1
|
Bronner H, Doll-Nikutta K, Donath S, Ehlert N, Krysiak Y, Heisterkamp A, Stiesch M, Kalies S, Polarz S. A versatile two-light mode triggered system for highly localized sequential release of reactive oxygen species and conjugated drugs from mesoporous organosilica particles. J Mater Chem B 2025; 13:3032-3038. [PMID: 39888299 DOI: 10.1039/d4tb02691h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The increasing prevalence of antimicrobial resistance and adverse effects of systemic treatments calls for urgent reevaluation of current methods that rely on excessive, uncontrolled drug administration. In recent years triggerable systems have emerged as promising alternatives, enabling time-controlled and localized drug release, which are only activated if necessary. Light is an obvious candidate as an external trigger, since it allows for localized activation, is non-invasive and its wavelength and intensity can be tailored to fit the demands of the drug release system. Such localized and triggered systems minimize off-target effects and undesired exposure, making it a promising tool for combating health threats such as antimicrobial resistance. However, the limited tissue penetration of visible light significantly limits the applicability of this concept in vivo. Here, we introduce an innovative triggerable drug release system, based on mono-, bi-, and tri-functionalized mesoporous organosilica particles (MOPs). The limited tissue penetration is addressed by an advanced trigger system featuring two-photon absorption. Two-photon absorption enables utilization of near-infrared (NIR) light as a trigger, which is known to exhibit an enhanced penetration depth. The particles are designed to release reactive oxygen species (ROS) upon NIR irradiation and undergo Förster resonance energy transfer (FRET) to a ROS producing dye. Moreover, by oxidative cleavage, an additional therapeutic agent is released in a cascade reaction, enhancing the system's effectiveness. The ROS release is microscopically demonstrated in situ and, for the first time, release of a fluorescent compound (therapeutic agent) in a cascade reaction is observed in real-time, providing valuable insights into the behavior and performance of our particles. This novel sequential dual-release platform for light-triggered therapeutic delivery has great potential for advanced therapeutic applications in both superficial and deep tissue treatments.
Collapse
Affiliation(s)
- Hannah Bronner
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany.
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
| | - Sören Donath
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
- Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Nina Ehlert
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
| | - Yaşar Krysiak
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany.
| | - Alexander Heisterkamp
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
- Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
| | - Stefan Kalies
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany.
- Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Sebastian Polarz
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany.
| |
Collapse
|
2
|
Huang P, Wu G, Huang M, Deng Y, Chen X, Ye G, Yu X, Wang H, Wen H, Zhou Y. Copper-coordinated nanomedicine for the concurrent treatment of lung cancer through the induction of cuproptosis and apoptosis. Eur J Pharm Sci 2025; 204:106942. [PMID: 39437977 DOI: 10.1016/j.ejps.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The resistance of tumor cells to apoptosis often leads to chemoresistance and treatment failure in clinic. In this study, we have developed a Cu2+-coordinated lignosulfonate (CLS) /doxorubicin (DOX) biological complex (referred to as LCD) with the aim of overcoming cellular resistance to apoptosis for combined lung cancer therapy. The copper complexes modified by CLS exhibit significant water solubility and excellent in vivo biocompatibility. The proportion of copper in the composite is simultaneously increased. Due to the coordination and π-π stacking effects, the self-assembled LCD exhibits nanometer-scale particle size, a narrow and homogeneous grain distribution, as well as excellent dispersion stability. Furthermore, LCD has the potential to disassemble in the presence of high levels of glutathione (GSH) and low pH, leading to effective drug release. Cu2+-mediated cuproptosis can lead to the down-regulation of FDX1 and DLAT protein expression by reducing mitochondrial membrane potential, resulting in non-apoptotic programmed cell death (PCD) regardless of cellular resistance to apoptosis. Moreover, the released DOX not only exhibits a preference for localizing in the cell nucleus to induce apoptosis for combined chemotherapy, but also generates a substantial amount of H2O2. This H2O2 further produces ROS to induce apoptosis through Fenton reaction with Cu2+. LCD demonstrates significant superiority over monotherapy in inhibiting tumor growth while minimizing systemic toxicity through the combined action of cuproptosis and apoptosis. This study may provide a potential avenue for the advancement of self-delivery nanomedicine to overcome resistance to apoptosis in tumor therapy.
Collapse
Affiliation(s)
- Pei Huang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China; The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260, Guangzhou, PR China
| | - Gongfa Wu
- The Fourth Affiliated Hospital, Guangzhou Medical University, Guangdong, 511300, Guangzhou, PR China
| | - Min Huang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yating Deng
- The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260, Guangzhou, PR China
| | - Xuming Chen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Guodong Ye
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiyong Yu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - He Wang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260, Guangzhou, PR China
| | - Huaying Wen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Yi Zhou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
3
|
Sedlarikova J, Janalikova M, Egner P, Pleva P. Poloxamer-Based Mixed Micelles Loaded with Thymol or Eugenol for Topical Applications. ACS OMEGA 2024; 9:23209-23219. [PMID: 38854547 PMCID: PMC11154913 DOI: 10.1021/acsomega.3c08917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024]
Abstract
Poloxamers (P184, P188, and P407) have been investigated as the carrier system for eugenol or thymol. A synergic effect of mixed Poloxamers was proved by enhanced micellar parameters, with a lower critical micelle concentration (about 0.06 mM) and the highest surface adsorption of 9 × 10-7 mol m-2 for P188/P407. Dynamic light scattering revealed a decrease in micellar size after loading with biomolecules. Three mathematical models were applied to study the release kinetics, of which Korsmeyer-Peppas was the best fitted model. Higher relative release was observed for Poloxamer/eugenol samples, up to a value of 0.8. Poloxamer micelles with thymol were highly influential in bacterial reduction. Single P407/eugenol micelles proved to be bacteriostatic for up to 6 h for S. aureus or up to 48 h for E. coli. Mixed micelles were confirmed to have prolonged bacteriostatic activity for up to 72 h against both bacteria. This trend was also proven by the modified Gompertz model. An optimized P188/P407/eugenol micelle was successfully used as a model system for release study with a particle size of less than 30 nm and high encapsulation efficiency surpassing 90%. The developed mixed micelles were proved to have antibiofilm activity, and thus they provide an innovative approach for controlled release with potential in topical applications.
Collapse
Affiliation(s)
- Jana Sedlarikova
- Department
of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech
Republic
| | - Magda Janalikova
- Department
of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech
Republic
| | - Pavlina Egner
- Department
of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech
Republic
| | - Pavel Pleva
- Department
of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech
Republic
| |
Collapse
|
4
|
Das AK, Mitra K, Conte AJ, Sarker A, Chowdhury A, Ragauskas AJ. Lignin - A green material for antibacterial application - A review. Int J Biol Macromol 2024; 261:129753. [PMID: 38286369 DOI: 10.1016/j.ijbiomac.2024.129753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Lignin's antibacterial properties have become increasingly relevant due to the rise of microbial infectious diseases and antibiotic resistance. Lignin is capable of interacting electrostatically with bacteria and contains polyphenols that cause damage to their cell walls. These features make lignin a desirable material to exhibit antibacterial behavior. Therefore, lignin in antibacterial applications offers a novel approach to address the growing need for sustainable and effective antibacterial materials. Recent research has explored the incorporation of lignin in various biomedical applications, such as wound dressings, implants, and drug delivery systems, highlighting their potential as a sustainable alternative to synthetic antibacterial agents. Furthermore, the development of lignin-based nanomaterials with enhanced antimicrobial activity is an active area of research that holds great promise for the future. In this review, we have provided a summary of how lignin can be incorporated into different forms, such as composite and non-composite synthesis of antibacterial agents and their performances. The challenges and future considerations are also discussed in this review article.
Collapse
Affiliation(s)
- Atanu Kumar Das
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE- 90183 Umeå, Sweden.
| | - Kangkana Mitra
- Faculty of Pharmacy, University Grenoble Alpes, Grenoble 38400, France.
| | - Austin J Conte
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA
| | - Asim Sarker
- Dhaka Medical College Hospital, Dhaka 1000, Bangladesh
| | - Aysha Chowdhury
- Laboratory of Biophysics and Evolution, CBI, ESPCI, University PSL, CNRS, Paris, France
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee Institution of Agriculture, 2506 Jacob Dr, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
5
|
Pappa CP, Cailotto S, Gigli M, Crestini C, Triantafyllidis KS. Kraft (Nano)Lignin as Reactive Additive in Epoxy Polymer Bio-Composites. Polymers (Basel) 2024; 16:553. [PMID: 38399931 PMCID: PMC10893208 DOI: 10.3390/polym16040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The demand for high-performance bio-based materials towards achieving more sustainable manufacturing and circular economy models is growing significantly. Kraft lignin (KL) is an abundant and highly functional aromatic/phenolic biopolymer, being the main side product of the pulp and paper industry, as well as of the more recent 2nd generation biorefineries. In this study, KL was incorporated into a glassy epoxy system based on the diglycidyl ether of bisphenol A (DGEBA) and an amine curing agent (Jeffamine D-230), being utilized as partial replacement of the curing agent and the DGEBA prepolymer or as a reactive additive. A D-230 replacement by pristine (unmodified) KL of up to 14 wt.% was achieved while KL-epoxy composites with up to 30 wt.% KL exhibited similar thermo-mechanical properties and substantially enhanced antioxidant properties compared to the neat epoxy polymer. Additionally, the effect of the KL particle size was investigated. Ball-milled kraft lignin (BMKL, 10 μm) and nano-lignin (NLH, 220 nm) were, respectively, obtained after ball milling and ultrasonication and were studied as additives in the same epoxy system. Significantly improved dispersion and thermo-mechanical properties were obtained, mainly with nano-lignin, which exhibited fully transparent lignin-epoxy composites with higher tensile strength, storage modulus and glass transition temperature, even at 30 wt.% loadings. Lastly, KL lignin was glycidylized (GKL) and utilized as a bio-based epoxy prepolymer, achieving up to 38 wt.% replacement of fossil-based DGEBA. The GKL composites exhibited improved thermo-mechanical properties and transparency. All lignins were extensively characterized using NMR, TGA, GPC, and DLS techniques to correlate and justify the epoxy polymer characterization results.
Collapse
Affiliation(s)
- Christina P. Pappa
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Simone Cailotto
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30170 Venice Mestre, Italy (C.C.)
| | - Matteo Gigli
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30170 Venice Mestre, Italy (C.C.)
| | - Claudia Crestini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30170 Venice Mestre, Italy (C.C.)
| | - Konstantinos S. Triantafyllidis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| |
Collapse
|
6
|
Wang L, Zhang Y, Lin Y, Cao J, Xu C, Chen L, Wang Y, Sun Y, Zheng X, Liu Y, Zhou T. Resveratrol Increases Sensitivity of Clinical Colistin-Resistant Pseudomonas aeruginosa to Colistin In Vitro and In Vivo. Microbiol Spectr 2023; 11:e0199222. [PMID: 36475724 PMCID: PMC9927286 DOI: 10.1128/spectrum.01992-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infections caused by colistin-resistant P. aeruginosa strains pose a serious threat to public health. It is therefore urgent to find new strategies to deal with these bacterial infections. We aimed to investigate the efficacy and mechanisms of the colistin/resveratrol combination in eradicating colistin-resistant P. aeruginosa isolates and their biofilms both in vitro and in vivo. The results revealed that six clinically isolated colistin-resistant P. aeruginosa strains were multidrug resistant (MDR) strains, and resveratrol showed no antimicrobial activity against eight P. aeruginosa strains. Checkerboard assay and time-kill assays indicated that the combination therapy of resveratrol and colistin indicated a remarkable synergistic effect in vitro, and biofilm assays and SEM indicated synergistic antibiofilm activity. Furthermore, this combination could efficiently eliminate MDR bacteria in a murine infection model and improve the survival rate of Galleria mellonella. Fluorescence analysis, ALP, and β-galactosidase activity test results indicated that the colistin/resveratrol combination increased the membrane permeability of bacteria. In conclusion, our results may provide an efficient alternative pathway against colistin-resistant P. aeruginosa infections. IMPORTANCE P. aeruginosa is a ubiquitous Gram-negative opportunistic pathogen associated with a wide array of life-threatening acute and chronic infections. However, the improper and excessive use of antibiotics has contributed to the increasing emergence of multidrug-resistant (MDR) P. aeruginosa, even colistin-resistant strains, which presents a major challenge to clinical anti-infection treatment. Resveratrol, a naturally occurring polyphenolic antioxidant, can effectively slow down or avoid the occurrence and development of bacterial resistance and is expected to offer a promising strategy to overcome bacterial infections. In this study, colistin/resveratrol combination could synergistically damage the bacterial cell membrane, thereby inducing cell lysis while addressing the emergence of drug resistance. Moreover, this combination therapy may provide an efficient alternative pathway to combat the colistin-resistant P. aeruginosa in clinical practice.
Collapse
Affiliation(s)
- Lingbo Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People’s Republic of China
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Yishuai Lin
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Chunyan Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People’s Republic of China
| | - Liqiong Chen
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Yaran Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Yao Sun
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People’s Republic of China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
An Accurate Approach for Computational pKa Determination of Phenolic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238590. [PMID: 36500683 PMCID: PMC9736058 DOI: 10.3390/molecules27238590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Computational chemistry is a valuable tool, as it allows for in silico prediction of key parameters of novel compounds, such as pKa. In the framework of computational pKa determination, the literature offers several approaches based on different level of theories, functionals and continuum solvation models. However, correction factors are often used to provide reliable models that adequately predict pKa. In this work, an accurate protocol based on a direct approach is proposed for computing phenols pKa. Importantly, this methodology does not require the use of correction factors or mathematical fitting, making it highly practical, easy to use and fast. Above all, DFT calculations performed in the presence two explicit water molecules using CAM-B3LYP functional with 6-311G+dp basis set and a solvation model based on density (SMD) led to accurate pKa values. In particular, calculations performed on a series of 13 differently substituted phenols provided reliable results, with a mean absolute error of 0.3. Furthermore, the model achieves accurate results with -CN and -NO2 substituents, which are usually excluded from computational pKa studies, enabling easy and reliable pKa determination in a wide range of phenols.
Collapse
|
8
|
Controlled Release of Thymol by Cyclodextrin Metal-Organic Frameworks for Preservation of Cherry Tomatoes. Foods 2022; 11:foods11233818. [PMID: 36496626 PMCID: PMC9737142 DOI: 10.3390/foods11233818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Thymol is a phenol monoterpene with potential antifungal, antioxidant and antibacterial activities. Due to the low water solubility and high volatility of thymol, encapsulation serves as an effective tool during application. In the present study, cyclodextrin (CD)-based metal-organic-frameworks (MOFs) were synthesized using α-CD, β-CD, and γ-CD as organic building blocks, and further complexed with thymol to produce three CD-MOF-THY inclusion complexes (ICs). The encapsulation content, release kinetics and fruit preservation effect of ICs were analyzed. Results showed that thymol was well embedded in γ-CD-MOFs, with the highest encapsulation content of 286.7 ± 8.4 mg/g. Release kinetics revealed that CD-MOFs exhibited a controlled release effect toward thymol for 35 days. The release kinetics of three ICs fit the Rigter-Peppas model well, with γ-CD-MOF-THY showing the lowest release rate constant of 2.85 at 50 °C, RH 75%. Moreover, γ-CD-MOF-THY exhibited a remarkable preservation performance on cherry tomatoes with the lowest decay index (18.75%) and weight loss (5.17%) after 15 days of storage, suggesting this material as a potential fresh-keeping material for fruit and vegetable preservation.
Collapse
|
9
|
Júnior SV, Gravina ÉG, Moraes MCB, Zaioncz S, Valadares LF, Borges M, Magalhães WLE. Synthesis of an organic-inorganic composite from calcium carbonate and Kraft lignin and its use as carrier material for controlled release of semiochemical agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72670-72682. [PMID: 35614351 DOI: 10.1007/s11356-022-21028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The control of pests in agricultural systems is currently based on the widespread use of pesticides that efficiently control pests but have negative effects on the environment and humans. Thus, several studies have been conducted to develop alternative sustainable ways to control pests in agriculture. The use of semiochemicals presents a good alternative to develop a sustainable tool monitoring and control insect pests in crops areas. The dispensing carriers of semiochemicals are typically made of non-degradable material, often petroleum derivatives such as butyl rubber, that become polluting waste after application. To develop a biodegradable and low-cost dispenser for semiochemicals, particles of CaCO3 and a CaCO3/Kraft lignin composite were synthesized using CO2 bubbling, characterized and evaluated for 30 days as a dispenser of the limonene molecule, which is a common semiochemical in plants and also pheromone component is some insect species, such as the lesser mealworm Alphitobius diaperinus. Furthermore, limonene is volatile molecule that is easy to acquire and low-cost, which makes it an ideal semiochemical to evaluate the potential of the CaCO3 particles and CaCO3/Kraft lignin composite as a semiochemical dispenser for use in agriculture. The pure calcium carbonate I, pure calcium carbonate II, and composite I synthesized particles presented a larger specific surface area than the other composites. All the particles evaluated showed a slow limonene release rate between the 5th and 30th days evaluated, indicating the potential of these materials as pheromone dispensers. The composites with higher specific surface area, calcium carbonate II (19.5 m2/g) and composite I (23.1 m2/g), released a higher level of limonene during the 30 days evaluated.
Collapse
Affiliation(s)
- Silvio Vaz Júnior
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil.
| | - Érica Gonçalves Gravina
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil
| | - Maria Carolina Blassioli Moraes
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil
| | - Soraia Zaioncz
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil
| | - Leonardo Fonseca Valadares
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil
| | - Miguel Borges
- Brazilian Agricultural Research Corporation (Embrapa), Parque Estação Biológica - PqEB s/no, CEP 70770-901, Brasília, DF, Brazil
| | | |
Collapse
|
10
|
Yao Z, Feng L, Zhao Y, Zhang X, Chen L, Wang L, Zhang Y, Sun Y, Zhou T, Cao J. Thymol Increases Sensitivity of Clinical Col-R Gram-Negative Bacteria to Colistin. Microbiol Spectr 2022; 10:e0018422. [PMID: 35700133 PMCID: PMC9431615 DOI: 10.1128/spectrum.00184-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Colistin-resistant (Col-R) bacteria are increasing sharply, which poses a serious threat to public health. Thymol is a phenolic compound used for its wide-spectrum antimicrobial activity, while the combination of nontraditional drugs to restore colistin activity is an attractive strategy to treat infections caused by these pathogens. This study showed that thymol could play a synergistic role with colistin against Gram-negative bacteria (GNB), including nonfermenting bacteria and Enterobacteriaceae. According to antimicrobial resistance profiles, most of the colistin-resistant strains we collected showed multidrug-resistant (MDR) phenotypes. The checkerboard method and time-kill curve confirmed the synergistic effect of thymol combined with colistin against Col-R GNB. The synergistic antibiofilm activity of thymol combined with colistin was assessed via crystal violet staining and scanning electron microscopy (SEM) assays. Results showed that compared with a single drug, the combination partially destroyed bacterial cells and inhibit the formation of bacterial biofilms. Mechanismly, the thymol/colistin combination synergistically potentiated the antibacterial activity by accelerating the damage and permeability of the bacterial outer membrane. Preliminary data indicated that the thymol/colistin combination could decrease the number of bacteria ≥2 log10 CFU/mL after 24 h of therapy in a mouse thigh infection model. Our results fully prove that thymol and colistin combination possesses a promising treatment option against colistin-resistant GNB infections. IMPORTANCE Colistin is being considered "the last ditch" treatment in many infections caused by multidrug-resistant GNB clinical isolates, but colistin-resistant (Col-R) strains with different drug resistance mechanisms have appeared worldwide. Hence, it is of great significance to rejuvenate sensitization of clinical Col-R Gram-negative bacteria to colistin. In this study, the thymol/colistin combination showed notable antibacterial activity in vitro and in vivo. These findings suggest that the thymol/colistin combination may have promise as a treatment approach for treating the infections caused by Col-R pathogens.
Collapse
Affiliation(s)
- Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Luozhu Feng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
11
|
Wen C, Xu X, Zhou D, Yu Q, Wang T, Zhou Y. The effects of canthaxanthin microencapsulation on yolk color and canthaxanthin deposition in egg yolk of laying hens. Poult Sci 2022; 101:101889. [PMID: 35504065 PMCID: PMC9078995 DOI: 10.1016/j.psj.2022.101889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Canthaxanthin is widely used as a feed additive to improve skin and yolk color in poultry. It is insoluble in water and sensitive to oxidation, so commercial canthaxanthin is often microencapsulated with wall materials to improve its solubility and stability. The objective of this study was to evaluate the effects of canthaxanthin microencapsulation on yolk color and canthaxanthin deposition in egg yolk of laying hens. A total of 288 Hyline Brown laying hens (48 wk of age) were allocated to 4 groups with 6 replicates of 12 hens each, and fed a basal diet or the basal diet supplemented with 5 mg/kg canthaxanthin microencapsulated with modified starch (CMMS), gelatin (CMG), and sodium lignosulfonate (CMSL), respectively. Canthaxanthin supplementation did not affect laying performance of hens, but improved (P < 0.05) yolk color of fresh, fried, boiled, and stored (4 and 25°C) eggs. The improvement of yolk color of fresh eggs was greatest in the CMSL group and least in the CMG group (P < 0.05). Both CMMS and CMSL resulted in higher (P < 0.05) yolk canthaxanthin concentration than CMG. The CMSL resulted in higher (P < 0.05) yolk color score of fried eggs than CMMS and CMG and higher (P < 0.05) yolk color score of boiled eggs than CMG, but no difference was observed in stored eggs among three canthaxanthin groups. In conclusion, CMMS and CMSL were more effective in yolk pigmentation than CMG, and CMSL was slightly better than CMMS.
Collapse
Affiliation(s)
- Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinde Xu
- Zhejiang Medicine Co., Ltd Xinchang Pharmaceutical Factory, Shaoxing 312500, China
| | - Di Zhou
- Zhejiang Medicine Co., Ltd Xinchang Pharmaceutical Factory, Shaoxing 312500, China
| | - Qinghua Yu
- Zhejiang Medicine Co., Ltd Xinchang Pharmaceutical Factory, Shaoxing 312500, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Valentini F, Galloni P, Brancadoro D, Conte V, Sabuzi F. A Stoichiometric Solvent-Free Protocol for Acetylation Reactions. Front Chem 2022; 10:842190. [PMID: 35355791 PMCID: PMC8959667 DOI: 10.3389/fchem.2022.842190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Considering the remarkable relevance of acetylated derivatives of phenols, alcohols, and aryl and alkyl thiols in different areas of biology, as well as in synthetic organic chemistry, a sustainable solvent-free approach to perform acetylation reactions is proposed here. Acetylation reactions are classically performed using excess of acetic anhydride (Ac2O) in solvent-free conditions or by eventually working with stoichiometric amounts of Ac2O in organic solvents; both methods require the addition of basic or acid catalysts to promote the esterification. Therefore, they usually lead to the generation of high amounts of wastes, which sensibly raise the E-factor of the process. With the aim to develop a more sustainable system, a solvent-free, stoichiometric acetylation protocol is, thus, proposed. The naturally occurring phenol, thymol, can be converted to the corresponding-biologically active-ester with good yields, in the presence of 1% of VOSO4. Interestingly, the process can be efficiently adopted to synthesize other thymyl esters, as well as to perform acetylation of alcohols and aryl and alkyl thiols. Remarkably, a further improvement has been achieved replacing Ac2O with its greener alternative, isopropenyl acetate (IPA).
Collapse
Affiliation(s)
- Francesca Valentini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
- BT-InnoVaChem Srl, Rome, Italy
| | | | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
- BT-InnoVaChem Srl, Rome, Italy
| |
Collapse
|
13
|
Simple Strategies to Modulate the pH-Responsiveness of Lignosulfonate-Based Delivery Systems. MATERIALS 2022; 15:ma15051857. [PMID: 35269088 PMCID: PMC8911673 DOI: 10.3390/ma15051857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
The extensive use of non-degradable microplastics in a wide plethora of daily life products is causing serious pollution problems. More ecofriendly solutions are therefore urgently needed. In this context, the use of lignin, a largely available aromatic polymer, may represent a viable option. Due to the self-assembly ability of its molecules, lignin is in fact an ideal matrix for the fabrication of nanostructures. In this study, lignosulfonate microcapsules containing a limonene core were prepared and characterized in terms of their dimensions and of the physicochemical characteristics of the capsule-forming lignosulfonate molecules. The main purpose is to elucidate the key properties governing the pH-responsive behavior of the capsules to be able to achieve better control over the release kinetics of the entrapped compound(s). The results demonstrate that both the molecular weight and the concentration of sulfonate groups are the most important factors in this respect. Based on these findings, two strategies were followed to further tailor the capsules' behavior: (i) fractionation of the starting lignosulfonate by solvent extraction and (ii) introduction of a specific additive in the formulation. The first approach permitted to fabricate highly resistant capsules both in acidic, as well as in alkaline conditions, while in the second case the chemical structure of the additive, the diester diveratryl sebacate, allowed for fast kinetics of release, as values above 70% were reached after 24 h of incubation at pH 4 and pH 12.
Collapse
|
14
|
Sharma M, Grewal K, Jandrotia R, Batish DR, Singh HP, Kohli RK. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed Pharmacother 2021; 146:112514. [PMID: 34963087 DOI: 10.1016/j.biopha.2021.112514] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer retains a central place in fatality rates among the wide variety of diseases known world over, and the conventional synthetic medicaments, albeit used until now, produce numerous side effects. As a result, newer, better, and safer alternatives such as natural plant products, are gravely required. Essential oils (EOs) offer a plethora of bioactivities including antibacterial, antiviral, antioxidant, and anticancer properties, therefore, the use of EOs in combination with synthetic drugs or aromatherapy continues to be popular in many settings. In view of the paramount importance of EOs and their potential bioactivities, this review summarizes the current knowledge on the interconnection between EOs and cancer treatment. In particular, the current review presents an updated summary of the chemical composition of EOs, their current applications in cancer treatments based on clinical studies, and the mechanism of action against the cancer cell lines. Similarly, an overview of using EOs in aromatherapy and enhancing immunity during cancer treatment is provided. Further, this review focuses on the recent technological advancements such as the loading of EOs using protein microspheres, ligands, or nanoemulsions/nanoencapsulation, which offer multiple benefits in cancer treatment via site-specific and target-oriented delivery of drugs. The continuing clinical studies of EOs implicate that their pharmacological applications are a rewarding research area.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India
| | - Kamaljit Grewal
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | - Rupali Jandrotia
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | | | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India.
| | | |
Collapse
|
15
|
Encapsulation of volatile compounds in liquid media: Fragrances, flavors, and essential oils in commercial formulations. Adv Colloid Interface Sci 2021; 298:102544. [PMID: 34717207 DOI: 10.1016/j.cis.2021.102544] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
The first marketed example of the application of microcapsules dates back to 1957. Since then, microencapsulation techniques and knowledge have progressed in a plethora of technological fields, and efforts have been directed toward the design of progressively more efficient carriers. The protection of payloads from the exposure to unfavorable environments indeed grants enhanced efficacy, safety, and stability of encapsulated species while allowing for a fine tuning of their release profile and longer lasting beneficial effects. Perfumes or, more generally, active-loaded microcapsules are nowadays present in a very large number of consumer products. Commercial products currently make use of rigid, stable polymer-based microcapsules with excellent release properties. However, this type of microcapsules does not meet certain sustainability requirements such as biocompatibility and biodegradability: the leaking via wastewater contributes to the alarming phenomenon of microplastic pollution with about 4% of total microplastic in the environment. Therefore, there is a need to address new issues which have been emerging in relation to the poor environmental profile of such materials. The progresses in some of the main application fields of microencapsulation, such as household care, toiletries, cosmetics, food, and pesticides are reviewed herein. The main technologies employed in microcapsules production and the mechanisms underlying the release of actives are also discussed. Both the advantages and disadvantages of every technique have been considered to allow a careful choice of the most suitable technique for a specific target application and prepare the ground for novel ideas and approaches for encapsulation strategies that we expect to be proposed within the next years.
Collapse
|
16
|
Witzler M, Vermeeren S, Kolevatov RO, Haddad R, Gericke M, Heinze T, Schulze M. Evaluating Release Kinetics from Alginate Beads Coated with Polyelectrolyte Layers for Sustained Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:6719-6731. [PMID: 35006974 DOI: 10.1021/acsabm.1c00417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Current approaches in stem cell-based bone tissue engineering require a release of bioactive compounds over up to 2 weeks. This study presents a polyelectrolyte-layered system featuring sustained release of water-soluble drugs with decreased burst release. The bioactive compounds adenosine 5'-triphosphate (ATP), suramin, and A740003 (a less water-soluble purinergic receptor ligand) were incorporated into alginate hydrogel beads subsequently layered with different polyelectrolytes (chitosan, poly(allyl amine), alginate, or lignosulfonate). Drug release into aqueous medium was monitored over 14 days and evaluated using Korsmeyer-Peppas, Peppas-Sahlin, Weibull models, and a Langmuir-like "Two-Stage" model. Release kinetics strongly depended on both the drug and the polyelectrolyte system. For ATP, five alternating layers of poly(allyl amine) and alginate proved to be most effective in sustaining the release. Release of suramin could be prolonged best with lignosulfonate as polyanion. A740003 showed prolonged release even without layering. Applying polyelectrolyte layers significantly slowed down the burst release. Release curves could be best described with the Langmuir-like model.
Collapse
Affiliation(s)
- Markus Witzler
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany.,Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Sarah Vermeeren
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | - Roman O Kolevatov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Razan Haddad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Martin Gericke
- Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Thomas Heinze
- Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| |
Collapse
|
17
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
18
|
Pontes-Quero GM, Esteban-Rubio S, Pérez Cano J, Aguilar MR, Vázquez-Lasa B. Oregano Essential Oil Micro- and Nanoencapsulation With Bioactive Properties for Biotechnological and Biomedical Applications. Front Bioeng Biotechnol 2021; 9:703684. [PMID: 34368098 PMCID: PMC8340037 DOI: 10.3389/fbioe.2021.703684] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the preservative, antioxidant, antimicrobial, and therapeutic properties of oregano essential oil (OEO), it has received an emerging interest for biotechnological and biomedical applications. However, stability and bioactivity can be compromised by its natural volatile and hydrophobic nature, and by external factors including light, heat, or oxygen. Therefore, micro- and nanoencapsulation are being employed to guarantee oregano oil protection from outside aggressions and to maximize its potential. Oregano oil encapsulation is an interesting strategy used to increase its stability, enhance its bioactivity, and decrease its volatility. At the same time, the versatility that micro- and nanocarriers offer, allows to prepare tailored systems that can provide a controlled and targeted release of the encapsulated principle, influence its bioactive activities, or even provide additional properties. Most common materials used to prepare these carriers are based on lipids and cyclodextrins, due to their hydrophobic nature, polymers due to their versatility in composition, and hybrid lipid-polymer systems. In this context, recently developed micro- and nanocarriers encapsulating oregano oil with applications in the biotechnological and biomedical fields will be discussed.
Collapse
Affiliation(s)
- Gloria María Pontes-Quero
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain.,Alodia Farmacéutica SL, Santiago Grisolía 2 D130/L145, Madrid, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | | | - Juan Pérez Cano
- Alodia Farmacéutica SL, Santiago Grisolía 2 D130/L145, Madrid, Spain
| | - María Rosa Aguilar
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Blanca Vázquez-Lasa
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
19
|
A Regioselective Synthesis of Novel Functionalized Organochalcogen Compounds by Chalcogenocyclofunctionalization Reactions Based on Chalcogen Halides and Natural Products. Molecules 2021; 26:molecules26123729. [PMID: 34207301 PMCID: PMC8234429 DOI: 10.3390/molecules26123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
The regioselective synthesis of novel functionalized condensed organochalcogen compounds by chalcogenocyclofunctionalization reactions based on chalcogen halides and the natural products thymol and carvacrol has been developed. The reactions of selenium dibromide with allyl thymol and allyl carvacrol proceeded in methylene chloride at room temperature in the presence of NaHCO3 affording bis[(7-isopropyl-4-methyl-2,3-dihydro-1-benzofuran-2-yl)methyl] and bis[(4-isopropyl-7-methyl-2,3-dihydro-1-benzofuran-2-yl)methyl] selenides in 90–92% yield. Similar sulfides were obtained in 70–72% yields by the reaction of sulfur dichloride in chloroform under reflux. Trihalotellanes containing the same organic moieties were synthesized from allyl thymol, allyl carvacrol and tellurium tetrachloride or tetrabromide in quantitative yields. Corresponding functionalized ditellurides were prepared in 91–92% yields by the reduction of the trichlorotellanes with sodium metabisulfite in two-phase solvent system. The comparison of reactivity of sulfur, selenium and tellurium halides in chalcogenocyclofunctionalization and distinguishing features of each reaction were discussed.
Collapse
|
20
|
Kowalczyk A, Przychodna M, Sopata S, Bodalska A, Fecka I. Thymol and Thyme Essential Oil-New Insights into Selected Therapeutic Applications. Molecules 2020; 25:E4125. [PMID: 32917001 PMCID: PMC7571078 DOI: 10.3390/molecules25184125] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Thymol (2-isopropyl-5-methylphenol) belongs to the phenolic monoterpenes and mostly occurs in thyme species. It is one of the main compounds of thyme essential oil. Both thymol and thyme essential oil have long been used in traditional medicine as expectorant, anti-inflammatory, antiviral, antibacterial, and antiseptic agents, mainly in the treatment of the upper respiratory system. The current search for new directions of biological or therapeutic activities of natural plant substances with known structures includes thyme essential oil and thymol. Novel studies have demonstrated their antibiofilm, antifungal, antileishmanial, antiviral, and anticancer properties. Also, their new therapeutic formulations, such as nanocapsules containing these constituents, can be beneficial in medicinal practice and create opportunities for their extensive use. Extensive application of thymol and thyme essential oil in the healthcare sector is very promising but requires further research and analysis.
Collapse
Affiliation(s)
- Adam Kowalczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.K.); (I.F.)
| | - Martyna Przychodna
- Student’s Scientific Group of Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.P.); (S.S.)
| | - Sylwia Sopata
- Student’s Scientific Group of Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.P.); (S.S.)
| | - Agnieszka Bodalska
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.K.); (I.F.)
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.K.); (I.F.)
| |
Collapse
|
21
|
Cailotto S, Gigli M, Bonini M, Rigoni F, Crestini C. Sustainable Strategies in the Synthesis of Lignin Nanoparticles for the Release of Active Compounds: A Comparison. CHEMSUSCHEM 2020; 13:4759-4767. [PMID: 32697394 DOI: 10.1002/cssc.202001140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/17/2020] [Indexed: 05/21/2023]
Abstract
The preparation of nanoparticles represents a powerful tool for lignin valorization, as it combines easy methodologies with high application potential. Different synthetic strategies and various lignin sources have been employed in the process. However, the great variability in the lignin structure prevents a direct comparison of the so far reported lignin nanoparticles (LNPs), especially as regards their physicochemical and functional properties. To this purpose, two green protocols, that is, solvent-antisolvent and hydrotropic, were optimized and used to generate LNPs from the same softwood kraft lignin. The nanomaterials were fully characterized to extrapolate structure/property relationships and reveal any differences in the mechanism of self-assembly. Furthermore, tests on methylene blue entrapment capacity and release behavior at two different pH values (2.0 and 7.4) evidenced a clear dependence on the LNPs characteristics and thus on the strategy adopted for their production.
Collapse
Affiliation(s)
- Simone Cailotto
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30170, Venezia Mestre, Italy
- CSGI - Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Matteo Gigli
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30170, Venezia Mestre, Italy
- CSGI - Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Massimo Bonini
- CSGI - Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Federica Rigoni
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30170, Venezia Mestre, Italy
| | - Claudia Crestini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30170, Venezia Mestre, Italy
- CSGI - Italian Research Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|