1
|
Zhou H, Chen B, Du YY, Zhang H, Li JL, Jin KW, Lin CY, Su HF, Zhang K, Lin YE, Zhang LY. CsMYB308 as a repressive transcription factor inhibits anthocyanin biosynthesis in tea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109662. [PMID: 40020600 DOI: 10.1016/j.plaphy.2025.109662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
Anthocyanins in tea (Camellia sinensis) leaves enhance tea quality due to their unique health benefits. MYB transcription factors are crucial in regulating anthocyanin biosynthesis in various plant species. In this research, a typical R2R3 repressive transcription factor CsMYB308 was identified which includes an EAR motif that belongs to the SG4 subfamily and was localized in the nucleus. Antisense oligonucleotide (asODN)-mediated CsMYB308 silencing revealed that the anthocyanin synthesis of structural genes was up-regulated. Furthermore, DNA affinity purification sequencing (DAP-seq) screened downstream genes regulated by CsMYB308. Dual-luciferase reporter (DLR) results showed that CsMYB308 suppressed anthocyanin biosynthesis by regulating the transcriptional activity of CsF3'5'H, CsDFR, and CsANS and electrophoretic mobility shift assay (EMSA) proved the concrete binding sites. In addition, we elucidated the molecular mechanism of Zijuan accumulating anthocyanin at an optimal concentration by shading experiment in summer. The results could provide an agronomic strategy to enhance the utilization of fresh leaves in summer. This study also presented a new insight of the regulatory pathway involved in anthocyanin biosynthesis in tea plants.
Collapse
Affiliation(s)
- Hui Zhou
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Baoyi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Yue Yang Du
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Huan Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jie Lin Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Kai Wei Jin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Chu Yuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Feng Su
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Kaikai Zhang
- College of Resources and Environment, China Agricultural University, Beijing 100193, China.
| | - Yong En Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Ling Yun Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Xiang P, Marat T, Huang J, Cheng B, Liu J, Wang X, Wu L, Tan M, Zhu Q, Lin J. Response of photosynthetic capacity to ecological factors and its relationship with EGCG biosynthesis of tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2025; 25:199. [PMID: 39953393 PMCID: PMC11827184 DOI: 10.1186/s12870-025-06106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Epigallocatechin gallate (EGCG) imparts unique health benefits and flavour to tea. Photosynthesis plays a crucial role in modulating secondary metabolite production in plants, and this study investigated its impact on the biosynthesis of EGCG in tea plants under different ecological conditions. RESULTS Enhanced photosynthetic activity and the increased EGCG content, total esterified catechins (TEC), total catechins (TC) responded synchronously to changes in ecological factors. The photosynthetic capacity of tea plants and the EGCG content fit surface model equations (Extreme 2D and Polynomial 2D) and multiple regression equations (R2 > 70%). Additionally, logistic regression and ROC curves revealed that photosynthetic capacity was related to EGCG accumulation patterns in response to ecological variations. Upon perceiving ecological changes, the response of photosynthesis-related genes (CspsaA from photosystem I, CspsbB, CspsbC from photosystem II, and CsLHCB3 from the antenna protein pathway) was associated to carbon cycle-related genes (CsALDO, CsACOX, CsICDH, Csrbcs), which mediated the expression of CsPAL in the phenylalanine pathway; CsaroDE in the shikimate pathway; and CsCHS, CsF3H, CsF3'H, and CsANS in the flavonoid pathway. Eventually, this influenced the accumulation of EGCG and its precursors (gallic acid and epigallocatechin) in tea plants. CONCLUSIONS This study reveals the effects of photosynthesis on EGCG biosynthesis in response to ecological factors, providing insights for optimizing tea cultivation and quality.
Collapse
Affiliation(s)
- Ping Xiang
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tukhvatshin Marat
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaxin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bosi Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianghong Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingjian Wang
- Institute of Photobiological Industry, Fujian Sanan Sino-Science Photobiotech Co., Ltd, Xiamen, 361008, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Lei YT, Meng FB, Jiao XL, Tang YM, Wu QJ, Li YC. Effects of UV-A irradiation and microbial fermentation on the physicochemical, microstructure and functional properties of okara. Food Res Int 2025; 200:115445. [PMID: 39779102 DOI: 10.1016/j.foodres.2024.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/30/2025]
Abstract
Whole utilization of okara has important economic value, but there are two technical barriers: coarse mouthfeel caused by insoluble dietary fiber (IDF) and undesirable "beany" off-odors. UV-A irradiation and/or microbial fermentation were used to modify okara. The results indicated that single and combined treatments increased the soluble dietary fiber (SDF) content. Saccharomyces cerevisiae fermentation (YUO), Lactiplantibacillus plantarum fermentation (LUO), and mixed fermentation (MUO) followed by UV-A irradiation of okara significantly reduced the IDF/SDF ratio to 2.48, 1.86 and 2.25, respectively. The modifications significantly reduced the lipid and total nitrogen contents and decreased the E-nose sensor values associated with beany odors. The combined treatment of microbial fermentation and UV-A irradiation partially destroyed the crystalline, resulting in a loose and porous surface, further enhanced the functional properties of water holding capacity, water solubility, antioxidant properties and cation exchange capacity. In particular, the DPPH and ABTS scavenging abilities of okara subject to microbial fermentation followed by UV-A irradiation were greater than that of other samples. These results indicate that the treatment sequence is very important for the functional properties of okara and microbial fermentation followed by UV-A irradiation is most conducive to improve the physicochemical properties and functionalities of okara.
Collapse
Affiliation(s)
- Ya-Ting Lei
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiao-Lei Jiao
- Neijiang Academy of Agricultural Sciences, Neijiang 641099, PR China
| | - Yuan-Mou Tang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qi-Jun Wu
- Longchang Siyu Food Co., Ltd, Neijiang 642150, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
4
|
Anum H, Li K, Tabusam J, Saleh SAA, Cheng RF, Tong YX. Regulation of anthocyanin synthesis in red lettuce in plant factory conditions: A review. Food Chem 2024; 458:140111. [PMID: 38968716 DOI: 10.1016/j.foodchem.2024.140111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
Anthocyanins, natural pigments known for their vibrant hues and beneficial properties, undergo intricate genetic control. However, red vegetables grown in plant factories frequently exhibit reduced anthocyanin synthesis compared to those in open fields due to factors like inadequate light, temperature, humidity, and nutrient availability. Comprehending these factors is essential for optimizing plant factory environments to enhance anthocyanin synthesis. This review insights the impact of physiological and genetic factors on the production of anthocyanins in red lettuce grown under controlled conditions. Further, we aim to gain a better understanding of the mechanisms involved in both synthesis and degradation of anthocyanins. Moreover, this review summarizes the identified regulators of anthocyanin synthesis in lettuce, addressing the gap in knowledge on controlling anthocyanin production in plant factories, with potential implications for various crops beyond red lettuce.
Collapse
Affiliation(s)
- Hadiqa Anum
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Kun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Javaria Tabusam
- National Key Laboratory of Cotton Bio-Breeding and Integration Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Said Abdelhalim Abdelaty Saleh
- Horticultural Crops Technology Department, Agricultural & Biological Research Institute, National Research Centre, Giza, Egypt
| | - Rui-Feng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China.
| | - Yu-Xin Tong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
5
|
Wang Y, Jin JQ, Zhang R, He M, Wang L, Mao Z, Gan M, Wu L, Chen L, Wang L, Wei K. Association analysis of BSA-seq, BSR-seq, and RNA-seq reveals key genes involved in purple leaf formation in a tea population ( Camellia sinensis). HORTICULTURE RESEARCH 2024; 11:uhae191. [PMID: 39257538 PMCID: PMC11384119 DOI: 10.1093/hr/uhae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/01/2024] [Indexed: 09/12/2024]
Abstract
Purple tea, rich in anthocyanins, has a variety of health benefits and is attracting global interest. However, the regulation mechanism of anthocyanin in purple tea populations has not been extensively studied. In this experiment, RNA-seq, BSA-seq, and BSR-seq were performed using 30 individuals with extreme colors (dark-purple and green) in an F 1 population of 'Zijuan' and 'Jinxuan'. The results show that 459 genes were differentially expressed in purple and green leaves, among which genes involved in the anthocyanin synthesis and transport pathway, such as CHS, F3H, ANS, MYB75, GST, MATE, and ABCC, were highly expressed in purple leaves. Moreover, there were multiple SNP/InDel variation sites on chromosomes 2 and 14 of the tea plant, as identified by BSA-seq. The integrated analysis identified two highly expressed genes (CsANS and CsMYB75) with SNP/InDel site variations in the purple tea plants. By silencing leaves, we proved that CsMYB75 could positively regulate anthocyanin accumulation and expression of related structural genes in tea plants. A 181-bp InDel in the CsMYB75 promoter was also found to be co-segregating with leaf color. The results of this study provide a theoretical reference for the molecular mechanism of anthocyanin accumulation in purple tea plants and contribute to the creation of new tea cultivars with high anthocyanin content.
Collapse
|
6
|
Deng J, Zhang L, Wang L, Zhao J, Yang C, Li H, Huang J, Shi T, Zhu L, Damaris RN, Chen Q. The Complex FtBBX22 and FtHY5 Positively Regulates Light-Induced Anthocyanin Accumulation by Activating FtMYB42 in Tartary Buckwheat Sprouts. Int J Mol Sci 2024; 25:8376. [PMID: 39125947 PMCID: PMC11313212 DOI: 10.3390/ijms25158376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Anthocyanin is one important nutrition composition in Tartary buckwheat (Fagopyrum tataricum) sprouts, a component missing in its seeds. Although anthocyanin biosynthesis requires light, the mechanism of light-induced anthocyanin accumulation in Tartary buckwheat is unclear. Here, comparative transcriptome analysis of Tartary buckwheat sprouts under light and dark treatments and biochemical approaches were performed to identify the roles of one B-box protein BBX22 and ELONGATED HYPOCOTYL 5 (HY5). The overexpression assay showed that FtHY5 and FtBBX22 could both promote anthocyanin synthesis in red-flower tobacco. Additionally, FtBBX22 associated with FtHY5 to form a complex that activates the transcription of MYB transcription factor genes FtMYB42 and FtDFR, leading to anthocyanin accumulation. These findings revealed the regulation mechanism of light-induced anthocyanin synthesis and provide excellent gene resources for breeding high-quality Tartary buckwheat.
Collapse
Affiliation(s)
- Jiao Deng
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Lan Zhang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Lijuan Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Jiali Zhao
- School of Life Sciences, Sichuan Agricultural University, Ya’an 625099, China;
| | - Chaojie Yang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Juan Huang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| | | | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (J.D.); (L.Z.); (L.W.); (C.Y.); (H.L.); (J.H.); (T.S.); (L.Z.)
| |
Collapse
|
7
|
Majumder J, Subrahmanyeswari T, Gantait S. Natural biosynthesis, pharmacological applications, and sustainable biotechnological production of ornamental plant-derived anthocyanin: beyond colorants and aesthetics. 3 Biotech 2024; 14:175. [PMID: 38855146 PMCID: PMC11153417 DOI: 10.1007/s13205-024-04016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Flowers have long been admired for their aesthetic qualities and have even found their way to be included in the human diet. Among the many chemical compounds found in flowers, anthocyanins stand out for their versatile applications in the food, cosmetic, and nutraceutical industries. The biosynthetic pathway of anthocyanins has been thoroughly studied in certain flower species, leading to the detection of key regulatory genes that can be controlled to enhance the production of anthocyanins via biotechnological methods. Nevertheless, the quantity and form of anthocyanins found in natural sources differ, both qualitatively and quantitatively, depending on the ornamental plant species. For this reason, research on in vitro plant cultures has been conducted for years in an attempt to comprehend how these essential substances are produced. Different biotechnological systems, like in vitro plant cell, organ, and tissue cultures, and transgenic approaches, have been employed to produce anthocyanins under controlled conditions. However, multiple factors influence the production of anthocyanins and create challenges during large-scale production. Metabolic engineering techniques have also been utilized for anthocyanin production in microorganisms and recombinant plants. Although these techniques are primarily tested at lab- and pilot-scale, limited studies have focused on scaling up the production. This review analyses the chemistry and biosynthesis of anthocyanin along with the factors that influence the biosynthetic pathway. Further emphasis has been given on strategies for conventional and non-conventional anthocyanin production along with their quantification, addressing the prevailing challenges, and exploring ways to ameliorate the production using the in vitro plant cell and tissue culture systems and metabolic engineering to open up new possibilities for the cosmetic, pharmaceutical, and food industries.
Collapse
Affiliation(s)
- Jayoti Majumder
- Department of Floriculture and Landscaping, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Tsama Subrahmanyeswari
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| |
Collapse
|
8
|
Wiczkowski W, Saniewski M, Marasek-Ciołakowska A, Góraj-Koniarska J, Mitrus J, Horbowicz M. Exposure to Light of the Abaxial versus Adaxial Side of Detached Kalanchoë blossfeldiana Leaves Affects Anthocyanin Content and Composition Differently. Int J Mol Sci 2024; 25:2875. [PMID: 38474120 DOI: 10.3390/ijms25052875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The accumulation and composition of anthocyanins in leaves of Kalanchoë blossfeldiana, detached and kept for five days under natural light conditions, were investigated. The presence of fifteen derivatives of cyanidin, petunidin, and delphinidin was found. Changes in the content of each anthocyanin in the leaves before and after exposure to light on the abaxial (naturally upper) and adaxial (naturally lower) sides of the leaves were compared. When the adaxial side was exposed to light, the anthocyanin contents of the leaves did not change. In contrast, when the abaxial side of detached leaves was exposed to light, there was enhanced accumulation of delphinidin-rhamnoside-glucoside, cyanidin-rhamnoside-glucoside, cyanidin-glucoside-glucoside, and two unknown derivatives of petunidin and delphinidin. Application of methyl jasmonate (JA-Me) on the abaxial side exposed to light inhibited the accumulation of these anthocyanins. This effect could probably be due to the presence of these anthocyanins in the epidermal cells of K. blossfeldiana leaves and was visible in the microscopic view of its cross-section. These anthocyanins were directly exposed to JA-Me, leading to inhibition of their formation and/or accumulation. The lack of significant effects of JA-Me on anthocyanin mono- and tri-glycosides may indicate that they are mainly present in the mesophyll tissue of the leaf.
Collapse
Affiliation(s)
- Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Marian Saniewski
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | | | - Justyna Góraj-Koniarska
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Joanna Mitrus
- Institute of Biological Sciences, University of Siedlce, Prusa 14, 08-110 Siedlce, Poland
| | - Marcin Horbowicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
9
|
Fan YG, Zhao TT, Xiang QZ, Han XY, Yang SS, Zhang LX, Ren LJ. Multi-Omics Research Accelerates the Clarification of the Formation Mechanism and the Influence of Leaf Color Variation in Tea ( Camellia sinensis) Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:426. [PMID: 38337959 PMCID: PMC10857240 DOI: 10.3390/plants13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Tea is a popular beverage with characteristic functional and flavor qualities, known to be rich in bioactive metabolites such as tea polyphenols and theanine. Recently, tea varieties with variations in leaf color have been widely used in agriculture production due to their potential advantages in terms of tea quality. Numerous studies have used genome, transcriptome, metabolome, proteome, and lipidome methods to uncover the causes of leaf color variations and investigate their impacts on the accumulation of crucial bioactive metabolites in tea plants. Through a comprehensive review of various omics investigations, we note that decreased expression levels of critical genes in the biosynthesis of chlorophyll and carotenoids, activated chlorophyll degradation, and an impaired photosynthetic chain function are related to the chlorina phenotype in tea plants. For purple-leaf tea, increased expression levels of late biosynthetic genes in the flavonoid synthesis pathway and anthocyanin transport genes are the major and common causes of purple coloration. We have also summarized the influence of leaf color variation on amino acid, polyphenol, and lipid contents and put forward possible causes of these metabolic changes. Finally, this review further proposes the research demands in this field in the future.
Collapse
Affiliation(s)
- Yan-Gen Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Ting-Ting Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Qin-Zeng Xiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Xiao-Yang Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Shu-Sen Yang
- Yipinming Tea Planting Farmers Specialized Cooperative, Longnan 746400, China;
| | - Li-Xia Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Li-Jun Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| |
Collapse
|
10
|
Bai Y, Zou R, Zhang H, Li J, Wu T. Functional Characterization of CsF3Ha and Its Promoter in Response to Visible Light and Plant Growth Regulators in the Tea Plant. PLANTS (BASEL, SWITZERLAND) 2024; 13:196. [PMID: 38256750 PMCID: PMC10820056 DOI: 10.3390/plants13020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Flavanone 3-hydroxylase (F3H) catalyzes trihydroxyflavanone formation into dihydroflavonols in the anthocyanin biosynthesis pathway, serving as precursors for anthocyanin synthesis. To investigate the CsF3Ha promoter's regulation in the 'Zijuan' tea plant, we cloned the CsF3Ha gene from this plant. It was up-regulated under various visible light conditions (blue, red, and ultraviolet (UV)) and using plant growth regulators (PGRs), including abscisic acid (ABA), gibberellic acid (GA3), salicylic acid (SA), ethephon, and methyl jasmonate (MeJA). The 1691 bp promoter sequence was cloned. The full-length promoter P1 (1691 bp) and its two deletion derivatives, P2 (890 bp) and P3 (467 bp), were fused with the β-glucuronidase (GUS) reporter gene, and were introduced into tobacco via Agrobacterium-mediated transformation. GUS staining, activity analysis, and relative expression showed that visible light and PGRs responded to promoter fragments. The anthocyanin content analysis revealed a significant increase due to visible light and PGRs. These findings suggest that diverse treatments indirectly enhance anthocyanin accumulation in 'Zijuan' tea plant leaves, establishing a foundation for further research on CsF3Ha promoter activity and its regulatory role in anthocyanin accumulation.
Collapse
Affiliation(s)
- Yan Bai
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (Y.B.); (H.Z.); (J.L.)
| | - Rui Zou
- Qiannan Academy of Agricultural Sciences, Duyun 558000, China;
| | - Hongye Zhang
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (Y.B.); (H.Z.); (J.L.)
| | - Jiaying Li
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (Y.B.); (H.Z.); (J.L.)
| | - Tian Wu
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China; (Y.B.); (H.Z.); (J.L.)
| |
Collapse
|
11
|
Mackon E, Guo Y, Jeazet Dongho Epse Mackon GC, Ma Y, Yao Y, Luo D, Dai X, Zhao N, Lu Y, Jandan TH, Liu P. OsGSTU34, a Bz2-like anthocyanin-related glutathione transferase transporter, is essential for rice (Oryza sativa L.) organs coloration. PHYTOCHEMISTRY 2024; 217:113896. [PMID: 37866445 DOI: 10.1016/j.phytochem.2023.113896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Anthocyanins are a flavonoid compound known as one of the most important chromogenic substances. They play several functions, including health promotion and sustaining plants during adverse conditions. They are synthesized at the endoplasmic reticulum and sequestered in the vacuole. In this work, we generated knock-out lines of OsGSTU34, a glutathione transporter's tau gene family, with no transgene line and off-target through CRISPR/Cas9 mutagenesis and highlighted the loss of pigmentation in rice flowers, leaves, stems, shoots, and caryopsis. The anthocyanin quantification in the wild-type BLWT and mutant line BLG34-8 caryopsis showed that cyanidin-3-O-glucoside (C3G) and peonidin-3-O-glucoside (P3G) were almost undetectable in the mutant line. A tandem mass tag (TMT) labeling proteomic analysis was conducted to elucidate the proteomic changes in the BLWT and BLG34-8. The result revealed that 1175 proteins were altered, including 408 that were down-regulated and 767 that were upregulated. The accumulation of the OsGSTU34-related protein (Q8L576), along with several anthocyanin-related proteins, was down-regulated. The enrichment analysis showed that the down-regulated proteins were enriched in different pathways, among which the phenylpropanoid biosynthesis pathway, flavonoid biosynthesis metabolites, and anthocyanin biosynthesis pathway. Protein interaction network prediction revealed that glutathione-S-transferase (Q8L576) was connected to the proteins involved in the flavonoid and anthocyanin biosynthesis pathways, such as flavanone 3-dioxygenase 1 (Q7XM21), leucoanthocyanidin dioxygenase 1 (Q93VC3), 4-coumarate-CoA ligase 2 (Q42982), phenylalanine ammonia-lyase (P14717), chalcone synthase 1 (Q2R3A1), and 4-coumarate-CoA ligase 5 (Q6ZAC1). However, the expression of the most important anthocyanin biosynthesis gene was not altered, suggesting that only the transport mechanism was affected. Our findings highlight new insight into the anthocyanin pigmentation in black rice and provide new perspectives for future research.
Collapse
Affiliation(s)
- Enerand Mackon
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University PR China.
| | - Yongqiang Guo
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | | | - Yafei Ma
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Yuhang Yao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Dengjie Luo
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University PR China.
| | - Xianggui Dai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Neng Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Ying Lu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Tahir Hussain Jandan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| | - Piqing Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, PR China.
| |
Collapse
|
12
|
Zhao Y, Yang P, Cheng Y, Liu Y, Yang Y, Liu Z. Insights into the physiological, molecular, and genetic regulators of albinism in Camellia sinensis leaves. Front Genet 2023; 14:1219335. [PMID: 37745858 PMCID: PMC10516542 DOI: 10.3389/fgene.2023.1219335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: Yanling Yinbiancha, a cultivar of Camellia sinensis (L.) O. Kuntze, is an evergreen woody perennial with characteristic albino leaves. A mutant variant with green leaves on branches has been recently identified. The molecular mechanisms underlying this color variation remain unknown. Methods: We aimed to utilize omics tools to decipher the molecular basis for this color variation, with the ultimate goal of enhancing existing germplasm and utilizing it in future breeding programs. Results and discussion: Albinotic leaves exhibited significant chloroplast degeneration and reduced carotenoid accumulation. Transcriptomic and metabolomic analysis of the two variants revealed 1,412 differentially expressed genes and 127 differentially accumulated metabolites (DAMs). Enrichment analysis for DEGs suggested significant enrichment of pathways involved in the biosynthesis of anthocyanins, porphyrin, chlorophyll, and carotenoids. To further narrow down the causal variation for albinotic leaves, we performed a conjoint analysis of metabolome and transcriptome and identified putative candidate genes responsible for albinism in C. sinensis leaves. 12, 7, and 28 DEGs were significantly associated with photosynthesis, porphyrin/chlorophyll metabolism, and flavonoid metabolism, respectively. Chlorophyllase 2, Chlorophyll a-Binding Protein 4A, Chlorophyll a-Binding Protein 24, Stay Green Regulator, Photosystem II Cytochrome b559 subunit beta along with transcription factors AP2, bZIP, MYB, and WRKY were identified as a potential regulator of albinism in Yanling Yinbiancha. Moreover, we identified Anthocyanidin reductase and Arabidopsis Response Regulator 1 as DEGs influencing flavonoid accumulation in albino leaves. Identification of genes related to albinism in C. sinensis may facilitate genetic modification or development of molecular markers, potentially enhancing cultivation efficiency and expanding the germplasm for utilization in breeding programs.
Collapse
Affiliation(s)
- Yang Zhao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | | | | | | | | | - Zhen Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|
13
|
Li Y, Chen Y, Chen J, Shen C. Flavonoid metabolites in tea plant (Camellia sinensis) stress response: Insights from bibliometric analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107934. [PMID: 37572493 DOI: 10.1016/j.plaphy.2023.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
In the context of global climate change, tea plants are at risk from elevating environmental stress factors. Coping with this problem relies upon the understanding of tea plant stress response and its underlying mechanisms. Over the past two decades, research in this field has prospered with the contributions of scientists worldwide. Aiming in providing a comprehensive perspective of the research field related to tea plant stress response, we present a bibliometric analysis of the this area. Our results demonstrate the most studied stresses, global contribution, authorship and collaboration, and trending research topics. We highlight the importance of flavonoid metabolites in tea plant stress response, particularly their role in maintaining redox homeostasis, yield, and adjusting tea quality under stress conditions. Further research on the flavonoid response under various stress conditions can promote the development of cultivation measures, thereby improving stress resistance and tea quality.
Collapse
Affiliation(s)
- YunFei Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - YiQin Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - JiaHao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China
| | - ChengWen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
14
|
Li XX, Li ZY, Zhu W, Wang YQ, Liang YR, Wang KR, Ye JH, Lu JL, Zheng XQ. Anthocyanin metabolism and its differential regulation in purple tea (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107875. [PMID: 37451003 DOI: 10.1016/j.plaphy.2023.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Tea plants (Camellia sinensis) typically contain high-flavonoid phytochemicals like catechins. Recently, new tea cultivars with unique purple-colored leaves have gained attention. These purple tea cultivars are enriched with anthocyanin, which provides an interesting perspective for studying the metabolic flux of the flavonoid pathway. An increasing number of studies are focusing on the leaf color formation of purple tea and this review aims to summarize the latest progress made on the composition and accumulation of anthocyanins in tea plants. In addition, the regulation mechanism in its synthesis will be discussed and a hypothetical regulation model for leaf color transformation during growth will be proposed. Some novel insights are presented to facilitate future in-depth studies of purple tea to provide a theoretical basis for targeted breeding programs in leaf color.
Collapse
Affiliation(s)
- Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ze-Yu Li
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Wan Zhu
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ying-Qi Wang
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Kai-Rong Wang
- General Agrotechnical Extension Station of Ningbo City, Ningbo, Zhejiang, 315000, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
15
|
Zhao X, Li P, Zuo H, Peng A, Lin J, Li P, Wang K, Tang Q, Tadege M, Liu Z, Zhao J. CsMYBL2 homologs modulate the light and temperature stress-regulated anthocyanin and catechins biosynthesis in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1051-1070. [PMID: 37162381 DOI: 10.1111/tpj.16279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Anthocyanin and catechin production in tea (Camellia sinensis) leaves can positively affect tea quality; however, their regulatory mechanisms are not fully understood. Here we report that, while the CsMYB75- or CsMYB86-directed MYB-bHLH-WD40 (MBW) complexes differentially activate anthocyanin or catechin biosynthesis in tea leaves, respectively, CsMYBL2a and CsMYBL2b homologs negatively modified the light- and temperature-induced anthocyanin and catechin production in both Arabidopsis and tea plants. The MBW complexes activated both anthocyanin synthesis genes and the downstream repressor genes CsMYBL2a and CsMYBL2b. Overexpression of CsMYBL2b, but not CsMYBL2a, repressed Arabidopsis leaf anthocyanin accumulation and seed coat proanthocyanin production. CsMYBL2b strongly and CsMYBL2a weakly repressed the activating effects of CsMYB75/CsMYB86 on CsDFR and CsANS, due to their different EAR and TLLLFR domains and interactions with CsTT8/CsGL3, interfering with the functions of activating MBW complexes. CsMYBL2b and CsMYBL2a in tea leaves play different roles in fine-tuning CsMYB75/CsMYB86-MBW activation of biosynthesis of anthocyanins and catechins, respectively. The CsbZIP1-CsmiR858a-CsMYBL2 module mediated the UV-B- or cold-activated CsMYB75/CsMYB86 regulation of anthocyanin/catechin biosynthesis by repressing CsMYBL2a and CsMYBL2b. Similarly, the CsCOP1-CsbZIP1-CsPIF3 module, and BR signaling as well, mediated the high temperature repression of anthocyanin and catechin biosynthesis through differentially upregulating CsMYBL2b and CsMYBL2a, respectively. The present study provides new insights into the complex regulatory networks in environmental stress-modified flavonoid production in tea plant leaves.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Anqi Peng
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Junming Lin
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
16
|
Chen Y, Yang J, Meng Q, Tong H. Non-volatile metabolites profiling analysis reveals the tea flavor of "Zijuan" in different tea plantations. Food Chem 2023; 412:135534. [PMID: 36732104 DOI: 10.1016/j.foodchem.2023.135534] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Characteristic metabolites including tea polyphenols, amino acids, catechins, caffeine, sugars and anthocyanins were fully analyzed by high performance liquid chromatography (HPLC), gas chromatography tandem mass spectrometry (GC-MS) and ultra-high performance liquid chromatography (UHPLC)-ESI-tandem mass spectrometry (MS/MS), and showed significant differences among Zijuan tea from different plantations in Yunnan province (YN-ZJ), Qijiang (QJ-ZJ) and Ersheng (ES-ZJ) district, China, indicating that Zijuan is significantly influenced by growth conditions. Monosaccharides were the most abundant soluble sugars in YN-ZJ and ES-ZJ, while disaccharides was abundant in QJ-ZJ. d-galactose, d-mannose, d-sorbitol, inositol, d-glucose, d-galacturonic acid and raffinose involved in galactose metabolism were significantly changed (P < 0.05). Delphinidin, cyanidin, pelargonidin and their glycoside derivatives were the major anthocyanins, and showed significant differences among Zijuan samples. Flavonoids and procyanidins abundant in Zijuan provided more substrates for anthocyanins accumulation. This study presented comprehensive chemical profiling and characterized metabolites of Zijuan in different tea plantations.
Collapse
Affiliation(s)
- Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China.
| | - Juan Yang
- Tea Research Institute, Chongqing Academy of Agricultural Sciences, Yongchuan, Chongqing 402160, China
| | - Qing Meng
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huarong Tong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Zhuang WB, Li YH, Shu XC, Pu YT, Wang XJ, Wang T, Wang Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023; 28:molecules28083599. [PMID: 37110833 PMCID: PMC10147097 DOI: 10.3390/molecules28083599] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
With the climate constantly changing, plants suffer more frequently from various abiotic and biotic stresses. However, they have evolved biosynthetic machinery to survive in stressful environmental conditions. Flavonoids are involved in a variety of biological activities in plants, which can protect plants from different biotic (plant-parasitic nematodes, fungi and bacteria) and abiotic stresses (salt stress, drought stress, UV, higher and lower temperatures). Flavonoids contain several subgroups, including anthocyanidins, flavonols, flavones, flavanols, flavanones, chalcones, dihydrochalcones and dihydroflavonols, which are widely distributed in various plants. As the pathway of flavonoid biosynthesis has been well studied, many researchers have applied transgenic technologies in order to explore the molecular mechanism of genes associated with flavonoid biosynthesis; as such, many transgenic plants have shown a higher stress tolerance through the regulation of flavonoid content. In the present review, the classification, molecular structure and biological biosynthesis of flavonoids were summarized, and the roles of flavonoids under various forms of biotic and abiotic stress in plants were also included. In addition, the effect of applying genes associated with flavonoid biosynthesis on the enhancement of plant tolerance under various biotic and abiotic stresses was also discussed.
Collapse
Affiliation(s)
- Wei-Bing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Hang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiao-Chun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Ting Pu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiao-Jing Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
18
|
Cai T, Ge-Zhang S, Song M. Anthocyanins in metabolites of purple corn. FRONTIERS IN PLANT SCIENCE 2023; 14:1154535. [PMID: 37089635 PMCID: PMC10118017 DOI: 10.3389/fpls.2023.1154535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Purple corn (Zea mays L.) is a special variety of corn, rich in a large amount of anthocyanins and other functional phytochemicals, and has always ranked high in the economic benefits of the corn industry. However, most studies on the stability of agronomic traits and the interaction between genotype and environment in cereal crops focus on yield. In order to further study the accumulation and stability of special anthocyanins in the growth process of purple corn, this review starts with the elucidation of anthocyanins in purple corn, the biosynthesis process and the gene regulation mechanism behind them, points out the influence of anthocyanin metabolism on anthocyanin metabolism, and introduces the influence of environmental factors on anthocyanin accumulation in detail, so as to promote the multi-field production of purple corn, encourage the development of color corn industry and provide new opportunities for corn breeders and growers.
Collapse
Affiliation(s)
- Taoyang Cai
- Aulin College, Northeast Forestry University, Harbin, China
| | | | - Mingbo Song
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
19
|
Yang G, Meng Q, Shi J, Zhou M, Zhu Y, You Q, Xu P, Wu W, Lin Z, Lv H. Special tea products featuring functional components: Health benefits and processing strategies. Compr Rev Food Sci Food Saf 2023; 22:1686-1721. [PMID: 36856036 DOI: 10.1111/1541-4337.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
The functional components in tea confer various potential health benefits to humans. To date, several special tea products featuring functional components (STPFCs) have been successfully developed, such as O-methylated catechin-rich tea, γ-aminobutyric acid-rich tea, low-caffeine tea, and selenium-rich tea products. STPFCs have some unique and enhanced health benefits when compared with conventional tea products, which can meet the specific needs and preferences of different groups and have huge market potential. The processing strategies to improve the health benefits of tea products by regulating the functional component content have been an active area of research in food science. The fresh leaves of some specific tea varieties rich in functional components are used as raw materials, and special processing technologies are employed to prepare STPFCs. Huge progress has been achieved in the research and development of these STPFCs. However, the current status of these STPFCs has not yet been systematically reviewed. Here, studies on STPFCs have been comprehensively reviewed with a focus on their potential health benefits and processing strategies. Additionally, other chemical components with the potential to be developed into special teas and the application of tea functional components in the food industry have been discussed. Finally, suggestions on the promises and challenges for the future study of these STPFCs have been provided. This paper might shed light on the current status of the research and development of these STPFCs. Future studies on STPFCs should focus on screening specific tea varieties, identifying new functional components, evaluating health-promoting effects, improving flavor quality, and elucidating the interactions between functional components.
Collapse
Affiliation(s)
- Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiushuang You
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
20
|
Gao C, Sun Y, Li J, Zhou Z, Deng X, Wang Z, Wu S, Lin L, Huang Y, Zeng W, Lyu S, Chen J, Cao S, Yu S, Chen Z, Sun W, Xue Z. High Light Intensity Triggered Abscisic Acid Biosynthesis Mediates Anthocyanin Accumulation in Young Leaves of Tea Plant ( Camellia sinensis). Antioxidants (Basel) 2023; 12:antiox12020392. [PMID: 36829950 PMCID: PMC9952078 DOI: 10.3390/antiox12020392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
There is increasing interest in the production and consumption of tea (Camellia sinensis L.) processed from purple-leaved cultivar due to their high anthocyanin content and health benefits. However, how and why seasonal changes affect anthocyanin accumulation in young tea leaves still remains obscured. In this study, anthocyanin and abscisic acid (ABA) contents in young leaves of Zifuxing 1 (ZFX1), a cultivar with new shoots turning to purple in Wuyi Mountain, a key tea production region in China, were monitored over four seasons. Young leaves produced in September were highly purplish, which was accompanied with higher anthocyanin and ABA contents. Among the environmental factors, the light intensity in particular was closely correlated with anthocyanin and ABA contents. A shade experiment also indicated that anthocyanin content significantly decreased after 168 h growth under 75% shade, but ABA treatment under the shade conditions sustained anthocyanin content. To confirm the involvement of ABA in the modulation of anthocyanin accumulation, anthocyanin, carotenoids, chlorophyll, ABA, jasmonic acid (JA), and salicylic acid (SA) in the young leaves of four cultivars, including ZFX1, Zijuan (ZJ), wherein leaves are completely purple, Rougui (RG) and Fudingdabaicha (FDDB) wherein leaves are green, were analyzed, and antioxidant activities of the leaf extracts were tested. Results showed that ABA, not other tested hormones, was significantly correlated with anthocyanin accumulation in the purple-leaved cultivars. Cultivars with higher anthocyanin contents exhibited higher antioxidant activities. Subsequently, ZFX1 plants were grown under full sun and treated with ABA and fluridone (Flu), an ABA inhibitor. ABA treatment elevated anthocyanin level but decreased chlorophyll contents. The reverse was true to those treated with Flu. To pursue a better understanding of ABA involvement in anthocyanin accumulation, RNA-Seq was used to analyze transcript differences among ABA- or Flu-treated and untreated ZFX1 plants. Results indicated that the differentially expressed genes in ABA or Flu treatment were mainly ABA signal sensing and metabolism-related genes, anthocyanin accumulation-related genes, light-responsive genes, and key regulatory MYB transcription factors. Taking all the results into account, a model for anthocyanin accumulation in ZFX1 cultivar was proposed: high light intensity caused reactive oxygen stress, which triggered the biosynthesis of ABA; ABA interactions with transcription factors, such as MYB-enhanced anthocyanin biosynthesis limited chlorophyll and carotenoid accumulation; and transport of anthocyanin to vacuoles resulting in the young leaves of ZFX1 with purplish coloration. Further research is warranted to test this model.
Collapse
Affiliation(s)
- Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoling Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
| | - Wen Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiheng Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
| | - Shixian Cao
- Wuyixing Tea Industry Co., Ltd., Nanping 353000, China
| | - Shuntian Yu
- Wuyixing Tea Industry Co., Ltd., Nanping 353000, China
| | - Zhidan Chen
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
- Correspondence: (Z.C.); (W.S.); (Z.X.); Tel.: +86-158-0599-8677 (Z.C.); +86-137-0506-7139 (W.S.); +86-134-0591-6632 (Z.X.)
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.C.); (W.S.); (Z.X.); Tel.: +86-158-0599-8677 (Z.C.); +86-137-0506-7139 (W.S.); +86-134-0591-6632 (Z.X.)
| | - Zhihui Xue
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
- Correspondence: (Z.C.); (W.S.); (Z.X.); Tel.: +86-158-0599-8677 (Z.C.); +86-137-0506-7139 (W.S.); +86-134-0591-6632 (Z.X.)
| |
Collapse
|
21
|
Kaur S, Tiwari V, Kumari A, Chaudhary E, Sharma A, Ali U, Garg M. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture. J Biotechnol 2023; 361:12-29. [PMID: 36414125 DOI: 10.1016/j.jbiotec.2022.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Global warming is the major cause of abiotic and biotic stresses that reduce plant growth and productivity. Various stresses such as drought, low temperature, pathogen attack, high temperature and salinity all negatively influence plant growth and development. Due to sessile beings, they cannot escape from these adverse conditions. However, plants develop a variety of systems that can help them to tolerate, resist, and escape challenges imposed by the environment. Among them, anthocyanins are a good example of stress mitigators. They aid plant growth and development by increasing anthocyanin accumulation, which leads to increased resistance to various biotic and abiotic stresses. In the primary metabolism of plants, anthocyanin improves the photosynthesis rate, membrane permeability, up-regulates many enzyme transcripts related to anthocyanin biosynthesis, and optimizes nutrient uptake. Generally, the most important genes of the anthocyanin biosynthesis pathways were up-regulated under various abiotic and biotic stresses. The present review will highlight anthocyanin mediated stress tolerance in plants under various abiotic and biotic stresses. We have also compiled literature related to genetically engineer stress-tolerant crops generated using over-expression of genes belonging to anthocyanin biosynthetic pathway or its regulation. To sum up, the present review provides an up-to-date description of various signal transduction mechanisms that modulate or enhance anthocyanin accumulation under stress conditions.
Collapse
Affiliation(s)
- Satveer Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India; Department of Biotechnology, Panjab University, Chandigarh, India.
| | - Vandita Tiwari
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Anita Kumari
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India; University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Era Chaudhary
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Anjali Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Usman Ali
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India.
| |
Collapse
|
22
|
Liu ZW, Shi XY, Duan SM, Nian B, Chen LJ, Zhang GH, Lv CY, Ma Y, Zhao M. Multiomics analysis of the mechanisms behind flavonoid differences between purple and green tender shoots of Camellia sinensis var. assamica. G3 (BETHESDA, MD.) 2022; 13:6808630. [PMID: 36342187 PMCID: PMC9911070 DOI: 10.1093/g3journal/jkac297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
Flavonoids are rich in tea plants (Camellia sinensis), and responsible for the flavor and healthful benefits of tea beverage. The anthocyanin levels in the purple tender shoots are higher than in the general green leaves of tea plant, which provide special materials to search metabolic mechanisms of flavonoid enrichment in plant. In this work, flavonoid differences between purple and green shoots from tea cultivars "Zijuan" (ZJ) and "Yunkang10" (YK-10) were investigated through metabolomic analysis, and mechanisms for their difference were surveyed by comparative transcriptomic and proteomic analysis. Levels of 34 flavonoids were different between ZJ and YK-10 shoots. Among them, 8 and 6 were marker metabolites in ZJ and YK-10, respectively. The differentially expressed genes (DEGs), differentially expressed proteins (DEPs), and different-level metabolites (DLMs) between ZJ and YK-10 were researched, respectively; and interactions including DEG-DLM, DEP-DLM, DEG-DEP, and DEG-DEP-DLM were analyzed; the contents of 18 characteristic flavonoids in tea leaves and expressions of 34 flavonoid metabolic genes were measured to verify the omics results. Integrated above analyses, a proposed model of flavonoids biosynthesis in tea shoots were established. The differential expression of the leucoanthocyanidin reductase (LAR), anthocyanidin synthase (ANS), anthocyanidin reductase (ANR), UDPG-flavonoid glucosyltransferase (UGT) 75L12 and 94P1 at gene level, and the ANS, ANR, and UGT78A15 at protein level, were closely associated with differences in flavonoids between ZJ and YK-10 shoot. Together, this study provides new information on the flavonoid accumulation mechanism in tea plant.
Collapse
Affiliation(s)
| | | | | | - Bo Nian
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Li-Jiao Chen
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Guang-Hui Zhang
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Cai-You Lv
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yan Ma
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming Zhao
- Corresponding author: College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, No. 452, Fengyuan Road, Kunming, Yunnan 650201, China.
| |
Collapse
|
23
|
Patel PK, Siddiqui SA, Kuča K, Sabhapondit S, Sarma R, Gogoi B, Singh SK, Bordoloi RK, Saikia JK, Gogoi RC, Bhardwaj K, Yang J, Tao Y, Manickam S, Das B. Physiological and biochemical evaluation of high anthocyanin pigmented tea ( Camellia sinensis L. O. Kuntze) germplasm for purple tea production. Front Nutr 2022; 9:990529. [PMID: 36118770 PMCID: PMC9471081 DOI: 10.3389/fnut.2022.990529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Finding promising purple tea germplasm that would target new tea products for diversification and value addition boost the tea industry's economic growth. Accordingly, 10 tea germplasm viz. TRA St. 817, TRA St. 293, TRA St. 400, TRA 177/3, TRA 376/2, TRA 376/3, TRA 427/7, TRA P7, TRA P8, and TV1 were evaluated in terms of gas exchange parameters, multiplication performance, and biochemical markers such as chlorophyll, carotenoids, and anthocyanin content, which are related to the purple tea quality. The investigated gas exchange and biochemical parameters revealed significant differences. Germplasm TRA St.817 was physiologically more efficient (24.7 μmol m-2 s-1), followed by TRA St. 293, exhibiting the highest net photosynthesis, water use efficiency (19.02 μmol mmol-1), carboxylation efficiency (0.73), chlorophyll fluorescence or photochemical efficiency of PSII (0.754) and mesophyll efficiency (ci/gs ratio: 2.54). Net photosynthesis was positively correlated with water use efficiency, carboxylation efficiency, mesophyll efficiency, and photochemical efficiency of PSII (r = 0.965**, 0.937**, 0.857**, 0.867**; P = 0.05), respectively, but negatively correlated with the transpiration ratio (r = -0.878**; P = 0.05) based on Pearson correlation analysis. The total anthocyanin content (4764.19 μg.g-1 fresh leaf weight) and carotenoid content (3.825 mg.g-1 fresh leaf weight) were highest in the TRA St.817 germplasm, followed by germplasm TRA St. 293 (2926.18 μg.g-1 FW). In contrast, total chlorophyll content was significantly low (1.779 mg.g-1 fresh weight), which is very suitable for manufacturing purple tea. The highest carotenoid concentration in TRA St. 817 was 3.825 mg.g-1 FW, followed by TRA P8 (3.475 mg.g-1 FW), favoring the formation of more volatile flavor constituents. The promising germplasm, TRA St 817, has a multiplication success rate of 91.4% through cleft grafting. The outcome reveals that TRA St.817 is a promising germplasm that can be used to make speciality teas, i.e., purple tea.
Collapse
Affiliation(s)
- Pradeep Kumar Patel
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL eV), Quakenbrück, Germany
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Santanu Sabhapondit
- Department of Biochemistry, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Rupak Sarma
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Boby Gogoi
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Shobhit Kumar Singh
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Ranjeet Kumar Bordoloi
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Jayanta Kumar Saikia
- Department of Plant Physiology and Breeding, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Romen Chandra Gogoi
- Tea Testing Laboratory, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Buddhadeb Das
- North Bengal Regional R&D Centre, Tea Research Association, Nagrakata, India
| |
Collapse
|
24
|
Response of Anthocyanin Accumulation in Pepper (Capsicum annuum) Fruit to Light Days. Int J Mol Sci 2022; 23:ijms23158357. [PMID: 35955513 PMCID: PMC9369206 DOI: 10.3390/ijms23158357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Light is the key factor affecting the synthesis of anthocyanins in pepper. In this study, pepper fruit under different light days was used as experimental material to explore the synthesis of anthocyanins in purple pepper. A total of 38 flavonoid metabolites were identified in the purple pepper germplasm HNUCA21 by liquid chromatography–tandem mass spectrometry (LC-MS/MS), of which 30 belong to anthocyanins. The detected anthocyanin with the highest content was Delphinidin-3-O-glucoside (17.13 µg/g), which reached the maximum after 168 h of light treatment. Through weighted gene co-expression network analysis (WGCNA), the brown module was identified to be related to the early synthesis of anthocyanins. This module contains many structural genes related to flavonoid synthesis, including chalcone synthase (CHS 107871256, 107864266), chalcone isomerase (CHI 107871144, 107852750), dihydroflavonol 4-reductase (DFR 107860031), flavonoid 3′ 5′-hydroxylase (F3’5’H 107848667), flavonoid 3′-monooxygenase (F3M 107862334), leucoanthocyanidin dioxygenase (LDOX 107866341), and trans-cinnamate 4-monooxygenase (TCM 107875406, 107875407). The module also contained some genes related to anthocyanin transport function, such as glutathione S-transferase (GST 107861273), anthocyanidin 3-O-glucosyltransferase (UDPGT 107861697, 107843659), and MATE (107863234, 107844661), as well as some transcription factors, such as EGL1 (107865400), basic helix-loop-helix 104 (bHLH104 107864591), and WRKY44 (107843538, 107843524). The co-expression regulatory network indicated the involvement of CHS, DFR, CHI, and EGL1, as well as two MATE and two WRKY44 genes in anthocyanin synthesis. The identified genes involved in early, middle, and late light response provided a reference for the further analysis of the regulatory mechanism of anthocyanin biosynthesis in pepper.
Collapse
|
25
|
Li P, Xia E, Fu J, Xu Y, Zhao X, Tong W, Tang Q, Tadege M, Fernie AR, Zhao J. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1144-1165. [PMID: 35277905 DOI: 10.1111/tpj.15729] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 05/20/2023]
Abstract
Tea (Camellia sinensis) is concocted from tea plant shoot tips that produce catechins, caffeine, theanine, and terpenoids, which collectively determine the rich flavors and health benefits of the infusion. However, little is known about the integrated regulation of shoot tip development and characteristic secondary metabolite biosynthesis in tea plants. Here, we demonstrate that MYB transcription factors (TFs) play key and yet diverse roles in regulating leaf and stem development, secondary metabolite biosynthesis, and environmental stress responses in tea plants. By integrating transcriptomic and metabolic profiling data in different tissues at a series of developmental stages or under various stress conditions, alongside biochemical and genetic analyses, we predicted the MYB TFs involved in regulating shoot development (CsMYB2, 98, 107, and 221), epidermal cell initiation (CsMYB184, 41, 139, and 219), stomatal initiation (CsMYB113 and 153), and the biosynthesis of flavonoids (including catechins, anthocyanins, and flavonols; CsMYB8 and 99), caffeine (CsMYB85 and 86), theanine (CsMYB9 and 49), carotenoids (CsMYB110), mono-/sesquiterpenoid volatiles (CsMYB68, 147, 148, and 193), lignin (CsMYB164 and 192), and indolic compounds (CsMYB139, 162, and 198), as well as the MYB TFs that are likely involved in hormone signaling-mediated environmental stress and defense responses. We characterized the functions of some key MYBs in regulating flavonoid and carotenoid biosynthesis for tea quality and flavor. This study provides a cross-family analysis of MYBs in tea alongside new insights into the coordinated regulation of tea plant shoot development and secondary metabolism, paving the way towards understanding of tea quality trait formation and genetic improvement of quality tea plants.
Collapse
Affiliation(s)
- Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jiamin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xuecheng Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma, 73401, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
26
|
Gindri RV, Pauletto R, Franco FW, Fortes JP, Treptow TC, Rodrigues E, Somacal S, Sautter CK. Grape UV-C irradiation in the postharvest period as a tool to improve sensorial quality and anthocyanin profile in 'Cabernet Sauvignon' wine. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1801-1811. [PMID: 35531414 PMCID: PMC9046525 DOI: 10.1007/s13197-021-05191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Anthocyanins are important compounds in grapes and wine and significantly influence their characteristics. Ultraviolet light-C (UV-C) can be used as a tool to induce secondary metabolism, and in this study, it was used in 'Cabernet Sauvignon' grapes in the postharvest period to improve the anthocyanin profile and sensory attributes in wine produced with irradiated grapes. Grapes in the postharvest period were exposed to 0, 2, or 3 kJ m-2 UV-C radiation. After winemaking and storage time (6 months), physicochemical and color analyses, anthocyanin quantification and identification (HPLC-PDA-MS/MS), and sensory analyses were carried out. 'Cabernet Sauvignon' wine produced with grapes irradiated with 3 kJ m-2 UV-C showed increased spectrophotometric color, which is likely due to a 22.5% increase in total anthocyanin monomers, 59.3% of pyranoanthocyanins, 92.3% of direct condensation products, and 62.8% of acetaldehyde-mediated condensation products. In addition, this irradiated dose presented higher perception scores for visual color, aroma, taste, and was preferred by the tasters over the wine produced with non-irradiated grapes. This study is the first of its kind to show that the UV-C radiation treatment of grapes in the postharvest period can be a promising tool to improve the anthocyanin profile and sensorial quality of 'Cabernet Sauvignon' wine. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05191-5.
Collapse
Affiliation(s)
- Rodrigo Valvassori Gindri
- Graduate Program on Food Science and Technology, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
| | - Roberson Pauletto
- Graduate Program on Food Science and Technology, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
| | - Fernanda Wouters Franco
- Graduate Program on Food Science and Technology, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
| | - Juciane Prois Fortes
- Graduate Program on Food Science and Technology, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
| | - Taísa Ceratti Treptow
- Graduate Program on Food Science and Technology, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
| | - Eliseu Rodrigues
- Department of Food Science, Federal University of Rio Grande Do Sul, Porto Alegre, RS 91501-970 Brazil
| | - Sabrina Somacal
- Graduate Program on Food Science and Technology, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
| | - Cláudia Kaehler Sautter
- Graduate Program on Food Science and Technology, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
- Integrated Centre for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Centre of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900 Brazil
| |
Collapse
|
27
|
Cai J, Lv L, Zeng X, Zhang F, Chen Y, Tian W, Li J, Li X, Li Y. Integrative Analysis of Metabolomics and Transcriptomics Reveals Molecular Mechanisms of Anthocyanin Metabolism in the Zikui Tea Plant ( Camellia sinensis cv. Zikui). Int J Mol Sci 2022; 23:4780. [PMID: 35563169 PMCID: PMC9103729 DOI: 10.3390/ijms23094780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we performed an association analysis of metabolomics and transcriptomics to reveal the anthocyanin biosynthesis mechanism in a new purple-leaf tea cultivar Zikui (Camellia sinensis cv. Zikui) (ZK). Three glycosylated anthocyanins were identified, including petunidin 3-O-glucoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside, and their contents were the highest in ZK leaves at 15 days. This is the first report on petunidin 3-O-glucoside in purple-leaf tea. Integrated analysis of the transcriptome and metabolome identified eleven dependent transcription factors, among which CsMYB90 had strong correlations with petunidin 3-O-glucoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside (PCC > 0.8). Furthermore, we also identified key correlated structural genes, including two positively correlated F3’H (flavonoid-3′-hydroxylase) genes, two positively correlated ANS (anthocyanin synthase) genes, and three negatively correlated PPO (polyphenol oxidase) genes. Overexpression of CsMYB90 in tobacco resulted in dark-purple transgenic calluses. These results showed that the increased accumulation of three anthocyanins in ZK may promote purple-leaf coloration because of changes in the expression levels of genes, including CsMYB90, F3’Hs, ANSs, and PPOs. These findings reveal new insight into the molecular mechanism of anthocyanin biosynthesis in purple-leaf tea plants and provide a series of candidate genes for the breeding of anthocyanin-rich cultivars.
Collapse
Affiliation(s)
- Ju Cai
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Litang Lv
- College of Tea Sciences, Guizhou University, Guiyang 550025, China;
| | - Xiaofang Zeng
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Fen Zhang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Yulu Chen
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Weili Tian
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Jianrong Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| |
Collapse
|
28
|
Poonia A, Pandey S, Vasundhara. Application of light emitting diodes (LEDs) for food preservation, post-harvest losses and production of bioactive compounds: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00086-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractLight-emitting diode (LED) technology is a new non-thermal food preservation method that works by converting light energy into heat. LED has potential to revolutionize crop production, protection and preservation. This technology is economical and environmentally friendly. LEDs have been shown to improve the nutritive quality and shelf life of foods, control the ripening of fruits, induce the synthesis of bioactive compounds and antioxidants and reduce the microbial contamination. This technology also has great scope in countries, where safety, hygiene, storage and distribution of foods are serious issues. While comparing this technology with other lighting technologies, LEDs can bring numerous advantages to food supply chain from farm to fork. In case of small growing amenities which exploit only LEDs, energy expenditure has been successfully reduced while producing nutritious food. LEDs can be used to give us better understanding and control over production and preservation of food with relation to spectral composition of light. LEDs also play significant role in food safety by inactivating the food borne pathogens. Therefore, LED lighting is a very effective and promising technology for extending shelf life of agricultural produce by increasing disease resistance and with increased nutritional values.
Graphical abstract
Collapse
|
29
|
Zhou Y, Mumtaz MA, Zhang Y, Yang Z, Hao Y, Shu H, Zhu J, Bao W, Cheng S, Zhu G, Wang Z. Response of anthocyanin biosynthesis to light by strand-specific transcriptome and miRNA analysis in Capsicum annuum. BMC PLANT BIOLOGY 2022; 22:79. [PMID: 35193520 PMCID: PMC8862587 DOI: 10.1186/s12870-021-03423-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/30/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Anthocyanins have distinct biological functions in plant coloring, plant defense against strong light, UV irradiation, and pathogen infection. Aromatic hydroxyl groups and ortho-dihydroxyl groups in anthocyanins are able to inhibit free-radical chain reactions and hydroxyl radicals. Thus, anthocyanins play an antioxidative role by removing various types of ROS. Pepper is one of the solanaceous vegetables with the largest cultivation area in China. The purple-fruited pepper is rich in anthocyanins, which not only increases the ornamental nature of the pepper fruit but also benefits the human body. In this experiment, light-induced regulatory pathways and related specific regulators of anthocyanin biosynthesis were examined through integrative transcriptomic and metabolomic analysis. RESULTS Results revealed that delphinium 3-O-glucoside significantly accumulated in light exposed surface of pepper fruit after 48 h as compared to shaded surface. Furthermore, through strand-specific sequencing technology, 1341 differentially expressed genes, 172 differentially expressed lncRNAs, 8 differentially expressed circRNAs, and 28 differentially expressed miRNAs were identified significantly different among both surfaces. The flavonoid synthesis pathway was significantly enriched by KEGG analysis including SHT (XM_016684802.1), AT-like (XM_016704776.1), CCoAOMT (XM_016698340.1, XM_016698341.1), CHI (XM_016697794.1, XM_016697793.1), CHS2 (XM_016718139.1), CHS1B (XM_016710598.1), CYP98A2-like (XM_016688489.1), DFR (XM_016705224.1), F3'5'H (XM_016693437.1), F3H (XM_016705025.1), F3'M (XM_016707872.1), LDOX (XM_016712446.1), TCM (XM_016722116.1) and TCM-like (XM_016722117.1). Most of these significantly enriched flavonoid synthesis pathway genes may be also regulated by lncRNA. Some differentially expressed genes encoding transcription factors were also identified including MYB4-like (XM_016725242.1), MYB113-like (XM_016689220.1), MYB308-like (XM_016696983.1, XM_016702244.1), and EGL1 (XM_016711673.1). Three 'lncRNA-miRNA-mRNA' regulatory networks with sly-miR5303, stu-miR5303g, stu-miR7997a, and stu-miR7997c were constructed, including 28 differentially expressed mRNAs and 6 differentially expressed lncRNAs. CONCLUSION Possible light regulated anthocyanin biosynthesis and transport genes were identified by transcriptome analysis, and confirmed by qRT-PCR. These results provide important data for further understanding of the anthocyanin metabolism in response to light in pepper.
Collapse
Affiliation(s)
- Yan Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Yonghao Zhang
- Institute of Tropical Horticulture Research in Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhuang Yang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Jie Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Wenlong Bao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China.
| |
Collapse
|
30
|
Molecular and Metabolic Changes under Environmental Stresses: The Biosynthesis of Quality Components in Preharvest Tea Shoots. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Severe environments impose various abiotic stresses on tea plants. Although much is known about the physiological and biochemical responses of tea (Camellia sinensis L.) shoots under environmental stresses, little is known about how these stresses impact the biosynthesis of quality components. This review summarizes and analyzes the changes in molecular and quality components in tea shoots subjected to major environmental stresses during the past 20 years, including light (shade, blue light, green light, and UV-B), drought, high/low temperature, CO2, and salinity. These studies reveal that carbon and nitrogen metabolism is critical to the downstream biosynthesis of quality components. Based on the molecular responses of tea plants to stresses, a series of artificial methods have been suggested to treat the pre-harvest tea plants that are exposed to inhospitable environments to improve the quality components in shoots. Furthermore, many pleiotropic genes that are up- or down-regulated under both single and concurrent stresses were analyzed as the most effective genes for regulating multi-resistance and quality components. These findings deepen our understanding of how environmental stresses affect the quality components of tea, providing novel insights into strategies for balancing plant resistance, growth, and quality components in field-based cultivation and for breeding plants using pleiotropic genes.
Collapse
|
31
|
Leng Z, Zhong B, Wu H, Liu Z, Rauf A, Bawazeer S, Suleria HAR. Identification of Phenolic Compounds in Australian-Grown Bell Peppers by Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry and Estimation of Their Antioxidant Potential. ACS OMEGA 2022; 7:4563-4576. [PMID: 35155947 PMCID: PMC8829910 DOI: 10.1021/acsomega.1c06532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 05/05/2023]
Abstract
Bell peppers are widely considered as healthy foods that can provide people with various phytochemicals, especially phenolic compounds, which contribute to the antioxidant property of bell peppers. Nevertheless, the acknowledgment of phenolic compounds in bell peppers is still limited. Therefore, this study aimed to determine the phenolic content and the antioxidant potential in pulps and seeds of different bell peppers (green, yellow, and red) by several in vitro assays followed by the characterization and quantification of individual phenolics using liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight-mass spectrometry (LC-ESI-QTOF-MS/MS) and high-performance liquid chromatography photodiode array (HPLC-PDA) quantification, respectively. The captured results showed that the pulp of red bell peppers exhibited the highest phenolic content in the total polyphenol content (1.03 ± 0.07 mg GAE/gf.w.), total flavonoid content (137.43 ± 6.35 μg QE/gf.w.), and total tannin content (0.22 ± 0.01 mg CE/gf.w.) as well as the most antioxidant potential in all antioxidant capacity estimation assays including total antioxidant capacity (3.56 ± 0.01 mg AAE/gf.w.), 2,2'-diphenyl-1-picrylhydrazyl (0.89 ± 0.01 mg AAE/gf.w.), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (1.36 ± 0.12 mg AAE/gf.w.), and ferric reducing antioxidant power (0.15 ± 0.01 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS isolated and identified a total of 59 phenolic compounds, including flavonoids (21), phenolic acids (20), other phenolic compounds (12), lignans (5), and stilbenes (1) in all samples. According to HPLC-PDA quantification, the seed portions showed a significantly higher amount of phenolic compounds. These findings indicated that the waste of bell peppers can be a potential source of phenolic compounds, which can be utilized as antioxidant ingredients in foods and nutritional products.
Collapse
Affiliation(s)
- Zexing Leng
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Biming Zhong
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hanjing Wu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ziyao Liu
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdur Rauf
- Department
of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa 23561, Pakistan
| | - Sami Bawazeer
- Department
of Pharmacognosy, Faculty of Pharmacy, Umm
Al-Qura University, P.O. Box 42, Makkah 21421, Kingdom of Saudi Arabia
| | - Hafiz Ansar Rasul Suleria
- School
of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
32
|
Gan S, Zheng G, Zhu S, Qian J, Liang L. Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Liriope spicata Fruit. Metabolites 2022; 12:metabo12020144. [PMID: 35208218 PMCID: PMC8879266 DOI: 10.3390/metabo12020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Liriope spicata is an important ornamental ground cover plant, with a fruit color that turns from green to black during the development and ripening stages. However, the material basis and regulatory mechanism of the color variation remains unclear. In this study, a total of 31 anthocyanins and 2 flavonols were identified from the skin of L. spicata fruit via integrative analysis on the metabolome and transcriptome of three developmental stages. The pigments of black/mature fruits are composed of five common anthocyanin compounds, of which Peonidin 3–O–rutinoside and Delphinidin 3–O–glucoside are the most differential metabolites for color conversion. Using dual-omics joint analysis, the mechanism of color formation was obtained as follows. The expression of structural genes including 4CL, F3H, F3′H, F3′5′H and UFGT were activated due to the upregulation of transcription factor genes MYB and bHLH. As a result, a large amount of precursor substances for the synthesis of flavonoids accumulated. After glycosylation, stable pigments were generated which promoted the accumulation of anthocyanins and the formation of black skin.
Collapse
|
33
|
Aroma analysis of Fuyun 6 and Jinguanyin black tea in the Fu'an area based on E-nose and GC–MS. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03930-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Shi J, Yang G, You Q, Sun S, Chen R, Lin Z, Simal-Gandara J, Lv H. Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34898343 DOI: 10.1080/10408398.2021.2007353] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tea flavonoids are widely recognized as critical flavor contributors and crucial health-promoting bioactive compounds, and have long been the focus of research worldwide in food science. The aim of this review paper is to summarize the major progress in tea flavonoid chemistry, their dynamics of constituents and concentrations during tea processing as well as storage, and their health functions studied between 2001 and 2021. Moreover, the utilization of tea flavonoids in the human body has also been discussed for a detailed understanding of their uptake, metabolism, and interaction with the gut microbiota. Many novel tea flavonoids have been identified, including novel A- and B-ring substituted flavan-3-ol derivatives, condensed and oxidized flavan-3-ol derivatives, and glycosylated and methylated flavonoids, and are found to be closely associated with the characteristic color, flavor, and health benefits of tea. Flavoalkaloids exist widely in various teas, particularly 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols. Tea flavonoids behave significantly difference in constituents and concentrations depending on tea cultivars, plantation conditions, multiple stresses, the tea-specified manufacturing steps, and even the long-term storage period. Tea flavonoids exhibit multiple health-promoting effects, particularly their anti-inflammatory in alleviating metabolic syndromes. Interaction of tea flavonoids with the gut microbiota plays vital roles in their health function.
Collapse
Affiliation(s)
- Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Gaozhong Yang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiushuang You
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shili Sun
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
35
|
Combined transcriptome and metabolome integrated analysis of Acer mandshuricum to reveal candidate genes involved in anthocyanin accumulation. Sci Rep 2021; 11:23148. [PMID: 34848790 PMCID: PMC8633053 DOI: 10.1038/s41598-021-02607-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022] Open
Abstract
The red color formation of Acer mandshuricum leaves is caused by the accumulation of anthocyanins primarily, but the molecular mechanism researches which underlie anthocyanin biosynthesis in A. mandshuricum were still lacking. Therefore, we combined the transcriptome and metabolome and analyzed the regulatory mechanism and accumulation pattern of anthocyanins in three different leaf color states. In our results, 26 anthocyanins were identified. Notably, the metabolite cyanidin 3-O-glucoside was found that significantly correlated with the color formation, was the predominant metabolite in anthocyanin biosynthesis of A. mandshuricum. By the way, two key structural genes ANS (Cluster-20561.86285) and BZ1 (Cluster-20561.99238) in anthocyanidin biosynthesis pathway were significantly up-regulated in RL, suggesting that they might enhance accumulation of cyanidin 3-O-glucoside which is their downstream metabolite, and contributed the red formation of A. mandshuricum leaves. Additionally, most TFs (e.g., MYBs, bZIPs and bHLHs) were detected differentially expressed in three leaf color stages that could participate in anthocyanin accumulation. This study sheds light on the anthocyanin molecular regulation of anthocyanidin biosynthesis and accumulation underlying the different leaf color change periods in A. mandshuricum, and it could provide basic theory and new insight for the leaf color related genetic improvement of A. mandshuricum.
Collapse
|
36
|
Wang X, Wang Y, Pan H, Yan C. Dimethyl fumarate prevents acute lung injury related cognitive impairment potentially via reducing inflammation. J Cardiothorac Surg 2021; 16:331. [PMID: 34772431 PMCID: PMC8588675 DOI: 10.1186/s13019-021-01705-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Dimethyl fumarate (DMF) has been reported to exert a protective role against diverse lung diseases and cognitive impairment-related diseases. Thus this study aimed to investigate its role on acute lung injury (ALI) and related cognitive impairment in animal model. METHODS C57BL/6 mice were divided into four groups: control group, DMF group, ALI group, and ALI + DMF group. For ALI group, the ALI mice model was created by airway injection of LPS (50 μL, 1 μg/μL); for ALI + DMF group, DMF (dissolved in 0.08% methylcellulose) was treated twice a day for 2 days, and on the third day, mice were injected with LPS for ALI modeling. Mice pre-administered with methylcellulose or DMF without LPS injection (PBS instead) were used as the control group and DMF group, respectively. Morris water maze test was performed before any treatment (0 h) and 6 h after LPS-induction (54 h) to evaluate the cognitive impairment of mice. Next, the brain edema and blood brain barrier (BBB) permeability of ALI mice were assessed by brain water content, Evans blue extravasation and FITC-Dextran uptake assays. In addition, the effect of DMF on the numbers of total cells and neutrophils, protein content in BALF were quantified; the inflammatory factors in BALF, serum, and brain tissues were examined by ELISA, qRT-PCR, and Western blot assays. The effect of DMF on the cognitive impairment-related factor HIF-1α level in lung and brain tissues was also examined by Western blot. RESULTS DMF reduced the numbers of total cells, neutrophils and protein content in BALF of ALI mice, inhibited the levels of IL-6, TNF-α and IL-1β in BALF, serum and brain tissues of ALI mice. The protein expressions of p-NF-κB/NF-κB and p-IKBα/IKBα was also suppressed by DMF in ALI mice. Morris water maze test showed that DMF alleviated the cognitive impairment in ALI mice by reducing the escape latency and path length. Moreover, DMF lessened the BBB permeability by decreasing cerebral water content, Evans blue extravasation and FITC-Dextran uptake in ALI mice. The HIF-1α levels in lung and brain tissues of ALI mice were also lessened by DMF. CONCLUSION In conclusion, DME had the ability to alleviate the lung injury and cerebral cognitive impairment in ALI model mice. This protective effect partly associated with the suppression of inflammation by DMF.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Respiratory, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou City, 310000, Zhejiang Province, China
| | - Yanbo Wang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou City, 310000, Zhejiang Province, China
| | - Haiyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310000, China
| | - Ci Yan
- Departments of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, No. 305 Tianmu Shan Road, Hangzhou City, 310000, Zhejiang Province, China.
| |
Collapse
|
37
|
Ferreyra MLF, Serra P, Casati P. Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. PHYSIOLOGIA PLANTARUM 2021; 173:736-749. [PMID: 34453749 DOI: 10.1111/ppl.13543] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 05/25/2023]
Abstract
Flavonoids are plant specialized metabolites that consist of one oxygenated and two aromatic rings. Different flavonoids are grouped according to the oxidation degree of the carbon rings; they can later be modified by glycosylations, hydroxylations, acylations, methylations, or prenylations. These modifications generate a wide collection of different molecules which have various functions in plants. All flavonoids absorb in the UV wavelengths, they mostly accumulate in the epidermis of plant cells and their biosynthesis is generally activated after UV exposure. Therefore, they have been assumed to protect plants against exposure to radiation in this range. Some flavonoids also absorb in other wavelengths, for example anthocyanins, which absorb light in the visible part of the solar spectrum. Besides, some flavonoids show antioxidant properties, that is, they act as scavengers of reactive oxygen species that could be produced after high fluence UV exposure. However, to date most reports were based on in vitro studies, and there is very little in vivo evidence of how their roles are carried out. In this review we first summarize the biosynthetic pathway of flavonoids and their characteristics, and we describe recent advances on the investigation of the role of three of the most abundant flavonoids: flavonols, flavones, and anthocyanins, protecting plants against UV exposure and high light exposure. We also present examples of how using UV-B supplementation to increase flavonoid content, is possible to improve plant nutritional and pharmaceutical values.
Collapse
Affiliation(s)
- María Lorena Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paloma Serra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
38
|
Maritim TK, Korir RK, Nyabundi KW, Wachira FN, Kamunya SM, Muoki RC. Molecular regulation of anthocyanin discoloration under water stress and high solar irradiance in pluckable shoots of purple tea cultivar. PLANTA 2021; 254:85. [PMID: 34581909 DOI: 10.1007/s00425-021-03736-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
During water-deficit stress, antioxidant enzymes use anthocyanin molecules as co-substrates to scavenge for reactive oxygen species leading to reduced anthocyanin content and ultimately loss of purple leaf pigmentation in tea. Anthocyanins are an important class of flavonoids responsible for liquor color and market acceptability of processed tea from the anthocyanin-rich purple tea cultivar 'TRFK 306'. However, the color in pluckable shoots fade and turn green during the dry and hot season, before rapidly reverting back to purple when weather is favorably wet and cool/cold. Our study revealed that loss of purple leaf pigmentation correlated well with reduced precipitation, high soil water-deficit, increased intensity and duration of sunlight and temperature. Richly purple pigmented leaves harvested during the cool, wet conditions recorded significantly higher anthocyanin content compared to faded samples harvested during the dry season. Similarly, individual anthocyanins were affected by seasonal changes with malvidin being the most abundant. Comparative transcriptomics of two RNA-seq libraries, dry/discolored and wet/colored seasons, revealed depression of most metabolic processes related to anthocyanin accumulation in dry conditions. Specifically, transcripts encoding pathway regulators, MYB-bHLH-WD40 (MBW) complex, were repressed possibly contributing to the suppression of late biosynthetic genes of the pathway. Further, suppression of anthocyanin transport genes could be linked to reduced accumulation of anthocyanin in the vacuole during the dry season. However, slight increase in expression of some transporter and reactive oxygen species (ROS) antioxidant genes in the discolored leaf suggests non-enzymatic degradation of anthocyanin, ultimately leading to loss of purple color during the dry season. Based on increased expression of ROS antioxidant genes (especially catalase and superoxide dismutase) in the discolored leaf, we speculate that anthocyanins are used as co-substrates by antioxidant enzymes to scavenge for ROS (especially hydrogen peroxide) that escape from organelles, leading to reduced anthocyanins and loss of pigmentation during the dry season.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Robert Kiplangat Korir
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Karl Wilson Nyabundi
- Sustainable Ecosystems, Management and Conservation Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Francis Nyamu Wachira
- Department of Life Sciences, South Eastern Kenya University, P.O Box 170-90200, Kitui, Kenya
| | - Samson Machohi Kamunya
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Richard Chalo Muoki
- Tea Breeding and Genetic Improvement Division, Crop Improvement and Management Programme, Kenya Agricultural and Livestock Research Organization, Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya.
| |
Collapse
|
39
|
Monribot-Villanueva JL, Altúzar-Molina A, Aluja M, Zamora-Briseño JA, Elizalde-Contreras JM, Bautista-Valle MV, Arellano de Los Santos J, Sánchez-Martínez DE, Rivera-Reséndiz FJ, Vázquez-Rosas-Landa M, Camacho-Vázquez C, Guerrero-Analco JA, Ruiz-May E. Integrating proteomics and metabolomics approaches to elucidate the ripening process in white Psidium guajava. Food Chem 2021; 367:130656. [PMID: 34359004 DOI: 10.1016/j.foodchem.2021.130656] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
Psidium guajava (guava) exhibits a high content of biomolecules with nutraceutical properties. However, the biochemistry and molecular foundation of guava ripening is unknown. We performed comparative proteomics and metabolomics studies in different fruit tissues at two ripening stages to understand this process in white guava. Our results, suggest the positive contribution of ethylene and abscisic acid (ABA) signaling to the regulation of biochemical changes during guava ripening. We characterized the modulation of several metabolic pathways, including those of sugar and chlorophyll metabolism, abiotic and biotic stress responses, and biosynthesis of carotenoids and secondary metabolites, among others. In addition to ethylene and ABA, we also found a differential accumulation of other growth regulators such as brassinosteroids, cytokinin, methyl-jasmonate, gibberellins and proteins, and discuss their possible implications in the intricate biochemical network associated with guava ripening process. This integrative approach represents a global overview of the metabolic pathway dynamics during guava ripening.
Collapse
Affiliation(s)
- Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - Alma Altúzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - José M Elizalde-Contreras
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - Mirna V Bautista-Valle
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - Jiovanny Arellano de Los Santos
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - Daniela E Sánchez-Martínez
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - Francisco J Rivera-Reséndiz
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - Mirna Vázquez-Rosas-Landa
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - Carolina Camacho-Vázquez
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico.
| | - Eliel Ruiz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico.
| |
Collapse
|
40
|
Zhao X, Zeng X, Lin N, Yu S, Fernie AR, Zhao J. CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator-repressor network. HORTICULTURE RESEARCH 2021; 8:110. [PMID: 33931627 PMCID: PMC8087823 DOI: 10.1038/s41438-021-00545-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 05/02/2023]
Abstract
Under high light conditions or UV radiation, tea plant leaves produce more flavonols, which contribute to the bitter taste of tea; however, neither the flavonol biosynthesis pathways nor the regulation of their production are well understood. Intriguingly, tea leaf flavonols are enhanced by UV-B but reduced by shading treatment. CsFLS, CsUGT78A14, CsMYB12, and CsbZIP1 were upregulated by UV-B radiation and downregulated by shading. CsMYB12 and CsbZIP1 bound to the promoters of CsFLS and CsUGT78A14, respectively, and activated their expression individually. CsbZIP1 positively regulated CsMYB12 and interacted with CsMYB12, which specifically activated flavonol biosynthesis. Meanwhile, CsPIF3 and two MYB repressor genes, CsMYB4 and CsMYB7, displayed expression patterns opposite to that of CsMYB12. CsMYB4 and CsMYB7 bound to CsFLS and CsUGT78A14 and repressed their CsMYB12-activated expression. While CsbZIP1 and CsMYB12 regulated neither CsMYB4 nor CsMYB7, CsMYB12 interacted with CsbZIP1, CsMYB4, and CsMYB7, but CsbZIP1 did not physically interact with CsMYB4 or CsMYB7. Finally, CsPIF3 bound to and activated CsMYB7 under shading to repress flavonol biosynthesis. These combined results suggest that UV activation and shading repression of flavonol biosynthesis in tea leaves are coordinated through a complex network involving CsbZIP1 and CsPIF3 as positive MYB activators and negative MYB repressors, respectively. The study thus provides insight into the regulatory mechanism underlying the production of bitter-tasting flavonols in tea plants.
Collapse
Affiliation(s)
- Xuecheng Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Xiangsheng Zeng
- College of Agronomy, Anhui Agricultural University, 230036, Hefei, China
| | - Ning Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 230036, Hefei, China.
| |
Collapse
|
41
|
BrLETM2 Protein Modulates Anthocyanin Accumulation by Promoting ROS Production in Turnip ( Brassica rapa subsp. rapa). Int J Mol Sci 2021; 22:ijms22073538. [PMID: 33805479 PMCID: PMC8036442 DOI: 10.3390/ijms22073538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
In ‘Tsuda’ turnip, the swollen root peel accumulates anthocyanin pigments in a light-dependent manner, but the mechanism is unclear. Here, mutant g120w which accumulated extremely low levels of anthocyanin after light exposure was identified. Segregation analysis showed that the anthocyanin-deficient phenotype was controlled by a single recessive gene. By using bulked-segregant analysis sequencing and CAPS marker-based genetic mapping analyses, a 21.6-kb region on chromosome A07 was mapped, in which a calcium-binding EF hand family protein named BrLETM2 was identified as the causal gene. RNA sequencing analysis showed that differentially expressed genes (DEGs) between wild type and g120w in light-exposed swollen root peels were enriched in anthocyanin biosynthetic process and reactive oxygen species (ROS) biosynthetic process GO term. Furthermore, nitroblue tetrazolium (NBT) staining showed that the ROS level decreased in g120w mutant. Anthocyanins induced by UV-A were abolished by the pre-treatment of seedlings with DPI (an inhibitor of nicotinamide adenine nucleoside phosphorylase (NADPH) oxidase) and decreased in g120w mutant. These results indicate that BrLETM2 modulates ROS signaling to promote anthocyanin accumulation in turnip under UV-A and provides new insight into the mechanism of how ROS and light regulate anthocyanin production.
Collapse
|
42
|
Lin N, Liu X, Zhu W, Cheng X, Wang X, Wan X, Liu L. Ambient Ultraviolet B Signal Modulates Tea Flavor Characteristics via Shifting a Metabolic Flux in Flavonoid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3401-3414. [PMID: 33719437 DOI: 10.1021/acs.jafc.0c07009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tea leaves contain an extraordinarily high level of flavonoids that contribute to tea health benefits and flavor characteristics, but the regulatory mechanism of ambient ultraviolet B (UV-B) on tea flavonoid enrichment remains unclear. Here, we report that ambient UV-B modulates tea quality by inducing a metabolic flux in flavonoid biosynthesis. UV-B absence decreased bitter- and astringent-tasting flavonol glycosides (kaempferol-7-O-glucoside, myricetin-3-O-glucoside, and quercetin-7-O-glucoside) but increased non-galloylated catechins. Conversely, supplementary UV-B increased flavonols and decreased catechins in tea leaves. These responses were achieved via CsHY5, which mediates the UV-B-induced MYB12 activation and binds to the promoters of flavonoid biosynthetic genes (CsFLS, CsLARa, and CsDFRa), leading to flavonoid changes. Transcriptomic data indicated that UV-B-induced tea flavonoid regulation is responsive to multiple biotic and abiotic environmental stresses. These findings improve our understanding of light-regulated tea astringency and bitterness underlying shading effects and seasonal light changes and provide novel insights into tea cultivation management and processing.
Collapse
Affiliation(s)
- Ning Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xuyang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Wenfeng Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
43
|
Mei Y, Xie H, Liu S, Zhu J, Zhao S, Wei C. Metabolites and Transcriptional Profiling Analysis Reveal the Molecular Mechanisms of the Anthocyanin Metabolism in the "Zijuan" Tea Plant (Camellia sinensis var. assamica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:414-427. [PMID: 33284608 DOI: 10.1021/acs.jafc.0c06439] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Anthocyanins are natural colorants that have attracted increasing attention because of their extensive range of antioxidant, antimutagenic, and health-promoting properties. The mechanism of anthocyanin synthesis has been studied in "Zijuan" tea, a representative anthocyanin-rich tea plant. However, the molecular basis underlying the transformation and degradation of anthocyanins is less-thoroughly understood. In this study, we compare "Zijuan" with a similar variety, "Yunkang 10", for transcriptome and metabolite analysis. In total, four glycosylated anthocyanins were identified in "Zijuan", including delphinidin-3-O-galactoside, cyanidin-3-O-galactoside, delphinidin 3-O-(6-O-p-coumaroyl) galactoside, and cyanidin 3-O-(6-O-p-coumaroyl) galactoside, and the glycosyl might determine the stable accumulation of anthocyanins. Several differentially expressed genes and transcription factors regulating the anthocyanin metabolism were identified, in which the significantly upregulated ANS, 3GT, 3AT, MYB, and WRKY were determined to be responsible for increasing and transforming anthocyanins. Moreover, by comparing the different positions of leaves in "Zijuan" and "Ziyan", we found that the pivotal genes regulating the biosynthesis of anthocyanins in "Zijuan" and "Ziyan" were different, and the degradation genes played different roles in the hydrolyzation of anthocyanins. These results provide further information on the molecular regulation of anthocyanin balance in tea plants.
Collapse
Affiliation(s)
- Yu Mei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| |
Collapse
|
44
|
Maritim TK, Masand M, Seth R, Sharma RK. Transcriptional analysis reveals key insights into seasonal induced anthocyanin degradation and leaf color transition in purple tea (Camellia sinensis (L.) O. Kuntze). Sci Rep 2021; 11:1244. [PMID: 33441891 PMCID: PMC7806957 DOI: 10.1038/s41598-020-80437-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Purple-tea, an anthocyanin rich cultivar has recently gained popularity due to its health benefits and captivating leaf appearance. However, the sustainability of purple pigmentation and anthocyanin content during production period is hampered by seasonal variation. To understand seasonal dependent anthocyanin pigmentation in purple tea, global transcriptional and anthocyanin profiling was carried out in tea shoots with two leaves and a bud harvested during in early (reddish purple: S1_RP), main (dark gray purple: S2_GP) and backend flush (moderately olive green: S3_G) seasons. Of the three seasons, maximum accumulation of total anthocyanin content was recorded in S2_GP, while least amount was recorded during S3_G. Reference based transcriptome assembly of 412 million quality reads resulted into 71,349 non-redundant transcripts with 6081 significant differentially expressed genes. Interestingly, key DEGs involved in anthocyanin biosynthesis [PAL, 4CL, F3H, DFR and UGT/UFGT], vacuolar trafficking [ABC, MATE and GST] transcriptional regulation [MYB, NAC, bHLH, WRKY and HMG] and Abscisic acid signaling pathway [PYL and PP2C] were significantly upregulated in S2_GP. Conversely, DEGs associated with anthocyanin degradation [Prx and lac], repressor TFs and key components of auxin and ethylene signaling pathways [ARF, AUX/IAA/SAUR, ETR, ERF, EBF1/2] exhibited significant upregulation in S3_G, correlating positively with reduced anthocyanin content and purple coloration. The present study for the first-time elucidated genome-wide transcriptional insights and hypothesized the involvement of anthocyanin biosynthesis activators/repressor and anthocyanin degrading genes via peroxidases and laccases during seasonal induced leaf color transition in purple tea. Futuristically, key candidate gene(s) identified here can be used for genetic engineering and molecular breeding of seasonal independent anthocyanin-rich tea cultivars.
Collapse
Affiliation(s)
- Tony Kipkoech Maritim
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.,Tea Breeding and Genetic Improvement Division, KALRO-Tea Research Institute, P.O. Box 820-20200, Kericho, Kenya
| | - Mamta Masand
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Romit Seth
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India
| | - Ram Kumar Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
45
|
Plant Polyphenols-Biofortified Foods as a Novel Tool for the Prevention of Human Gut Diseases. Antioxidants (Basel) 2020; 9:antiox9121225. [PMID: 33287404 PMCID: PMC7761854 DOI: 10.3390/antiox9121225] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Plant food biofortification is recently receiving remarkable attention, as it aims to increase the intake of minerals, vitamins, or antioxidants, crucial for their contribution to the general human health status and disease prevention. In this context, the study of the plant’s secondary metabolites, such as polyphenols, plays a pivotal role for the development of a new generation of plant crops, compensating, at least in part, the low nutritional quality of Western diets with a higher quality of dietary sources. Due to the prevalent immunomodulatory activity at the intestinal level, polyphenols represent a nutritionally relevant class of plant secondary metabolites. In this review, we focus on the antioxidant and anti-inflammatory properties of different classes of polyphenols with a specific attention to their potential in the prevention of intestinal pathological processes. We also discuss the latest biotechnology strategies and new advances of genomic techniques as a helpful tool for polyphenols biofortification and the development of novel, healthy dietary alternatives that can contribute to the prevention of inflammatory bowel diseases.
Collapse
|
46
|
Fu Z, Jiang X, Li WW, Shi Y, Lai S, Zhuang J, Yao S, Liu Y, Hu J, Gao L, Xia T. Proanthocyanidin-Aluminum Complexes Improve Aluminum Resistance and Detoxification of Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7861-7869. [PMID: 32680420 DOI: 10.1021/acs.jafc.0c01689] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aluminum (Al) influences crop yield in acidic soil. The tea plant (Camellia sinensis) has high Al tolerance with abundant monomeric catechins in its leaves, especially epigallocatechin gallate (EGCG), and polymeric proanthocyanidins in its roots (rPA). The role of these polyphenols in the Al resistance of tea plants is unclear. In this study, we observed that these polyphenols could form complexes with Al in vitro, and complexation capacity was positively influenced by high solution pH (pH 5.8), polyphenol type (rPA and EGCG), and high Al concentration. In the 27Al nuclear magnetic resonance (NMR) experiment, rPA-Al and EGCG-Al complex signals could be detected both in vitro and in vivo. The rPA-Al and EGCG-Al complexes were detected in roots and old leaves, respectively, of both greenhouse seedlings and tea garden plants. Furthermore, in seedlings, Al accumulated in roots and old leaves and mostly existed in the apoplast in binding form. These results indicate that the formation of complexes with tea polyphenols in vivo plays a vital role in Al resistance in the tea plant.
Collapse
Affiliation(s)
- Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Wei-Wei Li
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Shengbo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Jingwei Hu
- Biotechnology Center, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| |
Collapse
|