1
|
Zhang Z, Li Y, Yang X, Chen C, Ru S, Jiang J, Cai W, Li J, Du J, Qiao D. Construction of Tandem Multimers with Different Combinatorial Forms of BmSPI38 and BmSPI39 and Analysis of Their Expression and Activity in Escherichia coli. Int J Mol Sci 2025; 26:1788. [PMID: 40076416 PMCID: PMC11899716 DOI: 10.3390/ijms26051788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
It was found that the serine protease inhibitors BmSPI38 and BmSPI39 in silkworm can strongly inhibit the activity of porcine pancreatic elastase, which has potential applicational value in the drug research and development of lung diseases, inflammatory diseases, and skin aging caused by the excessive release of elastase. Previous studies have shown that homotypic multimers obtained by tandem expression can significantly enhance the antifungal activity and structural homogeneity of BmSPI38 and BmSPI39, while the effect of the tandem expression of these two inhibitors, with different combinations, on the total activity and expression levels of multimers remains unclear. The aim of this study is to explore whether it is possible to obtain the combination of BmSPI38 and BmSPI39 with strong total expression activity by protein engineering. In this study, 40 tandem multimer expression vectors with different combinatorial forms of BmSPI38 and BmSPI39 were constructed by the isocaudomer method, and recombinant proteins were obtained by the prokaryotic expression system. The target proteins were separated by SDS-PAGE to analyze the expression levels of multimer proteins with different combinatorial forms. The total activity of the recombinant expression products with different tandem forms was investigated using the in-gel activity staining technique of protease inhibitors. The SDS-PAGE results show that the expression levels of tandem multimers containing the BmSPI39 module at the carboxyl terminus were generally higher in the Escherichia coli supernatant than that of the tandem multimers containing the BmSPI38 module at the carboxyl terminus. The activity staining results indicate that compared with BmSPI38 and BmSPI39 homotypic multimers, the total activity of some recombinant expression products with different tandem forms was stronger. Furthermore, the total activity level was relatively higher when the carboxyl terminus of the multimer was a BmSPI39 module, such as the tandem dimers SPIAB and SPIaB and the tandem trimers SPIabB, SPIaaB, and SPIbaB. In this study, the expression of tandem fusion proteins with different combinations of the silkworm protease inhibitors BmSPI38 and BmSPI39 in E. coli was successfully achieved. It was confirmed that the tandem of different combinatorial forms, based on protein engineering, was an effective way to enhance the total activity of the fusion proteins of BmSPI38 and BmSPI39 and to improve their expression levels. Additionally, a number of multimer proteins with strong total activity and high exogenous expression levels were also screened, for example, SPIbaA, SPIbbA, SPIbbB, SPIabB, SPIaaB, and SPIbaB. This study not only lays the foundation for the exogenous production and development of BmSPI38 and BmSPI39 but also provides a reference for the construction of tandem and multimerization exploration of other protease inhibitors.
Collapse
Affiliation(s)
- Zhaofeng Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.Z.); (X.Y.)
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.Z.); (X.Y.)
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China; (C.C.); (S.R.)
| | - Xi Yang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.Z.); (X.Y.)
| | - Changqing Chen
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China; (C.C.); (S.R.)
| | - Shuai Ru
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, China; (C.C.); (S.R.)
| | - Jie Jiang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China; (J.J.); (W.C.); (J.L.)
| | - Wenyao Cai
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China; (J.J.); (W.C.); (J.L.)
| | - Jiyu Li
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Hanzhong 723001, China; (J.J.); (W.C.); (J.L.)
| | - Juanle Du
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, China; (J.D.); (D.Q.)
| | - Dejue Qiao
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723001, China; (J.D.); (D.Q.)
| |
Collapse
|
2
|
Masand VH, Al-Hussain S, Alzahrani AY, Al-Mutairi AA, Sultan Alqahtani A, Samad A, Alafeefy AM, Jawarkar RD, Zaki MEA. Unveiling dynamics of nitrogen content and selected nitrogen heterocycles in thrombin inhibitors: a ceteris paribus approach. Expert Opin Drug Discov 2024; 19:991-1009. [PMID: 38898679 DOI: 10.1080/17460441.2024.2368743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Despite the progress in comprehending molecular design principles and biochemical processes associated with thrombin inhibition, there is a crucial need to optimize efforts and curtail the recurrence of synthesis-testing cycles. Nitrogen and N-heterocycles are key features of many anti-thrombin drugs. Hence, a pragmatic analysis of nitrogen and N-heterocycles in thrombin inhibitors is important throughout the drug discovery pipeline. In the present work, the authors present an analysis with a specific focus on understanding the occurrence and distribution of nitrogen and selected N-heterocycles in the realm of thrombin inhibitors. RESEARCH DESIGN AND METHODS A dataset comprising 4359 thrombin inhibitors is used to scrutinize various categories of nitrogen atoms such as ring, non-ring, aromatic, and non-aromatic. In addition, selected aromatic and aliphatic N-heterocycles have been analyzed. RESULTS The analysis indicates that ~62% of thrombin inhibitors possess five or fewer nitrogen atoms. Substituted N-heterocycles have a high occurrence, like pyrrolidine (23.24%), pyridine (20.56%), piperidine (16.10%), thiazole (9.61%), imidazole (7.36%), etc. in thrombin inhibitors. CONCLUSIONS The majority of active thrombin inhibitors contain nitrogen atoms close to 5 and a combination of N-heterocycles like pyrrolidine, pyridine, piperidine, etc. This analysis provides crucial insights to optimize the transformation of lead compounds into potential anti-thrombin inhibitors.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, India
| | - Sami Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Asser, Saudi Arabia
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Ahmed M Alafeefy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Universiti Teknologi MARA [UiTM], Bandar Puncak Alam, Selangor, Malaysia
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Fouad MM, Ghabbour HA, Shehata IA, El-Ashmawy MB. Synthesis and in vitro antitumor evaluation of new thieno[2,3-d]pyrimidine derivatives as EGFR and DHFR inhibitors. Bioorg Chem 2024; 148:107401. [PMID: 38749115 DOI: 10.1016/j.bioorg.2024.107401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 02/28/2025]
Abstract
New thienopyrimidine derivatives 2-16 have been synthesized and their in vitro cytotoxicity was evaluated against five different human cancer cell lines HCT-116, Hela, MDA-MB-231, MCF7 and PC3. Compounds 6e, 7a, 7b, 7d, 10c and 10e displayed the highest antitumor activity against all tested cell lines compared to Doxorubicin. Enzyme inhibition assay revealed that compounds 6e and 10e showed high inhibitory activity against EGFR-TK, with IC50 values of 0.133 and 0.151 µM, compared to Olmutinib (IC50 = 0.028 µM); while the highest DHFR inhibitory activity was shown by compounds 7d and 10e with IC50 values of 0.462 and 0.541 µM, compared to Methotrexate (IC50 = 0.117 µM). Cell cycle analysis following a flow cytometric study using colorectal HCT-116 cancer cell line proved that compound 6e induced cell cycle arrest in G0-G1 phase, while compound 10e arrested the cell cycle at both G0-G1 and S phases. Additionally, both compounds (6e and 10e) were potently able to induce apoptosis in HCT-116 cell line. Docking results of compounds 6e and 10e into the pocket of EGFR active site showed their similar main binding features with Olmutinib, while compounds 7d and 10e showed only moderate fitting into DHFR compared to methotrexate. In silico studies revealed that most of the tested compounds obeyed Lipinski's RO5 and showed positive drug likeness scores.
Collapse
Affiliation(s)
- Mahasen M Fouad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Hazem A Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ihsan A Shehata
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud B El-Ashmawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Durán R, Barrales-Martínez C, Santana-Romo F, Rodríguez DF, Zacconi FC, Herrera B. Substitution Effects in Aryl Halides and Amides into the Reaction Mechanism of Ullmann-Type Coupling Reactions. Molecules 2024; 29:1770. [PMID: 38675590 PMCID: PMC11051942 DOI: 10.3390/molecules29081770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
In this article, we present a comprehensive computational investigation into the reaction mechanism of N-arylation of substituted aryl halides through Ullmann-type coupling reactions. Our computational findings, obtained through DFT ωB97X-D/6-311G(d,p) and ωB97X-D/LanL2DZ calculations, reveal a direct relation between the previously reported experimental reaction yields and the activation energy of haloarene activation, which constitutes the rate-limiting step in the overall coupling process. A detailed analysis of the reaction mechanism employing the Activation Strain Model indicates that the strain in the substituted iodoanilines is the primary contributor to the energy barrier, representing an average of 80% of the total strain energy. Additional analysis based on conceptual Density Functional Theory (DFT) suggests that the nucleophilicity of the nitrogen in the lactam is directly linked to the activation energies. These results provide valuable insights into the factors influencing energetic barriers and, consequently, reaction yields. These insights enable the rational modification of reactants to optimize the N-arylation process.
Collapse
Affiliation(s)
- Rocío Durán
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay, Talca 3460000, Chile; (R.D.); (C.B.-M.)
| | - César Barrales-Martínez
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay, Talca 3460000, Chile; (R.D.); (C.B.-M.)
| | - Fabián Santana-Romo
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (F.S.-R.); (D.F.R.)
- Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Diego F. Rodríguez
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (F.S.-R.); (D.F.R.)
| | - Flavia C. Zacconi
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (F.S.-R.); (D.F.R.)
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Barbara Herrera
- Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| |
Collapse
|
5
|
Gackowski M, Jędrzejewski M, Medicharla SS, Kondabala R, Madriwala B, Mądra-Gackowska K, Studzińska R. Novel Thiourea and Oxime Ether Isosteviol-Based Anticoagulants: MD Simulation and ADMET Prediction. Pharmaceuticals (Basel) 2024; 17:163. [PMID: 38399378 PMCID: PMC10892930 DOI: 10.3390/ph17020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Activated blood coagulation factor X (FXa) plays a critical initiation step of the blood-coagulation pathway and is considered a desirable target for anticoagulant drug development. It is reversibly inhibited by nonvitamin K antagonist oral anticoagulants (NOACs) such as apixaban, betrixaban, edoxaban, and rivaroxaban. Thrombosis is extremely common and is one of the leading causes of death in developed countries. In previous studies, novel thiourea and oxime ether isosteviol derivatives as FXa inhibitors were designed through a combination of QSAR studies and molecular docking. In the present contribution, molecular dynamics (MD) simulations were performed for 100 ns to assess binding structures previously predicted by docking and furnish additional information. Moreover, three thiourea- and six oxime ether-designed isosteviol analogs were then examined for their drug-like and ADMET properties. MD simulations demonstrated that four out of the nine investigated isosteviol derivatives, i.e., one thiourea and three oxime ether ISV analogs, form stable complexes with FXa. These derivatives interact with FXa in a manner similar to Food and Drug Administration (FDA)-approved drugs like edoxaban and betrixaban, indicating their potential to inhibit factor Xa activity. One of these derivatives, E24, displays favorable pharmacokinetic properties, positioning it as the most promising drug candidate. This, along with the other three derivatives, can undergo further chemical synthesis and bioassessment.
Collapse
Affiliation(s)
- Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, 85089 Bydgoszcz, Poland
| | - Mateusz Jędrzejewski
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02093 Warsaw, Poland;
- Doctoral School, Medical University of Warsaw, Żwirki i Wigury 81 Street, 02093 Warsaw, Poland
| | - Sri Satya Medicharla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India; (S.S.M.); (B.M.)
| | - Rajesh Kondabala
- Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
| | - Burhanuddin Madriwala
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India; (S.S.M.); (B.M.)
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, 85094 Bydgoszcz, Poland;
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, 85089 Bydgoszcz, Poland;
| |
Collapse
|
6
|
Novichikhina NP, Shestakov AS, Medvedeva SM, Lagutina AM, Krysin MY, Podoplelova NA, Panteleev MA, Ilin IS, Sulimov AV, Tashchilova AS, Sulimov VB, Geronikaki A, Shikhaliev KS. New Hybrid Tetrahydropyrrolo[3,2,1- ij]quinolin-1-ylidene-2-thioxothiazolidin-4-ones as New Inhibitors of Factor Xa and Factor XIa: Design, Synthesis, and In Silico and Experimental Evaluation. Molecules 2023; 28:molecules28093851. [PMID: 37175261 PMCID: PMC10179972 DOI: 10.3390/molecules28093851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Despite extensive research in the field of thrombotic diseases, the prevention of blood clots remains an important area of study. Therefore, the development of new anticoagulant drugs with better therapeutic profiles and fewer side effects to combat thrombus formation is still needed. Herein, we report the synthesis and evaluation of novel pyrroloquinolinedione-based rhodanine derivatives, which were chosen from 24 developed derivatives by docking as potential molecules to inhibit the clotting factors Xa and XIa. For the synthesis of new hybrid derivatives of pyrrolo[3,2,1-ij]quinoline-2-one, we used a convenient structural modification of the tetrahydroquinoline fragment by varying the substituents in positions 2, 4, and 6. In addition, the design of target molecules was achieved by alkylating the amino group of the rhodanine fragment with propargyl bromide or by replacing the rhodanine fragment with 2-thioxoimidazolidin-4-one. The in vitro testing showed that eight derivatives are capable of inhibiting both coagulation factors, two compounds are selective inhibitors of factor Xa, and two compounds are selective inhibitors of factor XIa. Overall, these data indicate the potential anticoagulant activity of these molecules through the inhibition of the coagulation factors Xa and XIa.
Collapse
Affiliation(s)
- Nadezhda P Novichikhina
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Alexander S Shestakov
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Svetlana M Medvedeva
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Anna M Lagutina
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Mikhail Yu Krysin
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| | - Nadezhda A Podoplelova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmakology, 119991 Moscow, Russia
| | - Mikhail A Panteleev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmakology, 119991 Moscow, Russia
| | - Ivan S Ilin
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexey V Sulimov
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna S Tashchilova
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vladimir B Sulimov
- Dimonta, Ltd., 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Khidmet S Shikhaliev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394018 Voronezh, Russia
| |
Collapse
|
7
|
Ali S, Ali U, Qamar A, Zafar I, Yaqoob M, Ain QU, Rashid S, Sharma R, Nafidi HA, Bin Jardan YA, Bourhia M. Predicting the effects of rare genetic variants on oncogenic signaling pathways: A computational analysis of HRAS protein function. Front Chem 2023; 11:1173624. [PMID: 37153521 PMCID: PMC10160440 DOI: 10.3389/fchem.2023.1173624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
The HRAS gene plays a crucial role in regulating essential cellular processes for life, and this gene's misregulation is linked to the development of various types of cancers. Nonsynonymous single nucleotide polymorphisms (nsSNPs) within the coding region of HRAS can cause detrimental mutations that disrupt wild-type protein function. In the current investigation, we have employed in-silico methodologies to anticipate the consequences of infrequent genetic variations on the functional properties of the HRAS protein. We have discovered a total of 50 nsSNPs, of which 23 were located in the exon region of the HRAS gene and denoting that they were expected to cause harm or be deleterious. Out of these 23, 10 nsSNPs ([G60V], [G60D], [R123P], [D38H], [I46T], [G115R], [R123G], [P11OL], [A59L], and [G13R]) were identified as having the most delterious effect based on results of SIFT analysis and PolyPhen2 scores ranging from 0.53 to 69. The DDG values -3.21 kcal/mol to 0.87 kcal/mol represent the free energy change associated with protein stability upon mutation. Interestingly, we identified that the three mutations (Y4C, T58I, and Y12E) were found to improve the structural stability of the protein. We performed molecular dynamics (MD) simulations to investigate the structural and dynamic effects of HRAS mutations. Our results showed that the stable model of HRAS had a significantly lower energy value of -18756 kj/mol compared to the initial model of -108915 kj/mol. The RMSD value for the wild-type complex was 4.40 Å, and the binding energies for the G60V, G60D, and D38H mutants were -107.09 kcal/mol, -109.42 kcal/mol, and -107.18 kcal/mol, respectively as compared to wild-type HRAS protein had -105.85 kcal/mol. The result of our investigation presents convincing corroboration for the potential functional significance of nsSNPs in augmenting HRAS expression and adding to the activation of malignant oncogenic signalling pathways.
Collapse
Affiliation(s)
- Sadaqat Ali
- Medical Department, DHQ Hospital Bhawalnagr, Punjab, Pakistan
| | | | - Adeem Qamar
- Department of Pathology, Sahiwal Medical College Sahiwal, Punjab, Pakistan
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Punjab, Pakistan
| | - Muhammad Yaqoob
- Department of Life Sciences, ARID University-Barani Institute of Sciences Burewala Campus, Punjab, Pakistan
| | - Qurat ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Summya Rashid
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Punjab, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- *Correspondence: Mohammed Bourhia, ; Rohit Sharma,
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
- *Correspondence: Mohammed Bourhia, ; Rohit Sharma,
| |
Collapse
|
8
|
Zheng W, Dai X, Xu B, Tian W, Shi J. Discovery and development of Factor Xa inhibitors (2015-2022). Front Pharmacol 2023; 14:1105880. [PMID: 36909153 PMCID: PMC9993480 DOI: 10.3389/fphar.2023.1105880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
As a pathological coagulation process, thrombus can lead to many serious diseases, including ischemic stroke, acute myocardial infarction (AMI), acute coronary syndrome (ACS), and deep venous thrombosis (DVT). And anticoagulant drugs are one of the most effective ways to prevent and treat these diseases. Although macromolecular anticoagulant drugs such as low molecular weight heparins (LMWHs) are widely used in the clinic, their characteristics of requiring injectable use hinder their further promotion in the clinic, and the disadvantages of oral anticoagulant drugs, such as warfarin and dabigatran etexilate, which can easily cause bleeding adverse effects, are also not addressed. Factor Xa (FXa) has gained attention because it lies at the intersection of the coagulation cascade pathways, whereas subsequently introduced Factor Xa inhibitors such as rivaroxaban and apixaban, among others, have gained market popularity because of their high potency for anticoagulation and high specificity for Factor Xa when administered orally. But some of the drawbacks that these Factor Xa inhibitors have simultaneously such as fewer indications and the lack of an effective reversal drug when bleeding occurs are urgently addressed. The development of new Factor Xa inhibitors therefore becomes one means of addressing these questions. This article summarizes the small molecule Factor Xainhibitors developed from 2015 to 2022, classifies them according to their scaffolds, focuses on the analysis of their structure-activity relationships, and provides a brief assessment of them.
Collapse
Affiliation(s)
- Wei Zheng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqin Dai
- Department of Traditional Chinese Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Binyao Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Tian
- Operations Management Department, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu Sichuan China School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Synthesis and investigation of the trypanocidal potential of novel 1,2,3-triazole-selenide hybrids. Eur J Med Chem 2022; 243:114687. [DOI: 10.1016/j.ejmech.2022.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
|
10
|
In Vitro Antithrombotic, Hematological Toxicity, and Inhibitor Studies of Protocatechuic, Isovanillic, and p-Hydroxybenzoic Acids from Maclura Tricuspidata (Carr.) Bur. Molecules 2022; 27:molecules27113496. [PMID: 35684431 PMCID: PMC9181887 DOI: 10.3390/molecules27113496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
In blood coagulation, circulating platelets and coagulation factors are crucial for the primary process because thrombi are generated by fibrin clotting with fibrinogen, thrombin, FXIIIa, and platelet activation. Therefore, strategies to reduce the activity of key coagulation factors, or interfere with their functions and delay the activation of platelets can be used as important tools to suppress excessive blood clot formation and platelet hyperactivation. This study examined the antithrombotic activity and hematological toxicity of PA, IVA, and 4-HA isolated from M. tricuspidata (Carr.) Bur in several in vitro experiments and inhibitor assays. We found that PA, IVA, and 4-HA attenuated the formation of fibrin polymers/clots and degraded the blood clots. These compounds inhibited the activities of procoagulant proteases and fibrinoligase, and prolonged the coagulation time. There was a significant reduction in platelet function and ATP or serotonin levels in thrombin-activated platelets. An inhibitor study showed that PA exhibited a mixed inhibition type for thrombin, an uncompetitive inhibition type for FXa, and a non-competitive inhibition type for FXIIIa and IVA, while 4-HA exhibited an uncompetitive inhibition type for thrombin and non-competitive inhibition type for FXa and FXIIIa. These three compounds (up to 50 μg/mL) were not toxic to blood cells.
Collapse
|
11
|
Antol I, Glasovac Z, Murata Y, Hashikawa Y, Margetić D. Consecutive Utilization of Mechanochemical and Microwave Methods for the Synthesis of Boc‐2‐amino‐quinazolin‐4(3
H
)‐ones and DFT Study of Mechanism 6π‐Diazaelectrocyclization Process. ChemistrySelect 2022. [DOI: 10.1002/slct.202200633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ivana Antol
- Laboratory for physical organic chemistry Division of organic chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - Zoran Glasovac
- Laboratory for physical organic chemistry Division of organic chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - Yasujiro Murata
- Structural Organic Chemistry Laboratory Department Division of Synthetic Chemistry Institute for Chemical Research Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Yoshifumi Hashikawa
- Structural Organic Chemistry Laboratory Department Division of Synthetic Chemistry Institute for Chemical Research Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Davor Margetić
- Laboratory for physical organic chemistry Division of organic chemistry and Biochemistry Ruđer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| |
Collapse
|
12
|
Matveeva AG, Vologzhanina AV, Pasechnik MP, Aysin RR, Matveev SV, Zubavichus YV, Artyushin OI, Sharova EV, Godovikov IA, Brel VK. Competing N vs. P(O),C(O)-coordination in complexes of mono- and bis-1,2,3-triazole ligands modified by carbamoylmethylphosphine oxide fragments with palladium(II), uranyl(II), and lanthanum(III): solid and solution structures. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Rodríguez DF, Durán-Osorio F, Duarte Y, Olivares P, Moglie Y, Dua K, Zacconi FC. Green by Design: Convergent Synthesis, Computational Analyses, and Activity Evaluation of New FXa Inhibitors Bearing Peptide Triazole Linking Units. Pharmaceutics 2021; 14:33. [PMID: 35056929 PMCID: PMC8780263 DOI: 10.3390/pharmaceutics14010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Green chemistry implementation has led to promising results in waste reduction in the pharmaceutical industry. However, the early sustainable development of pharmaceutically active compounds and ingredients remains a considerable challenge. Herein, we wish to report a green synthesis of new pharmaceutically active peptide triazoles as potent factor Xa inhibitors, an important drug target associated with the treatment of diverse cardiovascular diseases. The new inhibitors were synthesized in three steps, featuring cycloaddition reactions (high atom economy), microwave-assisted organic synthesis (energy efficiency), and copper nanoparticle catalysis, thus featuring Earth-abundant metals. The molecules obtained showed FXa inhibition, with IC50-values as low as 17.2 μM and no associated cytotoxicity in HEK293 and HeLa cells. These results showcase the environmental potential and chemical implications of the applied methodologies for the development of new molecules with pharmacological potential.
Collapse
Affiliation(s)
- Diego F. Rodríguez
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (D.F.R.); (F.D.-O.)
| | - Francisca Durán-Osorio
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (D.F.R.); (F.D.-O.)
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (Y.D.); (P.O.)
| | - Pedro Olivares
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile; (Y.D.); (P.O.)
| | - Yanina Moglie
- Departamento de Química INQUISUR, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Flavia C. Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (D.F.R.); (F.D.-O.)
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
14
|
Mechanistic and Predictive QSAR Analysis of Diverse Molecules to Capture Salient and Hidden Pharmacophores for Anti-Thrombotic Activity. Int J Mol Sci 2021; 22:ijms22158352. [PMID: 34361118 PMCID: PMC8348508 DOI: 10.3390/ijms22158352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/24/2021] [Accepted: 07/31/2021] [Indexed: 12/02/2022] Open
Abstract
Thrombosis is a life-threatening disease with a high mortality rate in many countries. Even though anti-thrombotic drugs are available, their serious side effects compel the search for safer drugs. In search of a safer anti-thrombotic drug, Quantitative Structure-Activity Relationship (QSAR) could be useful to identify crucial pharmacophoric features. The present work is based on a larger data set comprising 1121 diverse compounds to develop a QSAR model having a balance of acceptable predictive ability (Predictive QSAR) and mechanistic interpretation (Mechanistic QSAR). The developed six parametric model fulfils the recommended values for internal and external validation along with Y-randomization parameters such as R2tr = 0.831, Q2LMO = 0.828, R2ex = 0.783. The present analysis reveals that anti-thrombotic activity is found to be correlated with concealed structural traits such as positively charged ring carbon atoms, specific combination of aromatic Nitrogen and sp2-hybridized carbon atoms, etc. Thus, the model captured reported as well as novel pharmacophoric features. The results of QSAR analysis are further vindicated by reported crystal structures of compounds with factor Xa. The analysis led to the identification of useful novel pharmacophoric features, which could be used for future optimization of lead compounds.
Collapse
|
15
|
Synthesis of 2H-pyrano[3,2-g]quinolin-2-ones containing a pyrimidinone moiety and characterization of their anticoagulant activity via inhibition of blood coagulation factors Xa and XIa. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02945-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Synthesis and study of new 2H-pyranoquinolin-2-one-based inhibitors of blood coagulation factors Xa and XIa. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3114-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Soni JP, Joshi SV, Chemitikanti KS, Shankaraiah N. The Riveting Chemistry of Poly‐
aza
‐heterocycles Employing Microwave Technique: A Decade Review. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
| | - Swanand Vinayak Joshi
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
| | - Krishna Sowjanya Chemitikanti
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 India
| |
Collapse
|
18
|
Novichikhina NP, Skoptsova AA, Shestakov AS, Potapov AY, Kosheleva EA, Kozaderov OA, Ledenyova IV, Podoplelova NA, Panteleev MA, Shikhaliev KS. Synthesis and Anticoagulant Activity of New Ethylidene and Spiro Derivatives of Pyrrolo[3,2,1-ij]quinolin-2-ones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020090080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Synthesis, Docking, and In Vitro Anticoagulant Activity Assay of Hybrid Derivatives of Pyrrolo[3,2,1- ij]Quinolin-2(1 H)-one as New Inhibitors of Factor Xa and Factor XIa. Molecules 2020; 25:molecules25081889. [PMID: 32325823 PMCID: PMC7222003 DOI: 10.3390/molecules25081889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/04/2022] Open
Abstract
Coagulation factor Xa and factor XIa are proven to be convenient and crucial protein targets for treatment for thrombotic disorders and thereby their inhibitors can serve as effective anticoagulant drugs. In the present work, we focused on the structure–activity relationships of derivatives of pyrrolo[3,2,1-ij]quinolin-2(1H)-one and an evaluation of their activity against factor Xa and factor XIa. For this, docking-guided synthesis of nine compounds based on pyrrolo[3,2,1-ij]quinolin-2(1H)-one was carried out. For the synthesis of new hybrid hydropyrrolo[3,2,1-ij]quinolin-2(1H)-one derivatives, we used convenient structural modification of both the tetrahydro- and dihydroquinoline moiety by varying the substituents at the C6,8,9 positions. In vitro testing revealed that four derivatives were able to inhibit both coagulation factors and three compounds were selective factor XIa inhibitors. An IC50 value of 3.68 μM for was found for the best factor Xa inhibitor and 2 μM for the best factor XIa inhibitor.
Collapse
|