1
|
Nagahawatta DP, Liyanage NM, Jayawardena TU, Jeon YJ. Marine Polyphenols in Cardiovascular Health: Unraveling Structure-Activity Relationships, Mechanisms, and Therapeutic Implications. Int J Mol Sci 2024; 25:8419. [PMID: 39125987 PMCID: PMC11312663 DOI: 10.3390/ijms25158419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) are responsible for significant mortality rates globally that have been raised due to the limitation of the available treatments and prevalence of CVDs. The innovative research and identification of potential preventives for CVDs are essential to alleviate global deaths and complications. The marine environment is a rich source of bioactive substances and provides a unique chemical arsenal against numerous ailments due to its unrivaled biodiversity. Marine polyphenolic compounds (MPCs) are unique because of their structural variety and biologically significant activity. Further, MPCs are well-reported for their valuable biological activities, such as anti-inflammatory, cardioprotective, and antioxidant, demonstrating encouraging results in preventing and treating CVDs. Therefore, investigation of the structure-activity relationship (SAR) between MPCs and CVDs provides insights that reveal how the structural components of these compounds affect their effectiveness. Further, comprehending this correlation is essential for advancing medications and nutraceuticals sourced from marine sources, which could transform the strategy for treating and preventing cardiovascular diseases. Therefore, this study provides a comprehensive analysis of existing research by emphasizing the role of MPCs in CVD treatments and evaluating the SAR between MPCs and CVDs with challenges and future directions.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (D.P.N.); (N.M.L.)
| | - N. M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (D.P.N.); (N.M.L.)
| | | | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; (D.P.N.); (N.M.L.)
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
2
|
Prieto-Santiago V, Aguiló-Aguayo I, Bravo FI, Mulero M, Abadias M. Valorization of Peach Fruit and Wine Lees through the Production of a Functional Peach and Grape Juice. Foods 2024; 13:1095. [PMID: 38611399 PMCID: PMC11011757 DOI: 10.3390/foods13071095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The valorization of agri-food products not only represents important economic and environmental benefits but can also be a source of potentially profitable, functional, and safe ingredients. This study aimed to valorize peach fruit and wine lees (WL) by producing functional juice. WL were incorporated at different concentrations (1.5 and 2%; w:w) in unpasteurized peach and grape juice and subsequently stored under refrigeration (5 °C). The antimicrobial activity of WL in peach and grape juices was assessed against Listeria monocytogenes and Saccharomyces cerevisiae as well as physicochemical, nutritional microbiological, and sensory acceptability. The maximum addition of WL to the juice (2%) showed a significant inhibitory effect against L. monocytogenes (4-log reduction) and increased the content of total soluble solids (TSS) (10%), total polyphenol content (TPC) (75%), and total antioxidant activity (AOX) (86%). During storage, AOX, TPC, TSS, pH, and titratable acidity (TA) remained stable. A significant correlation was observed between TPC and AOX. Total mesophilic aerobic bacteria and yeast counts increased during storage. Fifty-seven percent of tasters (n = 26) rated the functional juice positively. Thus, these agri-food products could be useful for producing functional juices with a longer shelf life, contributing to their valorization.
Collapse
Affiliation(s)
- Virginia Prieto-Santiago
- Institute of Agrifood Research and Technology (IRTA), Postharvest Program Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (V.P.-S.); (I.A.-A.)
| | - Ingrid Aguiló-Aguayo
- Institute of Agrifood Research and Technology (IRTA), Postharvest Program Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (V.P.-S.); (I.A.-A.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain; (F.I.B.); (M.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain; (F.I.B.); (M.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Maribel Abadias
- Institute of Agrifood Research and Technology (IRTA), Postharvest Program Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (V.P.-S.); (I.A.-A.)
| |
Collapse
|
3
|
Liu Y, Shi Y, Zhang M, Han F, Liao W, Duan X. Natural polyphenols for drug delivery and tissue engineering construction: A review. Eur J Med Chem 2024; 266:116141. [PMID: 38237341 DOI: 10.1016/j.ejmech.2024.116141] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Polyphenols, natural compounds rich in phenolic structures, are gaining prominence due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable in biomedical applications. Through covalent and noncovalent interactions, polyphenols can bind to biomaterials, enhancing their performance and compensating for their shortcomings. Such polyphenol-based biomaterials not only increase the efficacy of polyphenols but also improve drug stability, control release kinetics, and boost the therapeutic effects of drugs. They offer the potential for targeted drug delivery, reducing off-target impacts and enhancing therapeutic outcomes. In tissue engineering, polyphenols promote cell adhesion, proliferation, and differentiation, thus aiding in the formation of functional tissues. Additionally, they offer excellent biocompatibility and mechanical strength, essential in designing scaffolds. This review explores the significant roles of polyphenols in tissue engineering and drug delivery, emphasizing their potential in advancing biomedical research and healthcare.
Collapse
Affiliation(s)
- Yu Liu
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Yuying Shi
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Mengqi Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China.
| |
Collapse
|
4
|
Yang Y, Wang R, Ai X, Liu D, Niu C, Li T. Significant enhancement in antioxidant and antimicrobial activity of tragacanth gum through chemical modification using amino acids. Int J Biol Macromol 2024; 257:128343. [PMID: 38007020 DOI: 10.1016/j.ijbiomac.2023.128343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Herein, glutamic acid, lysine, arginine and glycine grafted tragacanth gum (TG) were synthesized and designated as TG-Glu, TG-Lys, TG-Arg, and TG-Gly, respectively. The corresponding degrees of substitution (DS) were 0.212, 0.255, 0.394, and 0.169. Thermal, antioxidant, and antibacterial properties of synthesized amino acid-grafted tragacanth gum (ATG) were investigated. The results suggested that the grafting of amino acids onto TG has the potential to alter its thermal properties. When compared with TG and amino acid alone, ATG exhibited significantly enhanced antioxidant and antibacterial properties, with these properties being concentration-dependent. At a concentration of 2 mg/mL for TG-Glu and 3 mg/mL for TG-Arg, TG-Gly, and TG-Lys, the scavenging rate for 2,2'-hypoazido-3-ethylbenzothiazoline sulfonate (ABTS) radical reached 100 %. On the other hand, the scavenging rate of TG-Glu for hydroxyl radical achieved 100 % even at a concentration as low as 1 mg/mL. These properties were accompanied by an increase in reducing force and a notable improvement in the ability to scavenge superoxide anion (O2-). Moreover, the combination of amino acids and TG represents a promising approach to enhance the antimicrobial activities of TG, with the bacteriostatic rate reaching 100 %. Consequently, ATG shows promise as a novel agent for both antioxidation and antimicrobial applications.
Collapse
Affiliation(s)
- Yuxuan Yang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Ruolin Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Xiaopei Ai
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Dan Liu
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Chunmei Niu
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| | - Tiantian Li
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| |
Collapse
|
5
|
Pham DT, Nguyen DXT, Lieu R, Huynh QC, Nguyen NY, Quyen TTB, Tran VD. Silk nanoparticles for the protection and delivery of guava leaf ( Psidium guajava L.) extract for cosmetic industry, a new approach for an old herb. Drug Deliv 2023; 30:2168793. [PMID: 36694964 PMCID: PMC9879179 DOI: 10.1080/10717544.2023.2168793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Guava (Psidium guajava L.) is a well-known plant containing high levels of natural antioxidants, the phenolic compounds, which have been employed in numerous cosmetic products. However, these molecules are unstable to oxidants, light, temperature, pH, water, and enzymatic activities. Therefore, to enhance their stability and preserve their antioxidant activity, this study investigated the silk fibroin nanoparticles (SFNs) ability to encapsulate, deliver, and heat-protect the phenolic compounds of the guava leaves ethanolic extract. Firstly, the guava ethanolic extract was produced by maceration, which possessed a total phenolic content of 312.6 mg GAE/g DPW and a high antioxidant activity (IC50 = 5.397 ± 0.618 µg/mL). Then, the extract loaded SFNs were manufactured by desolvation method, and the particles demonstrated appropriate sizes of 200-700 nm with narrow size distribution, spherical shape, silk-II crystalline structure, high drug entrapment efficiency of > 70% (dependent on the fibroin content), and a two-phase sustained drug release for at least 210 min. Using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the antioxidant activity of the guava extract was well-preserved in the extract loaded SFNs. Finally, after being treated with high temperature of 70 °C for 24 h, the guava extract almost loses all of its antioxidant property (5 times decrement), whereas the extract loaded SFNs could retain the extract activity. Conclusively, the SFNs proved much potential to deliver and heat-protect the guava extract phenolic compounds, and preserve their antioxidant activity. Confirmed by this case, SFNs could be further explored in protecting other natural compounds from environmental factors.
Collapse
Affiliation(s)
- Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam,CONTACT Duy Toan Pham Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho900000, Vietnam
| | - Doan Xuan Tien Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Ruby Lieu
- Faculty of Commerce, Van Lang University, Ho Chi Minh City, Vietnam
| | - Quoc Cuong Huynh
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Ngoc Yen Nguyen
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, Can Tho, Vietnam
| | - Tran Thi Bich Quyen
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, Can Tho, Vietnam
| | - Van De Tran
- Department of Health Organization and Management, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| |
Collapse
|
6
|
The Conformations of Isolated Gallic Acid: A Laser-Ablation Rotational Study. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010159. [PMID: 36615353 PMCID: PMC9822196 DOI: 10.3390/molecules28010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
The rotational spectrum of laser-ablated gallic acid has been recorded using CP-FTMW spectroscopy. Two rotamers have been detected, and their rotational spectra have been assigned and analyzed to obtain the molecular spectroscopic parameters. The observed rotamers have been unambiguously identified in the light of theoretical computations, based on the comparison of the experimental line intensities and rotational parameters with the rotational constants and electric dipole moments predicted from theoretical calculations. The values of the planar inertial moments confirm that the observed conformers are planar, and their relative stability and population have been determined from relative intensity measurements. The B3LYP-D3/6-311++G(2d,p) level has been shown to be the best method among a series of levels normally used to predict the rotational parameters in rotational spectroscopy. In the observed conformers, the three adjacent OH groups are arranged in a sequential form, and the only difference between them lies in the orientation of the COOH group. Although weak attractive OH···O interactions seem to exist, the analysis of the electron density topology does not show the existence of any critical point corresponding to these interactions.
Collapse
|
7
|
Dimitriu L, Constantinescu-Aruxandei D, Preda D, Nichițean AL, Nicolae CA, Faraon VA, Ghiurea M, Ganciarov M, Băbeanu NE, Oancea F. Honey and Its Biomimetic Deep Eutectic Solvent Modulate the Antioxidant Activity of Polyphenols. Antioxidants (Basel) 2022; 11:2194. [PMID: 36358566 PMCID: PMC9686586 DOI: 10.3390/antiox11112194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Honey is a highly valued natural product with antioxidant, antimicrobial and anti-inflammatory properties. However, its antioxidant activity (AOA) is not as high as that of other honeybee products, such as propolis. Several polyphenol-honey formulations have been proposed up to now, most of them using maceration of biomass in honey or mixtures with liquid extracts, which either limit polyphenols bioavailability or destroy the characteristics of honey. To improve the health benefits of honey by increasing AOA and keeping its structural and sensory properties, we propose its enrichment in a polyphenol extract of raspberry after solvent evaporation. A honey-biomimetic natural deep eutectic solvent (NaDES) was prepared and compared with honey. The main polyphenols found in the raspberry extract were tested in combination with honey and NaDES, respectively. The AOA was determined by DPPH, ABTS, CUPRAC, and FRAP methods. The AOA behaviour of honey-polyphenol mixtures varied from synergism to antagonism, being influenced by the AOA method, polyphenol type, and/or mixture concentration. The honey-biomimetic NaDES resulted in similar AOA behaviour as with honey mixed with polyphenols. Honey seems to have additional properties that increase synergism or reduce antagonism in some cases. Honey and its biomimetic NaDES modulate AOA of polyphenols extract.
Collapse
Affiliation(s)
- Luminița Dimitriu
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
| | - Daniel Preda
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica Bucharest, Str. Gheorghe Polizu nr/1-7, Sector 1, 011061 Bucharest, Romania
| | - Andra-Lavinia Nichițean
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
- Research and Development Department, Rom Honey Group Srl, Str. Grădinari nr. 1, Iași County, 700390 Iași, Romania
| | - Cristian-Andi Nicolae
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
| | - Victor Alexandru Faraon
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
| | - Marius Ghiurea
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
| | - Mihaela Ganciarov
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
| | - Narcisa Elena Băbeanu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
| | - Florin Oancea
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
8
|
Wonisch W, Stanger O, Tatzber F, Lindschinger M, Murkovic M, Cvirn G. Stability of bioactive components in smoothies within an extended period of one year. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Yang L, Gao Y, Gong J, Wang H, Farag MA, Simal‐Gandara J, Zhao Y, Nie S, Xiao J. Myricetin ameliorated prediabetes via immunomodulation and gut microbiota interaction. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Li Yang
- Institute of Chinese Medical Sciences State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| | - Yongchao Gao
- Department of Clinical Pharmacology Xiangya Hospital Central South University Changsha China
| | - Jupeng Gong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Mohamed A. Farag
- Pharmacognosy Department College of Pharmacy Cairo University Cairo Egypt
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group Department of Analytical and Food Chemistry Faculty of Sciences Universidade de Vigo Ourense Spain
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences State Key Laboratory of Quality Research in Chinese Medicine University of Macau Macau China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Jianbo Xiao
- Nutrition and Bromatology Group Department of Analytical and Food Chemistry Faculty of Sciences Universidade de Vigo Ourense Spain
- Institute of Food Safety and Nutrition Jinan University Guangzhou China
| |
Collapse
|
10
|
Affiliation(s)
- Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
11
|
Structure dependent stability and antioxidant capacity of strawberry polyphenols in the presence of canola protein. Food Chem 2022; 385:132630. [PMID: 35334342 DOI: 10.1016/j.foodchem.2022.132630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022]
Abstract
Polyphenol stability in processed food affects sensorial and health-promoting properties. Thus, understanding the effects of various food components on polyphenols degradation, as a function of their chemical structure, can contribute to optimal product engineering. The current study focuses on the impact of polyphenol structure on polyphenol-protein interactions in correlation with their stability and total antioxidant capacity (TAC) during shelf-life. A strawberry polyphenol extract (SPE) and canola protein extract (CPE) were used as multicomponent polyphenol and plant-based protein models. A non-covalent interaction of SPE and CPE was observed at pH = 3. Among CPE proteins cruciferin was the most involved in interactions, and the polyphenols with the highest relative binding were flavonols (45 ± 3%-68 ± 2%), while anthocyanins presented lower values (0 ± 0.4%-27 ± 1%). The presence of the proteins enhanced mostly the anthocyanins' stability, yet the extent of the impact was not correlated with the relative binding. TAC was not better preserved by the presence of CPE.
Collapse
|
12
|
Anwar S, Raut R, Alsahli MA, Almatroudi A, Alfheeaid H, Alzahrani FM, Khan AA, Allemailem KS, Almatroodi SA, Rahmani AH. Role of Ajwa Date Fruit Pulp and Seed in the Management of Diseases through In Vitro and In Silico Analysis. BIOLOGY 2022; 11:78. [PMID: 35053077 PMCID: PMC8773040 DOI: 10.3390/biology11010078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
This study investigated the health-promoting activities of methanolic extracts of Ajwa date seed and fruit pulp extracts through in vitro studies. These studies confirmed potential antioxidant, anti-hemolytic, anti-proteolytic, and anti-bacterial activities associated with Ajwa dates. The EC50 values of fruit pulp and seed extracts in methanol were reported to be 1580.35 ± 0.37 and 1272.68 ± 0.27 µg/mL, respectively, in the DPPH test. The maximum percentage of hydrogen peroxide-reducing activity was 71.3 and 65.38% for both extracts at 600 µg/mL. Fruit pulp and seed extracts inhibited heat-induced BSA denaturation by 68.11 and 60.308%, heat-induced hemolysis by 63.84% and 58.10%, and hypersalinity-induced hemolysis by 61.71% and 57.27%, and showed the maximum anti-proteinase potential of 56.8 and 51.31% at 600 μg/mL, respectively. Seed and fruit pulp inhibited heat-induced egg albumin denaturation at the same concentration by 44.31 and 50.84%, respectively. Ajwa seed showed minimum browning intensity by 63.2%, percent aggregation index by 64.2%, and amyloid structure by 63.8% at 600 μg/mL. At 100 mg/mL, Ajwa seed extract exhibited good antibacterial activity. Molecular docking analysis showed that ten active constituents of Ajwa seeds bind with the critical antioxidant enzymes, catalase (1DGH) and superoxide dismutase (5YTU). The functional residues involved in such interactions include Arg72, Ala357, and Leu144 in 1DGH, and Gly37, Pro13, and Asp11 in 5YTU. Hence, Ajwa dates can be used to develop a suitable alternative therapy in various diseases, including diabetes and possibly COVID-19-associated complications.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Ravindra Raut
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India;
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Hani Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Faisal M. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.); (M.A.A.); (A.A.); (S.A.A.)
| |
Collapse
|
13
|
Design of an In Vitro Model to Screen the Chemical Reactivity Induced by Polyphenols and Vitamins during Digestion: An Application to Processed Meat. Foods 2021; 10:foods10092230. [PMID: 34574340 PMCID: PMC8468892 DOI: 10.3390/foods10092230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
Processed meats’ nutritional quality may be enhanced by bioactive vegetable molecules, by preventing the synthesis of nitrosamines from N-nitrosation, and harmful aldehydes from lipid oxidation, through their reformulation. Both reactions occur during digestion. The precise effect of these molecules during processed meats’ digestion must be deepened to wisely select the most efficient vegetable compounds. The aim of this study was to design an in vitro experimental method, allowing to foresee polyphenols and vitamins’ effects on the chemical reactivity linked to processed meats’ digestion. The method measured the modulation of end products formation (specific nitroso-tryptophan and thiobarbituric acid reactive substances (TBARS)), by differential UV-visible spectrophotometry, according to the presence or not of phenolic compounds (chlorogenic acid, rutin, naringin, naringenin) or vitamins (ascorbic acid and trolox). The reactional medium was supported by an oil in water emulsion mimicking the physico-chemical environment of the gastric compartment. The model was optimized to uphold the reactions in a stable and simplified model featuring processed meat composition. Rutin, chlorogenic acid, naringin, and naringenin significantly inhibited lipid oxidation. N-nitrosation was inhibited by the presence of lipids and ascorbate. This methodology paves the way for an accurate selection of molecules within the framework of processed meat products reformulation.
Collapse
|
14
|
Piechocka J, Gramza-Michałowska A, Szymandera-Buszka K. The Changes in Antioxidant Activity of Selected Flavonoids and Caffeine Depending on the Dosage and Form of Thiamine. Molecules 2021; 26:molecules26154702. [PMID: 34361853 PMCID: PMC8347205 DOI: 10.3390/molecules26154702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds and thiamine may serve as therapies against oxidative stress-related neurodegenerative diseases. However, it is important to note that these components show high instability under changing conditions. The study’s aim was to determine the impact of the thiamine concentration (hydrochloride—TH and pyrophosphate—TP; in the range 0.02 to 20 mg/100 g on the indices of the chelating properties and reducing power, and free radicals scavenging indices of EGCG, EGC, ECG and caffeine added from 0.04 to 6.0 mg/100 g. Our research confirmed that higher concentrations of TH and TP can exhibit significant activity against the test antioxidant indices of all components. When above 5.0 mg/100 g of thiamine was used, the radical scavenging abilities of the compound decreased in the following order: EGCG > ECG > EGC > caffeine. The highest correlation was found for the concentration of thiamine pyrophosphate to 20.0 mg/100 g and EGCG. Knowledge of the impact of factors associated with the concentration of both EGCG, EGC, ECG or caffeine and thiamine on their activity could carry weight in regulating the quality supplemented foods, especially of nutrition support for people of all ages were oral, enteral tube feeding and parenteral nutrition).
Collapse
|
15
|
Oliveira G, Volino-Souza M, Conte-Júnior CA, Alvares TS. Food-derived polyphenol compounds and cardiovascular health: A nano-technological perspective. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Human C, Danton O, De Beer D, Maruyama T, Alexander L, Malherbe C, Hamburger M, Joubert E. Identification of a novel di-C-glycosyl dihydrochalcone and the thermal stability of polyphenols in model ready-to-drink beverage solutions with Cyclopia subternata extract as functional ingredient. Food Chem 2021; 351:129273. [PMID: 33662907 DOI: 10.1016/j.foodchem.2021.129273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/15/2022]
Abstract
Heat processing of ready-to-drink beverages is required to ensure a microbiologically safe product, however, this can result in the loss of bioactive compounds responsible for functionality. The objective of this study was to establish the thermal stability of a novel dihydrochalcone, 3',5'-di-β-d-glucopyranosyl-3-hydroxyphloretin (2), 3',5'-di-β-d-glucopyranosylphloretin (3) and other Cyclopia subternata phenolic compounds, in model solutions with or without citric acid and ascorbic acid. The solutions were heated at 93, 121 and 135 °C, relevant to pasteurisation, commercial sterilisation and ultra-high temperature (UHT) pasteurisation, respectively. For most compounds, the acids decreased the second order reaction rate constants, up to 27 times. Compound 2 (46.29 ± 0.53 (g/100 g)-1 h-1), and to a lesser extent compound 3 (5.94 ± 0.01 (g/100 g)-1 h-1) were the most thermo-unstable compounds when treated at 135 °C without added acids. Even though differential effects were observed for compounds at different temperatures and formulations, overall, the phenolic compounds were most stable under UHT pasteurisation conditions.
Collapse
Affiliation(s)
- Chantelle Human
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - Ombeline Danton
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Dalene De Beer
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch), 7600, South Africa
| | - Takuma Maruyama
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Lara Alexander
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch), 7600, South Africa
| | - Christiaan Malherbe
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa; Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch), 7600, South Africa.
| |
Collapse
|
17
|
Wang Z, Barrow CJ, Dunshea FR, Suleria HAR. A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidants (Basel) 2021; 10:antiox10020151. [PMID: 33498549 PMCID: PMC7909527 DOI: 10.3390/antiox10020151] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pear (Pyrus communis L.) is widely spread throughout the temperate regions of the world, such as China, America and Australia. This fruit is popular among consumers due to its excellent taste and perceived health benefits. Various bioactive compounds, which contribute to these health benefits, have been detected in the pear fruits, including a range of phenolic compounds. Five Australian grown pear varieties, which include Packham’s Triumph, Josephine de Malines, Beurre Bosc, Winter Nelis and Rico were selected for this study to examine the phenolic compounds in pears. Beurre Bosc exhibited the highest total polyphenol content (TPC) (3.14 ± 0.02 mg GAE/g), total tannin content (TTC) (1.43 ± 0.04 mg CE/g) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) (5.72 ± 0.11 mg AAE/g), while the Josephine de Malines variety was high in total flavonoid content (TFC) (1.53 ± 0.09 mg QE/g), ferric reducing antioxidant power (FRAP) (4.37 ± 0.04 mg AAE/g), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (4.44 ± 0.01 mg AAE/g) and total antioxidant capacity (TAC) (5.29 ± 0.09 mg AAE/g). The liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) data indicate that a total of 73 phenolic compounds were detected in Beurre Bosc (37 compounds), Josephine de Malines (34), Rico (22), Packham’s Triumph (15) and Winter Nelis (9), respectively. From HPLC-PDA quantification, the Beurre Bosc pear variety showed significantly higher in phenolic acids (chlorogenic acid; 17.58 ± 0.88 mg/g) and while flavonoids were significantly higher in Josephine de Malines (catechin; 17.45 ± 1.39 mg/g), as compared to other pear varieties. The analyses suggest that the Australian grown pears might contain an ideal source of phenolic compounds which benefit human health. The information provided by the present work can serve as practical supporting data for the use of pears in the nutraceutical, pharmaceutical and food industries.
Collapse
Affiliation(s)
- Zening Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; (Z.W.); (F.R.D.)
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; (Z.W.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; (Z.W.); (F.R.D.)
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia;
- Correspondence: ; Tel.: +61-470-439-670
| |
Collapse
|
18
|
Matrix- and Technology-Dependent Stability and Bioaccessibility of Strawberry Anthocyanins during Storage. Antioxidants (Basel) 2020; 10:antiox10010030. [PMID: 33396664 PMCID: PMC7824345 DOI: 10.3390/antiox10010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Anthocyanins are often associated with health benefits. They readily degrade during processing and storage but are also dependent on the matrix conditions. This study investigated how strawberry anthocyanins are affected by preservation technologies and a relatively protein-rich kale juice addition during storage. A strawberry–kale mix was compared to a strawberry–water mix (1:2 wt; pH 4), untreated, thermally, pulsed electric fields (PEF) and high-pressure processing (HPP) treated, and evaluated for anthocyanin stability and bioaccessibility during refrigerated storage. The degradation of strawberry anthocyanins during storage followed first-order kinetics and was dependent on the juice system, preservation technology and anthocyanin structure. Generally, the degradation rate was higher for the strawberry–kale mix compared to the strawberry–water mix. The untreated sample showed the highest degradation rate, followed by HPP, PEF and, then thermal. The relative anthocyanin bioaccessibility after gastric digestion was 10% higher for the thermally and PEF treated samples. Anthocyanin bioaccessibility after intestinal digestion was low due to instability at a neutral pH, especially for the strawberry–kale mix, and after thermal treatment. The storage period did not influence the relative bioaccessibility; yet, the absolute content of bioaccessible anthocyanins was decreased after storage. This research further presents that processing and formulation strongly affect the stability and bioaccessibility of anthocyanins during storage.
Collapse
|
19
|
Eran Nagar E, Berenshtein L, Okun Z, Shpigelman A. The structure-dependent influence of high pressure processing on polyphenol-cell wall material (CWM) interactions and polyphenol-polyphenol association in model systems: Possible implication to accessibility. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Kamiloglu S, Tomas M, Ozdal T, Capanoglu E. Effect of food matrix on the content and bioavailability of flavonoids. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Brezoiu AM, Bajenaru L, Berger D, Mitran RA, Deaconu M, Lincu D, Stoica Guzun A, Matei C, Moisescu MG, Negreanu-Pirjol T. Effect of Nanoconfinement of Polyphenolic Extract from Grape Pomace into Functionalized Mesoporous Silica on Its Biocompatibility and Radical Scavenging Activity. Antioxidants (Basel) 2020; 9:E696. [PMID: 32756379 PMCID: PMC7465047 DOI: 10.3390/antiox9080696] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this paper is to assess the properties of Mamaia (MM) grape pomace polyphenolic extract loaded onto pristine and functionalized MCM-41 mesoporous silica as potential ingredients for nutraceuticals or cosmetics. The chemical profile of hydroalcoholic polyphenolic extracts, prepared either by conventional extraction or microwave-assisted method, was analyzed by reverse-phase high-performance liquid chromatography with photodiode array detector (HPLC-PDA) analysis, while their radical scavenger activity (RSA) was evaluated using DPPH (2,2-diphenyl-1-picrylhydrazyl radical) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assays. The extract-loaded materials were characterized by Fourier transform infrared (FTIR) spectroscopy, N2 adsorption-desorption isotherms, thermogravimetric analysis, as well as RSA (DPPH and ABTS assays). The polyphenols release profiles from pristine and functionalized (with mercaptopropyl, propyl sulfonic acid, cyanoethyl and propionic acid moieties) MCM-41-type supports were determined in phosphate buffer solution (PBS) pH 5.7. For selected materials containing embedded phytochemicals, cellular viability, and oxidative stress level on immortalized mouse embryonic fibroblast cell line (NIH3T3) were evaluated. A more acidic functional groups linked on silica pore walls determined a higher amount of phytochemicals released in PBS. The extract-loaded materials showed a good cytocompatibility on tested concentrations. The embedded extract preserved better the RSA over time than the free extract. The polyphenols-loaded MCM-41-type silica materials, especially MM@MCM-COOH material, demonstrated a good in vitro antioxidant effect on NIH3T3 cells, being potential candidates for nutraceutical or cosmetic formulations.
Collapse
Affiliation(s)
- Ana-Maria Brezoiu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
| | - Laura Bajenaru
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
| | - Daniela Berger
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
| | - Raul-Augustin Mitran
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei Street, 060021 Bucharest, Romania;
| | - Mihaela Deaconu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
| | - Daniel Lincu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei Street, 060021 Bucharest, Romania;
| | - Anicuta Stoica Guzun
- Department of Chemical and Biochemical Engineering, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania;
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (L.B.); (M.D.); (D.L.); (C.M.)
| | - Mihaela Georgeta Moisescu
- Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
- Biophysics and Cellular Biotechnology Research Excellence Center, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Aleea Universitatii No. 1, 900470 Constanta, Romania;
| |
Collapse
|