1
|
Cocorullo M, Stamilla A, Recchia D, Marturano MC, Maci L, Stelitano G. Mycobacterium abscessus Virulence Factors: An Overview of Un-Explored Therapeutic Options. Int J Mol Sci 2025; 26:3247. [PMID: 40244091 PMCID: PMC11990050 DOI: 10.3390/ijms26073247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Mycobacterium abscessus (Mab) is an opportunistic pathogen gaining increased importance due to its capacity to colonize the respiratory tract of patients with chronic lung diseases such as individuals with Cystic Fibrosis. The actual therapeutic regimen to treat Mab infections is based on repurposed drugs from therapies against Mycobacterium tuberculosis and avium. In addition to the need for new specific drugs against this bacterium, a possible strategy for shortening the therapeutic time and improving the success rate could be targeting Mab virulence factors. These drugs could become an important integration to the actual therapeutic regimen, helping the immune system to fight the infection. Moreover, this strategy applies a low selective pressure on the bacteria, since these elements are not essential for Mab survival but crucial for establishing the infection. This review aims to provide an overview of the Mab's virulence factors that are poorly studied and mostly unknown, suggesting some interesting alternatives to classical drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanni Stelitano
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.C.); (A.S.); (D.R.); (M.C.M.); (L.M.)
| |
Collapse
|
2
|
Weng X, Gonzalez M, Angelia J, Piroozmand S, Jamehdor S, Behrooz AB, Latifi-Navid H, Ahmadi M, Pecic S. Lipidomics-driven drug discovery and delivery strategies in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167637. [PMID: 39722408 DOI: 10.1016/j.bbadis.2024.167637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
With few viable treatment options, glioblastoma (GBM) is still one of the most aggressive and deadly types of brain cancer. Recent developments in lipidomics have demonstrated the potential of lipid metabolism as a therapeutic target in GBM. The thorough examination of lipids in biological systems, or lipidomics, is essential to comprehending the changed lipid profiles found in GBM, which are linked to the tumor's ability to grow, survive, and resist treatment. The use of lipidomics in drug delivery and discovery is examined in this study, focusing on how it may be used to find new biomarkers, create multi-target directed ligands, and improve drug delivery systems. We also cover the use of FDA-approved medications, clinical trials that use lipid-targeted medicines, and the integration of lipidomics with other omics technologies. This study emphasizes lipidomics as a possible tool in developing more effective treatment methods for GBM by exploring various lipid-centric techniques.
Collapse
Affiliation(s)
- Xiaohui Weng
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Michael Gonzalez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Jeannes Angelia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
3
|
Bano N, Mohammed SA, Raza K. Integrating machine learning and multitargeted drug design to combat antimicrobial resistance: a systematic review. J Drug Target 2025; 33:384-396. [PMID: 39535825 DOI: 10.1080/1061186x.2024.2428984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Antimicrobial resistance (AMR) is a critical global health challenge, undermining the efficacy of antimicrobial drugs against microorganisms like bacteria, fungi and viruses. Multidrug resistance (MDR) arises when microorganisms become resistant to multiple antimicrobial agents. The World Health Organisation classifies AMR bacteria into priority list - I (critical), II (high) and III (medium), prompting action from nearly 170 countries. Six priority bacterial strains account for over 70% of AMR-related fatalities, contributing to more than 1.3 million direct deaths annually and linked to over 5 million deaths globally. Enterobacteriaceae, including Escherichia coli, Salmonella enterica and Klebsiella pneumoniae, significantly contribute to AMR fatalities. This systematic literature review explores how machine learning (ML) and multitargeted drug design (MTDD) can combat AMR in Enterobacteriaceae. We followed PRISMA guidelines and comprehensively analysed current prospects and limitations by mining PubMed and Scopus literature databases. Innovative strategies integrating AI algorithms with advanced computational techniques allow for the analysis of vast datasets, identification of novel drug targets, prediction of resistance mechanisms, and optimisation of drug molecules to overcome resistance. Leveraging ML and MTDD is crucial for both advancing our fight against AMR in Enterobacteriaceae, and developing combination therapies that target multiple bacterial survival pathways, reducing the risk of resistance development.
Collapse
Affiliation(s)
- Nagmi Bano
- Computational Intelligence and Bioinformatics Lab., Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Salman Arafath Mohammed
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Khalid Raza
- Computational Intelligence and Bioinformatics Lab., Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Leitão MM, Gonçalves ASC, Borges F, Simões M, Borges A. Polypharmacological strategies for infectious bacteria. Pharmacol Rev 2025; 77:100038. [PMID: 40022769 DOI: 10.1016/j.pharmr.2025.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 03/04/2025] Open
Abstract
Polypharmacological approaches have significant potential for the treatment of various complex diseases, including infectious bacteria-related diseases. Actually, multitargeting agents can achieve better therapeutic effects and overcome the drawbacks of monotherapy. Although multidrug multitarget strategies have demonstrated the ability to inactivate infectious bacteria, several challenges have been pointed out. In this way, multitarget direct ligands approaches appear to be a rational and sustainable strategy to combat antibiotic resistance. By combining different pharmacophores, antibiotic hybrids stand out as a promising application in the field of bacterial infections. These new chemical entities can achieve synergistic interactions that allow to extend the spectrum of action and target multiple pathways. In addition, antibiotic hybrids can reduce the likelihood of resistance development and provide improved chemical stability. It is worth highlighting that despite the efforts of the scientific community to discover new solutions for the most complex diseases, there is a significant lack of studies on biofilm-associated infections. This review describes the different polypharmacological approaches that can be used to treat bacterial infections with a particular focus, whenever possible, on those promoted by biofilms. By exploring these innovative approaches, we aim to inspire further research and progress in the search for effective treatments for infectious bacteria-related diseases, including biofilm-related ones. SIGNIFICANCE STATEMENT: The importance of the proposed topic lies in the escalating challenge of antibiotic resistance, particularly in the context of infectious bacteria-related infections. Polypharmacological approaches, such as antibiotic hybrids, represent innovative strategies to combat bacterial infections. By targeting multiple signaling pathways, these approaches not only enhance therapeutic effect but also reduce the development of resistance while improving the drug's chemical stability. Despite the urgent need to combat bacterial infectious diseases, there is a notable research gap, in particular in biofilm-related ones. This review highlights the critical importance of exploring polypharmacological approaches with the aim of motivating further research and advances in effective treatments for infectious bacteria, including biofilm related infections.
Collapse
Affiliation(s)
- Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
5
|
Panigrahi D, Sahu SK. Computational approaches: atom-based 3D-QSAR, molecular docking, ADME-Tox, MD simulation and DFT to find novel multi-targeted anti-tubercular agents. BMC Chem 2025; 19:39. [PMID: 39948649 PMCID: PMC11827359 DOI: 10.1186/s13065-024-01357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/28/2024] [Indexed: 02/16/2025] Open
Abstract
Tuberculosis (TB) has become the biggest threat to human society because of the rapid rise in resistance to the causative bacteria Mycobacterium tuberculosis (MTB) against the available anti-tubercular drugs. There is an urgent need to design new multi-targeted anti-tubercular agents to overcome the resistance species of MTB through computational design tools. With this aim in mind, we performed a combination of atom-based three-dimensional quantitative structure-activity relationship (3D-QSAR), six-point pharmacophore (AHHRRR), and molecular docking analysis on a series of fifty-eight anti-tubercular agents. The created QSAR model had a R2 value of 0.9521, a Q2 value of 0.8589, and a Pearson r-factor of 0.8988, all of which are statistically significant. This means that the model was effective at making predictions. We performed the molecular docking study for the data set of compounds with the two important anti-tubercular target proteins, Enoyl acyl carrier protein reductase (InhA) (PDBID: 2NSD) and Decaprenyl phosphoryl-β-D-Ribose 20-epimerase (DprE1) (PDBID: 4FDO). We used the similarity search principle to do virtual screening on 237 compounds from the PubChem database in order to find strong anti-tubercular agents that act against multiple targets. The screened compound, MK3, showed the highest docking score of -9.2 and -8.3 kJ/mol towards both the target proteins InhA and DprE1, which were picked for a 100 ns molecular-dynamic simulation study using GROMACS. The data showed that the compound MK3 was thermodynamically stable and effectively bound to both target proteins in their active binding pockets without much movement. The analysis of the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and energy gap predicts the molecular reactivity and stability of the identified molecule. Based on the result of the above studies, the proposed compound MK3 can be successfully used for the development of a novel multi-targeted anti-tubercular agent with high binding affinity and favourable ADME-T properties.
Collapse
Affiliation(s)
- Debadash Panigrahi
- University Department of Pharmaceutical Sciences, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India.
- Drug Research Laboratory, Nodal Research Centre, College of Pharmaceutical Sciences, Baliguali, Puri- Konark Marine Drive Road, Puri, Odisha, 752004, India.
| | - Susanta Kumar Sahu
- University Department of Pharmaceutical Sciences, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India
| |
Collapse
|
6
|
Sharma S, Babu MA, Kumar R, Singh TG, Dwivedi AR, Ahmad G, Goel KK, Kumar B. A review on pyrimidine-based pharmacophore as a template for the development of hybrid drugs with anticancer potential. Mol Divers 2025:10.1007/s11030-025-11112-x. [PMID: 39937329 DOI: 10.1007/s11030-025-11112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
The low efficacy and toxicity of traditional chemotherapy, led by drug resistance of targeted anticancer therapies, have mandated the exploration and development of anticancer molecules. In this league, hybrid drugs, owing to their peculiar multitargeted functionality and structural diversity, could serve as vital leads in this quest for drug discovery. They are plausibly found to offer added advantages considering the improved efficacy, low toxicity, and improved patient compliance. Among numerous heterocycles explored, pyrimidine derivatives epitomize as a valuable resource for the hybrid drug development due to their validated efficacy and versatility. The present review discusses the role of pyrimidine, a diversified pharmacophore in drug development and concepts of hybrid drugs. The study covers the recent advancements in pyrimidine-based hybrid pharmacophores. It delves further into the challenges in hybrid drug development and ongoing research in hybrid drug discovery. Furthermore, the challenges faced in developing hybrid molecules, such as their design and optimization complexities, bioavailability and pharmacokinetics issues, target identification and validation, and off-target effects, are discussed.
Collapse
Affiliation(s)
- Shivam Sharma
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, VPO-Ghudda, Punjab, 151401, India
- Graphic Era (Deemed to Be University, Clement Town, Dehradun, 248002, India
| | - Thakur Gurjeet Singh
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, GITAM School of Pharmacy Hyderabad Campus GITAM University, Hyderabad, 502329, India
| | - Gazanfar Ahmad
- Prabha Harjilal College of Pharmacy and Paraclinical Sciences, Jammu, Jammu and Kashmir, India
| | - Kapil Kumar Goel
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, India.
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University, Dist. Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
7
|
De Rossi L, Rocchetti G, Lucini L, Rebecchi A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses-A Narrative Review. Antioxidants (Basel) 2025; 14:200. [PMID: 40002386 PMCID: PMC11851925 DOI: 10.3390/antiox14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Polyphenols (PPs) are recognized as bioactive compounds and antimicrobial agents, playing a critical role in enhancing food safety, preservation, and extending shelf life. The antimicrobial effectiveness of PPs has different molecular and biological reasons, predominantly linked to their hydroxyl groups and electron delocalization, which interact with microbial cell membranes, proteins, and organelles. These interactions may reduce the efficiency of metabolic pathways, cause destructive damage to the cell membrane, or they may harm the proteins and nucleic acids of the foodborne bacteria. Moreover, PPs exhibit a distinctive ability to form complexes with metal ions, further amplifying their antimicrobial activity. This narrative review explores the complex and multifaceted interactions between PPs and foodborne pathogens, underlying the correlation of their chemical structures and mechanisms of action. Such insights shed light on the potential of PPs as innovative natural preservatives within food systems, presenting an eco-friendly and sustainable alternative to synthetic additives.
Collapse
Affiliation(s)
- Luca De Rossi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Annalisa Rebecchi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Stefano Leonida Bissolati 74, 26100 Cremona, Italy; (L.D.R.); (A.R.)
| |
Collapse
|
8
|
Vrablova L, Gonec T, Kauerova T, Oravec M, Jendrzejewska I, Kollar P, Cizek A, Jampilek J. Antimicrobial and ADME properties of methoxylated, methylated and nitrated 2-hydroxynaphthalene-1 carboxanilides. ADMET AND DMPK 2025; 13:2642. [PMID: 40161889 PMCID: PMC11954145 DOI: 10.5599/admet.2642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
Background and purpose Many new compounds are being prepared to overcome the problem of increasing microbial resistance and the increasing number of infections. Experimental approach This study includes a series of twenty-seven mono-, di- and trisubstituted 2-hydroxynaphthalene-1-carboxanilides designed as multitarget agents. The compounds are substituted with methoxy, methyl, and nitro groups, as well as additionally with chlorine, bromine, and trifluoromethyl at various positions. All the compounds were evaluated for antibacterial activities against Gram-positive and Gram-negative bacteria and mycobacteria. Cytotoxicity on human cells was also tested. Key results Three compounds showed activity comparable to clinically used drugs. N-(3,5-Dimethylphenyl)-2-hydroxynaphthalene-1-carboxamide (13) showed only antistaphylococcal activity (minimum inhibitory concentration (MIC) = 54.9 μM); 2-hydroxy-N-[2-methyl-5-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (22) and 2-hydroxy-N-[4-nitro-3-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (27) were active across the entire spectrum of tested bacteria/mycobacteria, both against the sensitive set and against resistant isolates (MICs range 0.3 to 92.6 μM). Compound 22 was even active against E. coli (MIC = 23.2 μM). The active agents showed no in vitro cytotoxicity up to a concentration of 30 μM. Conclusion Compounds with trifluoromethyl in the meta-anilide position, experimental lipophilicity expressed as log k (logarithm of the capacity factor) in the range of 0.31 to 0.34 and calculated electron σ parameter for the anilide substituent higher than 0.59 were effective. The investigated compounds meet the definition of Michael acceptors. Based on ADME screening, the investigated compounds 13, 22 and 27 should have suitable physicochemical parameters for good bioavailability in the organism. Therefore, these are promising agents for further study.
Collapse
Affiliation(s)
- Lucia Vrablova
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic
| | - Tereza Kauerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 603 00 Brno, Czech Republic
| | | | - Peter Kollar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 00 Brno, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic
| |
Collapse
|
9
|
Eltabeeb MA, Hamed RR, El-Nabarawi MA, Teaima MH, Hamed MIA, Darwish KM, Hassan M, Abdellatif MM. Nanocomposite alginate hydrogel loaded with propranolol hydrochloride kolliphor ® based cerosomes as a repurposed platform for Methicillin-Resistant Staphylococcus aureus-(MRSA)-induced skin infection; in-vitro, ex-vivo, in-silico, and in-vivo evaluation. Drug Deliv Transl Res 2025; 15:556-576. [PMID: 38762697 PMCID: PMC11683024 DOI: 10.1007/s13346-024-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
Nanocomposite alginate hydrogel containing Propranolol hydrochloride (PNL) cerosomes (CERs) was prepared as a repurposed remedy for topical skin Methicillin-Resistant Staphylococcus aureus (MRSA) infection. CERs were formed via an ethanol injection technique using different ceramides, Kolliphores® as a surfactant, and Didodecyldimethylammonium bromide (DDAB) as a positive charge inducer. CERs were optimized utilizing 13. 22 mixed-factorial design employing Design-Expert® software, the assessed responses were entrapment efficiency (EE%), particle size (PS), and zeta potential (ZP). The optimum CER, composed of 5 mg DDAB, ceramide VI, and Kolliphor® RH40 showed tubular vesicles with EE% of 92.91 ± 0.98%, PS of 388.75 ± 18.99 nm, PDI of 0.363 ± 0.01, and ZP of 30.36 ± 0.69 mV. Also, it remained stable for 90 days and manifested great mucoadhesive aspects. The optimum CER was incorporated into calcium alginate to prepare nanocomposite hydrogel. The ex-vivo evaluation illustrated that PNL was permeated in a more prolonged pattern from PNL-loaded CERs nanocomposite related to PNL-composite, optimum CER, and PNL solution. Confocal laser scanning microscopy revealed a perfect accumulation of fluorescein-labeled CERs in the skin. The in-silico investigation illustrated that the PNL was stable when mixed with other ingredients in the CERs and confirmed that PNL is a promising candidate for curing MRSA. Moreover, the PNL-loaded CERs nanocomposite revealed superiority over the PNL solution in inhibiting biofilm formation and eradication. The PNL-loaded CERs nanocomposite showed superiority over the PNL-composite for treating MRSA infection in the in-vivo mice model. Histopathological studies revealed the safety of the tested formulations. In conclusion, PNL-loaded CERs nanocomposite provided a promising, safe cure for MRSA bacterial skin infection.
Collapse
Affiliation(s)
- Moaz A Eltabeeb
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed I A Hamed
- Organic and Medicinal Chemistry Department, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
10
|
Fathallah N, Elkady WM, Zahran SA, Darwish KM, Elhady SS, Elkhawas YA. Unveiling the Multifaceted Capabilities of Endophytic Aspergillus flavus Isolated from Annona squamosa Fruit Peels against Staphylococcus Isolates and HCoV 229E-In Vitro and In Silico Investigations. Pharmaceuticals (Basel) 2024; 17:656. [PMID: 38794226 PMCID: PMC11124496 DOI: 10.3390/ph17050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Recently, there has been a surge towards searching for primitive treatment strategies to discover novel therapeutic approaches against multi-drug-resistant pathogens. Endophytes are considered unexplored yet perpetual sources of several secondary metabolites with therapeutic significance. This study aims to isolate and identify the endophytic fungi from Annona squamosa L. fruit peels using morphological, microscopical, and transcribed spacer (ITS-rDNA) sequence analysis; extract the fungus's secondary metabolites by ethyl acetate; investigate the chemical profile using UPLC/MS; and evaluate the potential antibacterial, antibiofilm, and antiviral activities. An endophytic fungus was isolated and identified as Aspergillus flavus L. from the fruit peels. The UPLC/MS revealed seven compounds with various chemical classes. The antimicrobial activity of the fungal ethyl acetate extract (FEA) was investigated against different Gram-positive and Gram-negative standard strains, in addition to resistant clinical isolates using the agar diffusion method. The CPE-inhibition assay was used to identify the potential antiviral activity of the crude fungal extract against low pathogenic human coronavirus (HCoV 229E). Selective Gram-positive antibacterial and antibiofilm activities were evident, demonstrating pronounced efficacy against both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). However, the extract exhibited very weak activity against Gram-negative bacterial strains. The ethyl acetate extract of Aspergillus flavus L exhibited an interesting antiviral activity with a half maximal inhibitory concentration (IC50) value of 27.2 µg/mL against HCoV 229E. Furthermore, in silico virtual molecular docking-coupled dynamics simulation highlighted the promising affinity of the identified metabolite, orienting towards three MRSA biotargets and HCoV 229E main protease as compared to reported reference inhibitors/substrates. Finally, ADME analysis was conducted to evaluate the potential oral bioavailability of the identified metabolites.
Collapse
Affiliation(s)
- Noha Fathallah
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Wafaa M. Elkady
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Sara A. Zahran
- Department of Microbiology and Immunology, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- King Abdulaziz University Herbarium, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasmin A. Elkhawas
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| |
Collapse
|
11
|
Sahoo P. Complementary supramolecular drug associates in perfecting the multidrug therapy against multidrug resistant bacteria. Front Immunol 2024; 15:1352483. [PMID: 38415251 PMCID: PMC10897028 DOI: 10.3389/fimmu.2024.1352483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
The inappropriate and inconsistent use of antibiotics in combating multidrug-resistant bacteria exacerbates their drug resistance through a few distinct pathways. Firstly, these bacteria can accumulate multiple genes, each conferring resistance to a specific drug, within a single cell. This accumulation usually takes place on resistance plasmids (R). Secondly, multidrug resistance can arise from the heightened expression of genes encoding multidrug efflux pumps, which expel a broad spectrum of drugs from the bacterial cells. Additionally, bacteria can also eliminate or destroy antibiotic molecules by modifying enzymes or cell walls and removing porins. A significant limitation of traditional multidrug therapy lies in its inability to guarantee the simultaneous delivery of various drug molecules to a specific bacterial cell, thereby fostering incremental drug resistance in either of these paths. Consequently, this approach prolongs the treatment duration. Rather than using a biologically unimportant coformer in forming cocrystals, another drug molecule can be selected either for protecting another drug molecule or, can be selected for its complementary activities to kill a bacteria cell synergistically. The development of a multidrug cocrystal not only improves tabletability and plasticity but also enables the simultaneous delivery of multiple drugs to a specific bacterial cell, philosophically perfecting multidrug therapy. By adhering to the fundamental tenets of multidrug therapy, the synergistic effects of these drug molecules can effectively eradicate bacteria, even before they have the chance to develop resistance. This approach has the potential to shorten treatment periods, reduce costs, and mitigate drug resistance. Herein, four hypotheses are presented to create complementary drug cocrystals capable of simultaneously reaching bacterial cells, effectively destroying them before multidrug resistance can develop. The ongoing surge in the development of novel drugs provides another opportunity in the fight against bacteria that are constantly gaining resistance to existing treatments. This endeavour holds the potential to combat a wide array of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Pathik Sahoo
- International Center for Materials and Nanoarchitectronics (MANA), Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science, Tsukuba, Japan
- Foundation of Physics Research Center (FoPRC), Celico, Italy
| |
Collapse
|
12
|
Amandy FV, Neri GLL, Manzano JAH, Go AD, Macabeo APG. Polypharmacology-Driven Discovery and Design of Highly Selective, Dual and Multitargeting Inhibitors of Mycobacterium tuberculosis - A Review. Curr Drug Targets 2024; 25:620-634. [PMID: 38859782 DOI: 10.2174/0113894501306302240526160804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
The increasing demand for novel antitubercular agents has been the main 'force' of many TB research efforts due to the uncontrolled growing number of drug-resistant strains of M. tuberculosis in the clinical setting. Many strategies have been employed to address the drug-resistant issue, including a trend that is gaining attention, which is the design and discovery of Mtb inhibitors that are either dual- or multitargeting. The multiple-target design concept is not new in medicinal chemistry. With a growing number of newly discovered Mtb proteins, numerous targets are now available for developing new biochemical/cell-based assays and computer-aided drug design (CADD) protocols. To describe the achievements and overarching picture of this field in anti- infective drug discovery, we provide in this review small molecules that exhibit profound inhibitory activity against the tubercle bacilli and are identified to trace two or more Mtb targets. This review also presents emerging design methodologies for developing new anti-TB agents, particularly tailored to structure-based CADD.
Collapse
Affiliation(s)
- Franklin V Amandy
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
- Department of Chemistry, College of Science, Adamson University, San Marcelino St., Ermita, Manila 1000, Philippines
| | - Gabriel L L Neri
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Joe A H Manzano
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Adrian D Go
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
- Department of Chemistry, College of Science, Adamson University, San Marcelino St., Ermita, Manila 1000, Philippines
| | - Allan P G Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| |
Collapse
|
13
|
Kumar A. Articulate Chemotherapeutic Strategies for the Development of Effective Drugs against a Fatal Disease, Visceral Leishmaniasis. Curr Drug Discov Technol 2024; 21:e211223224757. [PMID: 38141191 DOI: 10.2174/0115701638277134231218150109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
Visceral Leishmaniasis (VL) control relies mainly on chemotherapy in the absence of no effective vaccines. However, available anti-VL drugs are limited in number, having toxicity issues, adverse reactions, low efficacy, and resistance observed against antileishmanial. A significant decrease in efficacy (~tenfold increase in dosage and duration) was reported against the usual treatment with Pentavalent antimonials (the most recommended antileishmanial drug discovered 90 years ago). Amphotericin B is the second line of treatment but limits wider use due to its high cost. Pentamidine is another anti-VL drug, but its therapeutic efficacy has decreased significantly in different areas. These conventional therapeutics for VL have become almost outdated due to a significant increase in therapeutic failure in terms of percentage. Due to this, the search for an effective future anti-VL drug spans several decades, and now it is in high demand in the current situation. Some conventional therapeutics are modified, but they are also not satisfactory. Therefore, this article aimed to discuss conventional and modified therapeutics while emphasizing innovative chemotherapeutic measures against VL that could speed up the slow pace of antileishmanial drugs and overcome the drug resistance problem in the future.
Collapse
Affiliation(s)
- Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492010 (CG), India
| |
Collapse
|
14
|
Alizadeh J, da Silva Rosa SC, Weng X, Jacobs J, Lorzadeh S, Ravandi A, Vitorino R, Pecic S, Zivkovic A, Stark H, Shojaei S, Ghavami S. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol 2023; 102:151337. [PMID: 37392580 DOI: 10.1016/j.ejcb.2023.151337] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiaohui Weng
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Joadi Jacobs
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Rui Vitorino
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
15
|
Hassan AHE, Phan TN, Moon S, Lee CH, Kim YJ, Cho SB, El-Sayed SM, Choi Y, No JH, Lee YS. Design, synthesis, and repurposing of O 6-aminoalkyl-sulfuretin analogs towards discovery of potential lead compounds as antileishmanial agents. Eur J Med Chem 2023; 251:115256. [PMID: 36944273 DOI: 10.1016/j.ejmech.2023.115256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Up to date, there are still significantly unmet clinical needs for treatment of the fatal visceral leishmaniasis; a neglected tropical disease. Herein, a recently reported antileishmanial hit sulfuretin analog suffering from a low potency and a problematic aqueous solubility that hindered further development was used as a starting point. A mitigation rational via incorporation of O6-aminoalkyl moiety suggest structures analogous to literature-known compounds as cholinesterase inhibitors. Consequently, preparation and repurposing of a library of these compounds unveiled their potential activity against the parasite Leishmania donovani promastigotes. Further evaluation against intracellular form of the parasite and host cells suggested compounds 2a, 2c, and 2o derived from sulfuretin analogs bearing 2'-methoxy or 2',5'-dimethoxy substituents at ring-B as promising lead compounds with potential activity and acceptable safety window relative to the standard edelfosine. In silico simulation predicted plausible binding modes of these compounds to L. donovani fumarate reductase. Together this work presents compound 2o as a potential lead compound for further development.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Trong-Nhat Phan
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Suyeon Moon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
16
|
Mundhe P, Kidwai S, Saini SM, Singh HR, Singh R, Chandrashekharappa S. Design, Synthesis, Characterization, and Anti-tubercular activity of Novel Ethyl-3-benzoyl-6, 8-difluoroindolizine-1-carboxylate Analogues: Molecular Target Identification and Molecular Docking Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
17
|
Machine Learning Prediction of Mycobacterial Cell Wall Permeability of Drugs and Drug-like Compounds. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020633. [PMID: 36677691 PMCID: PMC9863426 DOI: 10.3390/molecules28020633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
The cell wall of Mycobacterium tuberculosis and related organisms has a very complex and unusual organization that makes it much less permeable to nutrients and antibiotics, leading to the low activity of many potential antimycobacterial drugs against whole-cell mycobacteria compared to their isolated molecular biotargets. The ability to predict and optimize the cell wall permeability could greatly enhance the development of novel antitubercular agents. Using an extensive structure-permeability dataset for organic compounds derived from published experimental big data (5371 compounds including 2671 penetrating and 2700 non-penetrating compounds), we have created a predictive classification model based on fragmental descriptors and an artificial neural network of a novel architecture that provides better accuracy (cross-validated balanced accuracy 0.768, sensitivity 0.768, specificity 0.769, area under ROC curve 0.911) and applicability domain compared with the previously published results.
Collapse
|
18
|
Oselusi S, Fadaka AO, Wyckoff GJ, Egieyeh SA. Computational Target-Based Screening of Anti-MRSA Natural Products Reveals Potential Multitarget Mechanisms of Action through Peptidoglycan Synthesis Proteins. ACS OMEGA 2022; 7:37896-37906. [PMID: 36312373 PMCID: PMC9609086 DOI: 10.1021/acsomega.2c05061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/22/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of bacterial infections in both healthcare and community settings. MRSA can acquire resistance to any current antibiotic, which has major implications for its current and future treatment options. As such, it is globally a major focus for infection control efforts. The mechanical rigidity provided by peptidoglycans in the bacteria cell walls makes it a promising target for broad-spectrum antibacterial drug discovery. The development of drugs that can target different stages of the synthesis of peptidoglycan in MRSA may compromise the integrity of its cell wall and consequently result in the rapid decline of diseases associated with this drug-resistant bacteria. The present study is aimed at screening natural products with known in vitro activities against MRSA to identify their potential to inhibit the proteins involved in the biosynthesis of the peptidoglycan cell wall. A total of 262 compounds were obtained when a literature survey was conducted on anti-MRSA natural products (AMNPs). Virtual screening of the AMNPs was performed against various proteins (targets) that are involved in the biosynthesis of the peptidoglycan (PPC) cell wall using Schrödinger software (release 2020-3) to determine their binding affinities. Nine AMNPs were identified as potential multitarget inhibitors against peptidoglycan biosynthesis proteins. Among these compounds, DB211 showed the strongest binding affinity and interactions with six protein targets, representing three stages of peptidoglycan biosynthesis, and thus was selected as the most promising compound. The MD simulation results for DB211 and its proteins indicated that the protein-ligand complexes were relatively stable over the simulation period of 100 ns. In conclusion, DB211 showed the potential to inhibit six proteins involved in the biosynthesis of the peptidoglycan cell wall in MRSA, thus reducing the chance of MRSA developing resistance to this compound. Therefore, DB211 provided a starting point for the design of new compounds that can inhibit multiple targets in the biosynthesis of the peptidoglycan layer in MRSA.
Collapse
Affiliation(s)
- Samson
Olaitan Oselusi
- University
of the Western Cape, School of Pharmacy,
Faculty of Natural Sciences, Robert Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| | - Adewale Oluwaseun Fadaka
- University
of the Western Cape, Science and Innovation/Mintek
Nanotechnology Innovation Centre, Department of Biotechnology, Faculty
of Natural Sciences, Robert
Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| | - Gerald J. Wyckoff
- University
of Missouri Kansas City, School of Pharmacy,
Division of Pharmacology and Pharmaceutical Sciences, 5000 Holmes Street, Kansas
City, Missouri 64110-2446, United States
| | - Samuel Ayodele Egieyeh
- University
of the Western Cape, School of Pharmacy,
Faculty of Natural Sciences, Robert Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| |
Collapse
|
19
|
Sahoo SK, Ahmad MN, Kaul G, Nanduri S, Dasgupta A, Chopra S, Yaddanapudi VM. Synthesis and evaluation of triazole congeners of nitro-benzothiazinones potentially active against drug resistant Mycobacterium tuberculosis demonstrating bactericidal efficacy. RSC Med Chem 2022; 13:585-593. [PMID: 35694687 PMCID: PMC9132192 DOI: 10.1039/d1md00387a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
With growing concerns regarding target residue mutation hovering over established anti-TB pharmacophores, it is imperative to have reserve chemotypes at our disposal to curb unrestrained spread of tuberculosis. In this context, we herein present the synthesis and bio-evaluation of a library of new nitrobenzothiazinone (BTZ) congeners comprising 2-mercapto/amino-benzothiazinone tethered 1,2,3-triazole hybrids as antitubercular agents. In preliminary screening, 10 out of 37 compounds displayed substantial in vitro potency against Mtb H37Rv (MIC 0.5-8 μg mL-1). Structural optimization of the initial hit 5o (MIC 0.5 μg mL-1) led to identification of linker variants 9a, 9b, 9c, and 9d exhibiting potent anti-TB activity (MIC 0.03-0.12 μg mL-1). When tested against Vero cells to determine their selectivity index (SI), these compounds displayed no appreciable cytotoxicity (SI >80). Further studies on activity against drug resistant (DR) Mtb indicated these compounds to be equally potent (MIC 0.03-0.25 μg mL-1). The in silico covalent docking study suggested a similar polar interaction to that of PBTZ169 with an additional and contrasting side chain interaction at the active site of Mtb DprE1 target protein. Further, the time kill kinetic study found compounds 9a and 9d to be demonstrating bactericidal efficacy, completely eliminating bacilli in 7 days at 10× MIC. The most promising compound 9d, considering its potent anti-TB activity (MIC 0.06 μg mL-1 against drug susceptible Mtb and MIC 0.06-0.25 μg mL-1 against DR Mtb) along with a broad therapeutic index (SI >640) demonstrating a comparable concentration dependent bactericidal efficacy to that of RIF, holds a significant edge to be translated into a potent anti-Mtb agent.
Collapse
Affiliation(s)
- Santosh Kumar Sahoo
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Mohammad Naiyaz Ahmad
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension, Sitapur Road Lucknow 226031 UP India.,AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension, Sitapur Road Lucknow 226031 UP India.,AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Arunava Dasgupta
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension, Sitapur Road Lucknow 226031 UP India.,AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension, Sitapur Road Lucknow 226031 UP India.,AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| |
Collapse
|
20
|
Mycobacterium tuberculosis and Pulmonary Rehabilitation: From Novel Pharmacotherapeutic Approaches to Management of Post-Tuberculosis Sequelae. J Pers Med 2022; 12:jpm12040569. [PMID: 35455684 PMCID: PMC9027178 DOI: 10.3390/jpm12040569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB) is still a worldwide public health burden, as more than 1.3 million deaths are expected to be reported in 2021. Even though almost 20 million patients have completed specific anti-TB treatment and survived in 2020, little information is known regarding their pulmonary sequelae, quality of life, and their need to follow rehabilitation services as researchers shifted towards proper diagnosis and treatment rather than analyzing post-disease development. Understanding the underlying immunologic and pathogenic mechanisms during mycobacterial infection, which have been incompletely elucidated until now, and the development of novel anti-TB agents could lead to the proper application of rehabilitation care, as TB sequelae result from interaction between the host and Mycobacterium tuberculosis. This review addresses the importance of host immune responses in TB and novel potential anti-TB drugs’ mechanisms, as well as the assessment of risk factors for post-TB disease and usefulness of guidance and optimization of pulmonary rehabilitation. The use of rehabilitation programs for patients who successfully completed anti-tuberculotic treatment represents a potent multifaceted measure in preventing the increase of mortality rates, as researchers conclude that a patient with a TB diagnosis, even when properly completing pharmacotherapy, is threatened by a potential life loss of 4 years, in comparison to healthy individuals. Dissemination of pulmonary rehabilitation services and constant actualization of protocols could strengthen management of post-TB disease among under-resourced individuals.
Collapse
|
21
|
In Silico Drug Discovery Strategies Identified ADMET Properties of Decoquinate RMB041 and Its Potential Drug Targets against Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0231521. [PMID: 35352998 PMCID: PMC9045315 DOI: 10.1128/spectrum.02315-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The highly adaptive cellular response of Mycobacterium tuberculosis to various antibiotics and the high costs for clinical trials, hampers the development of novel antimicrobial agents with improved efficacy and safety. Subsequently, in silico drug screening methods are more commonly being used for the discovery and development of drugs, and have been proven useful for predicting the pharmacokinetics, toxicities, and targets, of prospective new antimicrobial agents. In this investigation we used a reversed target fishing approach to determine potential hit targets and their possible interactions between M. tuberculosis and decoquinate RMB041, a propitious new antituberculosis compound. Two of the 13 identified targets, Cyp130 and BlaI, were strongly proposed as optimal drug-targets for dormant M. tuberculosis, of which the first showed the highest comparative binding affinity to decoquinate RMB041. The metabolic pathways associated with the selected target proteins were compared to previously published molecular mechanisms of decoquinate RMB041 against M. tuberculosis, whereby we confirmed disrupted metabolism of proteins, cell wall components, and DNA. We also described the steps within these pathways that are inhibited and elaborated on decoquinate RMB041’s activity against dormant M. tuberculosis. This compound has previously showed promising in vitro safety and good oral bioavailability, which were both supported by this in silico study. The pharmacokinetic properties and toxicity of this compound were predicted and investigated using the online tools pkCSM and SwissADME, and Discovery Studio software, which furthermore supports previous safety and bioavailability characteristics of decoquinate RMB041 for use as an antimycobacterial medication. IMPORTANCE This article elaborates on the mechanism of action of a novel antibiotic compound against both, active and dormant Mycobacterium tuberculosis and describes its pharmacokinetics (including oral bioavailability and toxicity). Information provided in this article serves useful during the search for drugs that shorten the treatment regimen for Tuberculosis and cause minimal adverse effects.
Collapse
|
22
|
Recent Advances in Influenza, HIV and SARS-CoV-2 Infection Prevention and Drug Treatment—The Need for Precision Medicine. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Viruses, and in particular, RNA viruses, dominate the WHO’s current list of ten global health threats. Of these, we review the widespread and most common HIV, influenza virus, and SARS-CoV-2 infections, as well as their possible prevention by vaccination and treatments by pharmacotherapeutic approaches. Beyond the vaccination, we discuss the virus-targeting and host-targeting drugs approved in the last five years, in the case of SARS-CoV-2 in the last one year, as well as new drug candidates and lead molecules that have been published in the same periods. We share our views on vaccination and pharmacotherapy, their mutually reinforcing strategic significance in combating pandemics, and the pros and cons of host and virus-targeted drug therapy. The COVID-19 pandemic has provided evidence of our limited armamentarium to fight emerging viral diseases. Novel broad-spectrum vaccines as well as drugs that could even be applied as prophylactic treatments or in early phases of the viremia, possibly through oral administration, are needed in all three areas. To meet these needs, the use of multi-data-based precision medicine in the practice and innovation of vaccination and drug therapy is inevitable.
Collapse
|
23
|
Pepi MJ, Chacko S, Marqus GM, Singh V, Wang Z, Planck K, Cullinane RT, Meka PN, Gollapalli DR, Ioerger TR, Rhee KY, Cuny GD, Boshoff HI, Hedstrom L. A d-Phenylalanine-Benzoxazole Derivative Reveals the Role of the Essential Enzyme Rv3603c in the Pantothenate Biosynthetic Pathway of Mycobacterium tuberculosis. ACS Infect Dis 2022; 8:330-342. [PMID: 35015509 PMCID: PMC9558617 DOI: 10.1021/acsinfecdis.1c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New drugs and new targets are urgently needed to treat tuberculosis. We discovered that d-phenylalanine-benzoxazole Q112 displays potent antibacterial activity against Mycobacterium tuberculosis (Mtb) in multiple media and in macrophage infections. A metabolomic profiling indicates that Q112 has a unique mechanism of action. Q112 perturbs the essential pantothenate/coenzyme A biosynthetic pathway, depleting pantoate while increasing ketopantoate, as would be expected if ketopantoate reductase (KPR) were inhibited. We searched for alternative KPRs, since the enzyme annotated as PanE KPR is not essential in Mtb. The ketol-acid reductoisomerase IlvC catalyzes the KPR reaction in the close Mtb relative Corynebacterium glutamicum, but Mtb IlvC does not display KPR activity. We identified the essential protein Rv3603c as an orthologue of PanG KPR and demonstrated that a purified recombinant Rv3603c has KPR activity. Q112 inhibits Rv3603c, explaining the metabolomic changes. Surprisingly, pantothenate does not rescue Q112-treated bacteria, indicating that Q112 has an additional target(s). Q112-resistant strains contain loss-of-function mutations in the twin arginine translocase TatABC, further underscoring Q112's unique mechanism of action. Loss of TatABC causes a severe fitness deficit attributed to changes in nutrient uptake, suggesting that Q112 resistance may derive from a decrease in uptake.
Collapse
Affiliation(s)
- Michael J. Pepi
- Graduate Program in Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shibin Chacko
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Gary M. Marqus
- Graduate Program in Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Vinayak Singh
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa and Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, 7701, South Africa
| | - Zhe Wang
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Kyle Planck
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Ryan T. Cullinane
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Penchala N. Meka
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Gregory D. Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Helena I.M. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
24
|
The Veterinary Anti-Parasitic Selamectin Is a Novel Inhibitor of the Mycobacterium tuberculosis DprE1 Enzyme. Int J Mol Sci 2022; 23:ijms23020771. [PMID: 35054958 PMCID: PMC8776228 DOI: 10.3390/ijms23020771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Avermectins are macrocyclic lactones with anthelmintic activity. Recently, they were found to be effective against Mycobacterium tuberculosis, which accounts for one third of the worldwide deaths from antimicrobial resistance. However, their anti-mycobacterial mode of action remains to be elucidated. The activity of selamectin was determined against a panel of M. tuberculosis mutants. Two strains carrying mutations in DprE1, the decaprenylphosphoryl-β-D-ribose oxidase involved in the synthesis of mycobacterial arabinogalactan, were more susceptible to selamectin. Biochemical assays against the Mycobacterium smegmatis DprE1 protein confirmed this finding, and docking studies predicted a binding site in a loop that included Leu275. Sequence alignment revealed variants in this position among mycobacterial species, with the size and hydrophobicity of the residue correlating with their MIC values; M. smegmatis DprE1 variants carrying these point mutations validated the docking predictions. However, the correlation was not confirmed when M. smegmatis mutant strains were constructed and MIC phenotypic assays performed. Likewise, metabolic labeling of selamectin-treated M. smegmatis and M. tuberculosis cells with 14C-labeled acetate did not reveal the expected lipid profile associated with DprE1 inhibition. Together, our results confirm the in vitro interactions of selamectin and DprE1 but suggest that selamectin could be a multi-target anti-mycobacterial compound.
Collapse
|
25
|
Venugopala KN, Chandrashekharappa S, Deb PK, Tratrat C, Pillay M, Chopra D, Al-Shar'i NA, Hourani W, Dahabiyeh LA, Borah P, Nagdeve RD, Nayak SK, Padmashali B, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Haroun M, Shashikanth S, Mohanlall V, Mailavaram R. Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme. J Enzyme Inhib Med Chem 2021; 36:1472-1487. [PMID: 34210233 PMCID: PMC8259857 DOI: 10.1080/14756366.2021.1919889] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A series of 1,2,3-trisubstituted indolizines (2a-2f, 3a-3d, and 4a-4c) were screened for in vitro whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 2b-2d, 3a-3d, and 4a-4c were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines 4a-4c, with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16-64 µg/mL). In silico docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines. The X-ray diffraction analysis of the compound 4b was also carried out. Further, a safety study (in silico and in vitro) demonstrated no toxicity for these compounds. Thus, the indolizines warrant further development and may represent a novel promising class of InhA inhibitors and multi-targeting agents to combat drug-sensitive and drug-resistant MTB strains.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | | | - Pran Kishore Deb
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia University, Amman, Jordan
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Nizar A Al-Shar'i
- Faculty of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan
| | - Wafa Hourani
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia University, Amman, Jordan
| | - Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| | - Rahul D Nagdeve
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Susanta K Nayak
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Basavaraj Padmashali
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Faculty of Medicine, Department of Pharmacology, Minia University, El-Minia, Egypt
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sheena Shashikanth
- Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | | |
Collapse
|
26
|
Zampieri D, Mamolo MG. Hybridization Approach to Drug Discovery Inhibiting Mycobacterium tuberculosis-An Overview. Curr Top Med Chem 2021; 21:777-788. [PMID: 32814528 DOI: 10.2174/1568026620666200819151342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis is one of the top 10 causes of death worldwide and the leading cause of death from a single infectious agent, mainly due to Mycobacterium tuberculosis (MTB). Recently, clinical prognoses have worsened due to the emergence of multi-drug resistant (MDR) and extensive-drug resistant (XDR) tuberculosis, which lead to the need for new, efficient and safe drugs. Among the several strategies, polypharmacology could be considered one of the best solutions, in particular, the multitarget directed ligands strategy (MTDLs), based on the synthesis of hybrid ligands acting against two targets of the pathogen. The framework strategy comprises linking, fusing and merging approaches to develop new chemical entities. With these premises, this review aims to provide an overview of the recent hybridization approach, in medicinal chemistry, of the most recent and promising multitargeting antimycobacterial candidates.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| | - Maria G Mamolo
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
27
|
Mori M, Stelitano G, Chiarelli LR, Cazzaniga G, Gelain A, Barlocco D, Pini E, Meneghetti F, Villa S. Synthesis, Characterization, and Biological Evaluation of New Derivatives Targeting MbtI as Antitubercular Agents. Pharmaceuticals (Basel) 2021; 14:155. [PMID: 33668554 PMCID: PMC7918538 DOI: 10.3390/ph14020155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of Mycobacterium tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new antitubercular agents is the salicylate synthase MbtI, an essential enzyme for the mycobacterial siderophore biochemical machinery, absent in human cells. A set of analogues of I and II, two of the most potent MbtI inhibitors identified to date, was synthesized, characterized, and tested to elucidate the structural requirements for achieving an efficient MbtI inhibition and a potent antitubercular activity with this class of compounds. The structure-activity relationships (SAR) here discussed evidenced the importance of the furan as part of the pharmacophore and led to the preparation of six new compounds (IV-IX), which gave us the opportunity to examine a hitherto unexplored position of the phenyl ring. Among them emerged 5-(3-cyano-5-(trifluoromethyl)phenyl)furan-2-carboxylic acid (IV), endowed with comparable inhibitory properties to the previous leads, but a better antitubercular activity, which is a key issue in MbtI inhibitor research. Therefore, compound IV offers promising prospects for future studies on the development of novel agents against mycobacterial infections.
Collapse
Affiliation(s)
- Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Giovanni Stelitano
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via A. Ferrata 9, 27100 Pavia, Italy; (G.S.); (L.R.C.)
| | - Laurent R. Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via A. Ferrata 9, 27100 Pavia, Italy; (G.S.); (L.R.C.)
| | - Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Arianna Gelain
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Daniela Barlocco
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Elena Pini
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| |
Collapse
|
28
|
Njeru SN, Muema JM. Antimicrobial activity, phytochemical characterization and gas chromatography-mass spectrometry analysis of Aspilia pluriseta Schweinf. extracts. Heliyon 2020; 6:e05195. [PMID: 33083626 PMCID: PMC7551365 DOI: 10.1016/j.heliyon.2020.e05195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023] Open
Abstract
Aspilia pluriseta is associated with various bioactivities, although with limited scientific justification. In this study, we evaluated the antimicrobial activity, and characterized the phytochemicals of root extracts of A. pluriseta aimed at validating its therapeutic potential. We used BACTEC MGIT™ 960 system to test for antitubercular activity, disc-diffusion together with the microdilution method to evaluate antimicrobial activities and qualitative phytochemical tests together with gas chromatography-mass spectrometry (GC-MS) analysis to determine the phytochemicals that associated with A. pluriseta extracts activity. We show that methanolic crude extract (at 1 g/mL) had high Mycobacterium tuberculosis (MTB) inhibitory activity (0 growth unit) and considerable potency against Escherichia coli (11.7 mm), Staphylococcus aureus (9.0 mm), and Candida albicans (7.7 mm). All the extract fractions exerted remarkable antimycobacterial activities with minimum inhibitory activity of between 6.26 – 25 μg/mL. The highest antimicrobial activity of petroleum ether and dichloromethane fraction was against E. coli at inhibition zone diameters of 8.3 mm, and 8.0 mm, respectively, while ethyl acetate fraction was against S. aureus with an inhibition zone of 8.7 mm. Methanolic fraction exhibited broad-spectrum activity against 87.5% of the tested microbes (inhibition zones 6.3–8.3 mm). Furthermore, we qualitatively detected terpenoids, alkaloids, and phenolics such as flavonoids, and anthraquinones in extract fractions. GC-MS analysis detected an abundance of fatty acid esters, 2-hydroxy-1-(hydroxymethyl) ethyl ester-hexadecanoic acid, and 2,3-dihydroxy propyl ester-octadecanoic acid and four alkanes. Taken together, we show that A. pluriseta extract fractions (especially ethyl acetate and methanolic fractions) have strong selective antitubercular activity, and thus, we scientifically validate the use of A. pluriseta as a potential source for the discovery of novel antitubercular agents.
Collapse
Affiliation(s)
- Sospeter N Njeru
- Department of Biochemistry, School of Health Sciences, Kisii University, PO Box 408-40200, Kisii, Kenya
| | - Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), PO Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
29
|
Cavalier JF, Spilling CD, Durand T, Camoin L, Canaan S. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. Eur J Med Chem 2020; 209:112908. [PMID: 33071055 DOI: 10.1016/j.ejmech.2020.112908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains the deadliest infectious disease worldwide with 1.5 million deaths in 2018, of which about 15% are attributed to resistant strains. Another significant example is Mycobacterium abscessus (M. abscessus), a nontuberculous mycobacteria (NTM) responsible for cutaneous and pulmonary infections, representing up to 95% of NTM infections in cystic fibrosis (CF) patients. M. abscessus is a new clinically relevant pathogen and is considered one of the most drug-resistant mycobacteria for which standardized chemotherapeutic regimens are still lacking. Together the emergence of M. tb and M. abscessus multi-drug resistant strains with ineffective and expensive therapeutics, have paved the way to the development of new classes of anti-mycobacterial agents offering additional therapeutic options. In this context, specific inhibitors of mycobacterial lipolytic enzymes represent novel and promising antibacterial molecules to address this challenging issue. The results highlighted here include a complete overview of the antibacterial activities, either in broth medium or inside infected macrophages, of two families of promising and potent anti-mycobacterial multi-target agents, i.e. oxadiazolone-core compounds (OX) and Cyclophostin & Cyclipostins analogs (CyC); the identification and biochemical validation of their effective targets (e.g., the antigen 85 complex and TesA playing key roles in mycolic acid metabolism) together with their respective crystal structures. To our knowledge, these are the first families of compounds able to target and impair replicating as well as intracellular bacteria. We are still impelled in deciphering their mode of action and finding new potential therapeutic targets against mycobacterial-related diseases.
Collapse
Affiliation(s)
- Jean-François Cavalier
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| | - Christopher D Spilling
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri, 63121, United States
| | - Thierry Durand
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Luc Camoin
- Aix-Marseille Univ., INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ., CNRS, LISM, Institut de Microbiologie de La Méditerranée FR3479, Marseille, France.
| |
Collapse
|
30
|
Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, Rizzolio F, Saponara S, Spengler G, Tsakovska I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020; 52:100713. [PMID: 32615525 DOI: 10.1016/j.drup.2020.100713] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approaches are needed. Herein, we show some practical examples of in silico approaches such as pharmacophore modelling, as well as pharmacophore- and docking-based virtual screening for a fast and cost-effective repurposing of small molecule drugs against multidrug resistant cancers. We provide a timely and comprehensive overview of compounds with considerable potential to be repositioned for cancer therapeutics. These drugs are from diverse chemotherapeutic classes. We emphasize the scope and limitations of anthelmintics, antibiotics, antifungals, antivirals, antimalarials, antihypertensives, psychopharmaceuticals and antidiabetics that have shown extensive immunomodulatory, antiproliferative, pro-apoptotic, and antimetastatic potential. These drugs, either used alone or in combination with existing anticancer chemotherapeutics, represent strong candidates to prevent or overcome drug resistance. We particularly focus on outcomes and future perspectives of drug repositioning for the treatment of multidrug resistant tumors and discuss current possibilities and limitations of preclinical and clinical investigations.
Collapse
Affiliation(s)
- Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | | | - Jelena Grahovac
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, E-38071 La Laguna, Spain.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 301724 Venezia-Mestre, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| |
Collapse
|