Y.); (S.C.P.); (G.P.); (M.K.K.)
| | - Min Kyoung Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Hoegi-dong 1, Dongdaemun-gu, Seoul 02447, Korea; (N.Y.); (S.C.P.); (G.P.); (M.K.K.)
| | - Young Hae Choi
- Division of Pharmacognosy, College of Pharmacy, Kyung Hee University, Hoegi-dong 1, Dongdaemun-gu, Seoul 02447, Korea; (H.J.K.); (Y.H.C.)
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Hoegi-dong 1, Dongdaemun-gu, Seoul 02447, Korea; (N.Y.); (S.C.P.); (G.P.); (M.K.K.)
- Division of Pharmacognosy, College of Pharmacy, Kyung Hee University, Hoegi-dong 1, Dongdaemun-gu, Seoul 02447, Korea; (H.J.K.); (Y.H.C.)
- Correspondence: ; Tel.: +82-2-961-9421
| |
Collapse
|
25
|
Visualizing the distribution of strawberry plant metabolites at different maturity stages by MALDI-TOF imaging mass spectrometry. Food Chem 2020; 345:128838. [PMID: 33341561 DOI: 10.1016/j.foodchem.2020.128838] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
This study aimed to visualize differences in the distribution of citric acid, soluble sugars, and anthocyanins in strawberries at four different maturity stages (green to red strawberries) by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF IMS). Results demonstrated citric acid and sugars are evenly distributed in the entire fruit at all maturity stages, while most of anthocyanins are mainly located in the periphery of fruit with increased abundance in red strawberries, indicating a correlation with the colour attributes. Sugar in red strawberries (11.92 brix) increased by two-fold compared to the green ones (6.23 brix). Finally, absolute quantitation of each compound from HPLC analyses support the quantitative results from MALDI-TOF IMS. The results provide a deeper understanding in the changes and distribution of phytochemicals during the growth of strawberries, and demonstrates the usefulness of IMS for plant breeding and postharvest technology.
Collapse
|
26
|
Enomoto H. Mass Spectrometry Imaging of Flavonols and Ellagic Acid Glycosides in Ripe Strawberry Fruit. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25204600. [PMID: 33050295 PMCID: PMC7587173 DOI: 10.3390/molecules25204600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Flavonols and ellagic acid glycosides are major phenolic compounds in strawberry fruit. They have antioxidant activity, show protective functions against abiotic and biotic stress, and provide health benefits. However, their spatial distribution in ripe fruit has not been understood. Therefore, matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) was performed to investigate their distribution in fruit tissues. Using strawberry extract, five flavonols, namely, three kaempferols and two quercetins, and two ellagic acid glycosides, were tentatively identified by MALDI-tandem MS. To investigate the tentatively identified compounds, MALDI-MSI and tandem MS imaging (MS/MSI) analyses were performed. Kaempferol and quercetin glycosides showed similar distribution patterns. They were mainly found in the epidermis, while ellagic acid glycosides were mainly found in the achene and in the bottom area of the receptacle. These results suggested that the difference in distribution pattern between flavonols and ellagic acid glycosides depends on the difference between their aglycones. Seemingly, flavonols play a role in protective functions in the epidermis, while ellagic acid glycosides play a role in the achene and in the bottom side of the receptacle, respectively. These results demonstrated that MALDI-MSI is useful for distribution analysis of flavonols and ellagic acid glycosides in strawberry fruit.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan;
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
| |
Collapse
|
27
|
Jeong MS, Park S, Han EJ, Park SY, Kim MJ, Jung K, Cho SH, Kim SY, Yoon WJ, Ahn G, Kim KN. Pinus thunbergii PARL leaf protects against alcohol-induced liver disease by enhancing antioxidant defense mechanism in BALB/c mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Identification of a Proanthocyanidin from Litchi Chinensis Sonn. Root with Anti-Tyrosinase and Antioxidant Activity. Biomolecules 2020; 10:biom10091347. [PMID: 32967274 PMCID: PMC7565872 DOI: 10.3390/biom10091347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
This work follows an ethnobotanical study that took place in the island of Mayotte (France), which pointed out the potential properties of Litchi chinensis Sonn. roots when used to enhance skin health and appearance. Through in vitro testing of a crude methanolic extract, high anti-tyrosinase (skin whitening effect) and antioxidant activities (skin soothing effect) could be measured. HPLC successive bio-guided fractionation steps allowed the purification of one of the compounds responsible for the biological activities. The isolated compound was characterized by UV, IR, MS and 2D-NMR, revealing, for the first time in Litchi chinensis Sonn. roots, an A-type proanthocyanidin and thus revealing a consensus among the traditional use shown by the ethnobotanical study, in vitro biological activities and chemical characterization.
Collapse
|
29
|
Enomoto H, Nirasawa T. Localization of Flavan-3-ol Species in Peanut Testa by Mass Spectrometry Imaging. Molecules 2020; 25:molecules25102373. [PMID: 32443878 PMCID: PMC7287834 DOI: 10.3390/molecules25102373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
Flavan-3-ols, procyanidins and their monomers are major flavonoids present in peanuts that show a wide range of biological properties and health benefits, based on their potent antioxidant activity. Procyanidin oligomers, especially A-type, are reportedly abundant in peanut skin; however, their localization in the raw peanut testa remains poorly understood. Therefore, we performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to investigate the localization of flavan-3-ols in peanut testa. 1,5-Diaminonaphthalene was coated onto the peanut section by matrix vapor deposition/recrystallization, and MALDI-MSI measurements were performed in the negative-ion mode. Peaks matching the m/z values of flavan-3-ol [M - H]- ions were observed in the mass spectrum extracted from the outer epidermis of the peanut testa, using the region of interest function. Catechin and/or epicatechin, five A-type, and one B-type procyanidins were assigned by the fragment ions generated by retro-Diels-Alder, heterocyclic ring fission, and quinone methide reactions detected in MALDI-tandem MS spectra. These flavan-3-ols were localized in the outer epidermis of the peanut testa. This information will contribute to improving the extraction and purification efficiencies of flavan-3-ols from peanut testa. As flavan-3-ols display anti-microbial activity, it is speculated that flavan-3-ols present in the outer epidermis of peanut testa act to prevent pathogen infection.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
- Correspondence:
| | - Takashi Nirasawa
- Application Department Daltonics Division, Bruker Japan K.K., Yokohama 221-0022, Japan;
| |
Collapse
|
30
|
Yukihiro Y, Zaima N. Application of Mass Spectrometry Imaging for Visualizing Food Components. Foods 2020; 9:foods9050575. [PMID: 32375379 PMCID: PMC7278736 DOI: 10.3390/foods9050575] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Consuming food is essential for survival, maintaining health, and triggering positive emotions like pleasure. One of the factors that drive us toward such behavior is the presence of various compounds in foods. There are many methods to analyze these molecules in foods; however, it is difficult to analyze the spatial distribution of these compounds using conventional techniques, such as mass spectrometry combined with high-performance liquid chromatography or gas chromatography. Mass spectrometry imaging (MSI) is a two-dimensional ionization technology that enables detection of compounds in tissue sections without extraction, purification, separation, or labeling. There are many methods for ionization of analytes, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization, and desorption electrospray ionization. Such MSI technologies can provide spatial information on the location of a specific analyte in food. The number of studies utilizing MSI technologies in food science has been increasing in the past decade. This review provides an overview of some of the recent applications of MSI in food science and related fields. In the future, MSI will become one of the most promising technologies for visualizing the distribution of food components and for identifying food-related factors by their molecular weights to improve quality, quality assurance, food safety, nutritional analysis, and to locate administered food factors.
Collapse
Affiliation(s)
- Yoshimura Yukihiro
- Department of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe City 651-2180, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University,204-3327 Nakamachi, Nara City 631-8505, Japan
| |
Collapse
|
31
|
Enomoto H, Kotani M, Ohmura T. Novel Blotting Method for Mass Spectrometry Imaging of Metabolites in Strawberry Fruit by Desorption/Ionization Using Through Hole Alumina Membrane. Foods 2020; 9:foods9040408. [PMID: 32244711 PMCID: PMC7230831 DOI: 10.3390/foods9040408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/21/2023] Open
Abstract
Mass spectrometry imaging (MSI) using matrix-assisted laser desorption/ionization (MALDI) is a powerful technique for visualizing metabolites in the strawberry fruit. During sample preparation for MALDI-MSI, sectioning of the samples is usually required. In general, MALDI-MSI analysis of strawberry fruits that are larger than a single glass slide is difficult because thin sections cannot be prepared. In this study, we attempted to visualize metabolites in large strawberry fruits by MSI, employing a blotting method that uses desorption ionization using a through-hole alumina membrane (DIUTHAME) chip. Large strawberry fruits were cut and a DIUTHAME chip was set on the cross-section to blot the metabolites. After drying the DIUTHAME chip, the metabolites were measured in positive and negative ion modes using a commercial MALDI-type mass spectrometer. Several peaks were detected in both the ion modes. Various metabolites related to food quality, such as sugars, organic acids, and anthocyanins, were detected and successfully visualized by blotting on a DIUTHAME chip in MSI. These results suggest that blotting using a DIUTHAME chip in MSI is useful for visualizing the metabolites present in the strawberry fruit.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
- Correspondence: ; Tel.: +81-28-627-7312
| | - Masahiro Kotani
- Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata 438-0193, Japan; (M.K.); (T.O.)
| | - Takayuki Ohmura
- Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata 438-0193, Japan; (M.K.); (T.O.)
| |
Collapse
|
32
|
Enomoto H, Furukawa T, Takeda S, Hatta H, Zaima N. Unique Distribution of Diacyl-, Alkylacyl-, and Alkenylacyl-Phosphatidylcholine Species Visualized in Pork Chop Tissues by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging. Foods 2020; 9:foods9020205. [PMID: 32079116 PMCID: PMC7073967 DOI: 10.3390/foods9020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/22/2022] Open
Abstract
Phosphatidylcholine (PC) is the major phospholipid in meat and influences meat qualities, such as healthiness. PC is classified into three groups based on the bond at the sn-1 position: Diacyl, alkylacyl, and alkenylacyl. To investigate their composition and distribution in pork tissues, including longissimus thoracis et lumborum (loin) spinalis muscles, intermuscular fat, and transparent tissues, we performed matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI–MSI). Eleven diacyl-, seven alkylacyl-, and six alkenylacyl-PCs were identified using liquid chromatography (LC)-tandem MS (MS/MS) analysis. Despite many alkylacyl- and alkenylacyl-PC species sharing identical m/z values, we were able to visualize these PC species using MALDI–MSI. Diacyl- and alkylacyl- and/or alkenylacyl-PC species showed unique distribution patterns in the tissues, suggesting that their distribution patterns were dependent on their fatty acid compositions. PCs are a major dietary source of choline in meat, and the amount was significantly higher in the muscle tissues. Consumption of choline mitigates age-related memory decline and neurodegenerative diseases; therefore, the consumption of pork muscle tissues could help to mitigate these diseases. These results support the use of MALDI–MSI analysis for assessing the association between PC species and the quality parameters of meat.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan
- Correspondence: ; Tel.: +81-28-627-7312
| | - Tomohiro Furukawa
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan
| | - Shiro Takeda
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan;
| | - Hajime Hatta
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto 605-8501, Japan;
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan;
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|