1
|
Aroua LM, Alminderej FM, Almuhaylan HR, Alosaimi AH, Medini F, Mohammed HA, Almahmoud SA, Khan RA, Mekni NH. Benzimidazole(s): synthons, bioactive lead structures, total synthesis, and the profiling of major bioactive categories. RSC Adv 2025; 15:7571-7608. [PMID: 40161353 PMCID: PMC11951861 DOI: 10.1039/d4ra08864f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/15/2025] [Indexed: 04/02/2025] Open
Abstract
Benzimidazole, a fused bicyclic compound with benzene and pentacyclic 1,3-diazole moeities, has a simple aromatic heterocyclic structure. The moiety has become an indispensable anchor for the development of new pharmacologically active products, and has yielded several therapeutic agents with anticancer, antihypertensive, antimicrobial, antifungal and antiulcer effects. Benzimidazoles, as synthetically feasible and pharmacophoric synthons, have been relentlessly pursued for the preparation of new analogues and derivatives, and they have successfully developed into some of the most sought-after and vital pharmacophores for drug discovery. The use of varied substituents and differing patterns around the benzimidazole nucleus has provided a wide spectrum of biological activities. In addition, the benzimidazole moiety constitutes a building block for the production of several drugs, drug candidates, new chemical entities, and lead molecules. The importance of this nucleus for bioactivity, e.g., antibacterial, antitubercular, antidiabetic, anticancer, antifungal, anti-inflammatory, analgesic, antioxidant, antihistaminic, and antimalarial activity, has led us to take note and provide an overview of the synthetic development approaches for various benzimidazole derivatives together with their biological actions. This review is projected to further assist in the design and development of new benzimidazole-based compounds for new and optimized pharmacologically active products towards new drug-development strategies.
Collapse
Affiliation(s)
- Lotfi M Aroua
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Hind R Almuhaylan
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Abdulelah H Alosaimi
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Faten Medini
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cedria, Carthage University 2050 Tunis Tunisia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Nejib H Mekni
- Laboratory of Bio-Organic, Structural and Polymer Chemistry (LR99ES14), Department of Chemistry, Faculty of Sciences, University of Tunis El-Manar El-Manar 2092 Tunis Tunisia
- Department of Fundamental Science, High Institute of Medical Technologies of Tunis, El Manar University Tunis 1006 Tunisia
| |
Collapse
|
2
|
Abd-El-Aziz A, Li Z, Zhang X, Elnagdy S, Mansour MS, ElSherif A, Ma N, Abd-El-Aziz AS. Advances in Coordination Chemistry of Schiff Base Complexes: A Journey from Nanoarchitectonic Design to Biomedical Applications. Top Curr Chem (Cham) 2025; 383:8. [PMID: 39900838 DOI: 10.1007/s41061-025-00489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025]
Abstract
Since the discovery of Schiff bases over one and a half centuries ago, there has been tremendous research activity in the design of various Schiff bases and examination of their diverse structures and versatile applications. This family of compounds has continued to captivate many research groups due to the simplicity of their synthesis through the condensation of amines with carbonyl compounds. While conventional synthesis has been the most widely used, green synthetic methodologies have been also explored for this reaction, including sonication, microwave-assisted, natural acid-catalyzed and mechanochemical syntheses as well as utilizing ionic liquid solvents or deep eutectic solvents. Schiff bases have been utilized as excellent ligands for coordination to transition metals and late transition metals (lanthanides and actinides). These Schiff base compounds can be mono-, di-, or polydentate ligands. The aim of this review is to examine the biological applications of Schiff base complexes over the past decade with particular focus on their antimicrobial, antiviral, anticancer, antidiabetic, and anti-inflammatory activity. Schiff base complexes have been found effective in combating bacterial and fungal infections with numerous examples in the literature. The review addressed this area by focusing on the very recent examples while using tables to summarize the vast breadth of research according to the metallic moieties. Viruses have continued to be a target of many researchers in light of their continuous mutations and impact on human health, and therefore some examples of Schiff base complexes with antiviral activity are described. Cancer continues to be among the leading causes of death worldwide. In this article, the use of Schiff base complexes for, and the mechanisms associated with, their anticancer activity are highlighted. The production of reactive oxygen species (ROS) or intercalation with DNA base pairs leading to cell cycle arrest were the main mechanisms described. While there have been some efforts made to use Schiff base complexes as antidiabetic or anti-inflammatory agents, there are limited examples when compared with antimicrobial and anticancer studies. The conclusion of this review highlights the emerging areas of research and future perspectives with an emphasis on the potential uses of Schiff bases in the treatment of infectious and noninfectious diseases.
Collapse
Affiliation(s)
- Ahmad Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Zexuan Li
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Xinyue Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Sherif Elnagdy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed S Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed ElSherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ning Ma
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Alaa S Abd-El-Aziz
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China.
| |
Collapse
|
3
|
Soliman MA, Ahmed HEA, Eltamany EH, Boraei ATA, Aljuhani A, Salama SA, Alghamdi R, Aljohani AKB, Almaghrabi M, Aouad MR. Novel bis-benzimidazole-triazole hybrids: anticancer study, in silico approaches, and mechanistic investigation. Future Med Chem 2025; 17:93-107. [PMID: 39670306 DOI: 10.1080/17568919.2024.2437980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
AIM Benzimidazole-triazole conjugates are very active hotspot for design and synthesis of promising anticancer agents. The target analogs showed potent and selective cytotoxicity over different cancer cell lines for breast and lung ones. MATERIALS & METHODS A new series of bis-1,4-disubstituted-1,2,3-triazoles moieties conjugated with a 2-mercapto-benzimidazole 4a-h and 7a-g was synthesized via the click cycloaddition (CuAAC) reaction. The synthesized triazoles were characterized using several spectroscopic tools. In addition, they were tested against variable cell lines representing different cancer types; HepG-2, MCF-7, HCT-116, and A-549. Computational experiments were introduced for understanding their structure-activity relationships. RESULTS & CONCLUSION The data revealed the outperformance of 7a-g analogs over 4a-h one with very effective IC50 values; 4-13 µg/mL compared to the reference drugs. Moreover, detailed mechanistic analyses showed potent Aurora-A Kinase expression for the most active analogs 7a and 7d exhibiting IC50; 3.5 and 5.3 over the control cells 8 ng/mL respectively. Additionally, based on their Aurora-A Kinase inhibitory activity, compound 7a was promising in apoptosis induction and cell cycle arrest. Molecular docking studies with Aurora-A Kinase revealed binding behaviors similar to the co-crystallized ligand sunitinib. Finally, this scaffold exhibits cytotoxic activity via apoptosis, enzyme downregulation, and suppression of cell division.
Collapse
Affiliation(s)
- Moataz A Soliman
- Deanship of Preparatory Year, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Elsayed H Eltamany
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Ahmed T A Boraei
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Ateyatallah Aljuhani
- Department of Chemistry, College of Science, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Read Alghamdi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| | - Mohamed R Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah, Al-Munawarah, Saudi Arabia
| |
Collapse
|
4
|
Tonelli M, Sparatore A, Bassanini I, Francesconi V, Sparatore F, Maina KK, Delbue S, D’Alessandro S, Parapini S, Basilico N. In Vitro Screening of an In-House Library of Structurally Distinct Chemotypes Towards the Identification of Novel SARS-CoV-2 Inhibitors. Pharmaceuticals (Basel) 2024; 17:1668. [PMID: 39770510 PMCID: PMC11676875 DOI: 10.3390/ph17121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Four years after the COVID-19 pandemic, a very limited number of drugs has been marketed; thus, the search for new medications still represents a compelling need. In our previous work on antiviral, antiparasitic, and antiproliferative agents, we described several compounds (1-13 and 16-20) structurally related to clofazimine, chloroquine, and benzimidazole derivatives. Thus, we deemed it worthwhile to test them against the replication of SARS-CoV-2, together with a few other compounds (14, 15 and 21-25), which showed some analogy to miscellaneous anti-coronavirus agents. Methods: Twenty-five structurally assorted compounds were evaluated in vitro for cytotoxicity against Vero E6 and for their ability to inhibit SARS-CoV-2 replication. Results: Several compounds (2, 3, 10, 11, 13-15, 18-20) demonstrated antiviral activity (IC50 range 1.5-28 µM) and six of them exhibited an interesting selectivity index in the range 4.5-20. The chloroquine analogs 10 and 11 were more potent than the reference chloroquine itself and doubled its SI value (20 versus 11). Also, the benzimidazole ring emerged as a valuable scaffold, originating several compounds (13-15 and 18-20) endowed with anti-SARS-CoV-2 activity. Despite the modest activity, the cytisine and the arylamino enone derivatives 23 and 25, respectively, also deserve further consideration as model compounds. Conclusions: The investigated chemotypes may represent valuable hit compounds, deserving further in-depth biological studies to define their mechanisms of action. The derived information will guide the subsequent chemical optimization towards the development of more efficient anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (V.F.); (F.S.)
| | - Anna Sparatore
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy;
| | - Valeria Francesconi
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (V.F.); (F.S.)
| | - Fabio Sparatore
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (V.F.); (F.S.)
| | - Kevin K. Maina
- Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy; (K.K.M.); (S.D.); (N.B.)
| | - Serena Delbue
- Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy; (K.K.M.); (S.D.); (N.B.)
| | - Sarah D’Alessandro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy;
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy; (K.K.M.); (S.D.); (N.B.)
| |
Collapse
|
5
|
Bal M, Köse A, Güngör SA. Investigation of photoluminescence and DNA binding properties of benzimidazole compounds containing benzophenone group. J Biomol Struct Dyn 2024; 42:7847-7859. [PMID: 37526238 DOI: 10.1080/07391102.2023.2242496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
The synthesis of benzimidazole compounds containing benzophenone group in accordance with the literature and the investigation of DNA binding properties of these compounds by using UV-vis and photoluminescence spectroscopy methods constitute the basis of this research. The structures of the compounds were determined by methods such as FT-IR, 1H, 13C NMR, UV-vis, Photoluminescence spectroscopy, and X-ray crystallography. By using methods such as UV-vis, Photoluminescence spectroscopy, and viscosity tests, information were collected about the binding types, binding mode, and binding energies of the compounds with DNA. In addition, the binding interactions of the compounds with DNA were investigated using the molecular docking technique. Using this information, calibration equations, correlation coefficients (r2), and DNA binding constants (Kb) were calculated for their compounds. The binding constants (Kb) calculated for substances A, B, and C were found to be 3.0 × 104, 7.0 × 104, and 3.0 × 104 M-1, respectively. UV-vis, EB competitive binding, and viscosity tests showed that the compounds tended to bind to the DNA structure via the groove binding mode. At the end of molecular docking studies, it was determined that compound B showed the best DNA binding activity in in vitro studies. Compared with the studies in the literature, it is thought that the synthesized compounds can take place in cancer drug research as DNA binding agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Bal
- Department of Materials Science and Engineering, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| | - Ayşegül Köse
- Department of Property Protection and Safety, Elbistan Vocational School, Kahramanmaras Istiklal University, Kahramanmaraş, Turkey
| | - Seyit Ali Güngör
- Department of Chemistry, Faculty of Science, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| |
Collapse
|
6
|
Jin F, Peng F, Kong XY, Li WR, Chai JQ, Chen M, Lu AM, Yang CL, Li GH. Design, synthesis, and antifungal activity of novel pyrazole carboxamide derivatives containing benzimidazole moiety as potential SDH inhibitors. Mol Divers 2024:10.1007/s11030-024-10957-y. [PMID: 39150608 DOI: 10.1007/s11030-024-10957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
To address the urgent need for new antifungal agents, a collection of novel pyrazole carboxamide derivatives incorporating a benzimidazole group were innovatively designed, synthesized, and evaluated for their efficacy against fungal pathogens. The bioassay results revealed that the EC50 values for the compounds A7 (3-(difluoromethyl)-1-methyl-N-(1-propyl-1H-benzo[d]imidazol-2-yl)-1H-pyrazole-4-carboxamide) and B11 (N-(1-(4-chlorobenzyl)-1H-benzo[d]imidazol-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide) against B. cinerea were notably low to 0.79 µg/mL and 0.56 µg/mL, respectively, demonstrating the potency comparable to that of the control fungicide boscalid, which has an EC50 value of 0.60 µg/mL. Noteworthy is the fact that in vivo tests demonstrated that A7 and B11 showed superior protective effects on tomatoes and strawberries against B. cinerea infection when juxtaposed with the commercial fungicide carbendazim. The examination through scanning electron microscopy revealed that B11 notably alters the morphology of the fungal mycelium, inducing shrinkage and roughening of the hyphal surfaces. To elucidate the mechanism of action, the study on molecular docking and molecular dynamics simulations was conducted, which suggested that B11 effectively interacts with crucial amino acid residues within the active site of succinate dehydrogenase (SDH). This investigation contributes a novel perspective for the structural design and diversification of potential SDH inhibitors, offering a promising avenue for the development of antifungal therapeutics.
Collapse
Affiliation(s)
- Fei Jin
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Peng
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang-Yi Kong
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen-Rui Li
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Qi Chai
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Min Lu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Long Yang
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Guo-Hua Li
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Blázquez-Tapias B, Halder S, Mendiola MA, Roy N, Sahu N, Sinha C, Jana K, López-Torres E. New Tin (IV) and Organotin (IV) Complexes with a Hybrid Thiosemicarbazone/Hydrazone Ligand: Synthesis, Crystal Structure, and Antiproliferative Activity. Bioinorg Chem Appl 2024; 2024:1018375. [PMID: 38601021 PMCID: PMC11006503 DOI: 10.1155/2024/1018375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Nowadays, the search for new chemotherapeutic agents with low toxicity and high selectivity is a major concern. In this paper, we report the synthesis and characterization of a hybrid thiosemicarbazone/hydrazone ligand in its neutral form (L1H2) and as the chloride salt ([L1H3]Cl)-, three diorganotin (IV) complexes, and one complex with Sn (IV). The compounds have been fully characterized by IR, mass spectra, 1H, 13C, and 119Sn NMR, 119Sn CP/MAS NMR, and by single crystal X-ray diffraction. The organotin compounds have the empirical formula [SnR2L1] (R = Me, Bu, and Ph), but in the solid state, they are polymeric species with seven coordination number due to weak coordination of the pyridine nitrogen, whereas in solution, the polymeric structure is lost to afford hexacoordinate monomeric species. Reaction with SnI4 yields complex [Sn (L1)2]·EtOH, with the metal in a distorted dodecahedral arrangement. We have evaluated the antiproliferative activity of the two forms of the ligands and the four coordination compounds against MDA-MB-231, HeLa, PC3, and HepG2 cancer cell lines, and WI-38 normal cell line, and all the compounds present higher activity than cisplatin, used as the standard control. To investigate the mode of action, we have selected the most active complex, containing phenyl substituents, and used the triple negative breast cancer cell line MDA-MB-231. The results show that the complex induces apoptotic cell death promoted by generation of reactive oxygen species and by disruption of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Belén Blázquez-Tapias
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, Kolkata 700 056, India
| | - M. Antonia Mendiola
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Nivedita Roy
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Nilima Sahu
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata 700 056, India
| | - Elena López-Torres
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
8
|
Kanupriya, Mittal RK, Sharma V, Biswas T, Mishra I. Recent Advances in Nitrogen-Containing Heterocyclic Scaffolds as Antiviral Agents. Med Chem 2024; 20:487-502. [PMID: 38279757 DOI: 10.2174/0115734064280150231212113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 01/28/2024]
Abstract
This study aims to provide a thorough analysis of nitrogen-containing heterocycles, focusing on their therapeutic implications for the development of targeted and effective antiviral drugs. To better understand how nitrogen-containing heterocycles can be used to create antiviral drugs, this review adopts a systematic literature review strategy to compile and analyze pertinent research studies. It combines information from various fields to understand better the compounds' mode of action and their therapeutic potential. This review paper summarizes data from multiple sources to highlight the promising potential of heterocycles containing nitrogen as promising possibilities for future antiviral treatments. The capacity to engage selectively and modulate critical pathways bodes well for their use in developing new viral therapies. In conclusion, nitrogen-containing heterocycles are shown to be of utmost importance in the field of medicinal chemistry, as emphasized by the review paper. It emphasizes the central importance of chemical insights and pharmacological potential in developing novel and effective antiviral medicines by bringing them together.
Collapse
Affiliation(s)
- Kanupriya
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Ravi Kumar Mittal
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Tanya Biswas
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Isha Mishra
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
9
|
Mao L, Wang S, Qu Y, Wang H, Zhao Y, Zhu C, Zhang Z, Jin C, Herdewijn P, Liu FW, Wang Z. Design, synthesis, and anti-respiratory syncytial virus potential of novel 3-(1,2,3-triazol-1-yl)furoxazine-fused benzimidazole derivatives. Eur J Med Chem 2023; 261:115799. [PMID: 37722289 DOI: 10.1016/j.ejmech.2023.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Respiratory syncytial virus (RSV) is a major cause of serious lower respiratory tract infections in infants, children, and older persons. Currently, the only approved anti-viral chemotherapeutic drug for RSV treatment is ribavirin aerosol; however, its significant toxicity has led to restricted clinical use. In a previous study, we developed various benzimidazole derivatives against RSV. In this study, we synthesised 3-azide substituted furoxazine-fused benzimidazole derivatives by sulfonylation and azide substitution of the 3-hydroxyl group of the furoxazine-fused benzimidazole derivatives. Subsequently, a series of 3-(1,2,3-triazol-1-yl)-substituted furoxazine-fused benzimidazole derivatives were synthesised using the classical click reaction. Biological evaluations of the target compounds indicated that compound 4a-2 had higher activity against RSV (EC50 = 12.17 μM) and lower cytotoxicity (CC50 = 390.64 μM). Compound 4a-2 exerted anti-viral effects against the RSV Long strain by inhibiting apoptosis and the elevation of reactive oxygen species (ROS) and inflammatory factors caused by viral infection in vitro. Additionally, the clinical symptoms of the virus-infected mice were markedly relieved, and the viral load in the lung tissues was dramatically decreased. The biosafety profile of compound 4a-2 was also favourable, showing no detectable adverse effects on any of the major organs in vivo. These findings underscore the potential of compound 4a-2 as a valuable therapeutic option for combating RSV infections while also laying the foundation for further research and development in the field.
Collapse
Affiliation(s)
- Lu Mao
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Anti-viral Medicines Research and Development, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Song Wang
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Qu
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Anti-viral Medicines Research and Development, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haixia Wang
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Yifan Zhao
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Chuantao Zhu
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Zhongmou Zhang
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Anti-viral Medicines Research and Development, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengyun Jin
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Piet Herdewijn
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Feng-Wu Liu
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhenya Wang
- XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Anti-viral Medicines Research and Development, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China.
| |
Collapse
|
10
|
Adardour M, Ait Lahcen M, Oubahmane M, Ettahiri W, Hdoufane I, Bouamama H, Alanazi MM, Cherqaoui D, Taleb M, Garcia EZ, Baouid A. Design, Synthesis, Molecular Modeling and Biological Evaluation of Novel Pyrazole Benzimidazolone Derivatives as Potent Antioxidants. Pharmaceuticals (Basel) 2023; 16:1648. [PMID: 38139775 PMCID: PMC10747449 DOI: 10.3390/ph16121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
In the present study, we used benzimidazolone as a starting material to efficiently synthesize several hybrid compounds of pyrazole benzimidazolone derivatives by the 1,3-dipolar cycloaddition reaction. These compounds were obtained in average yields and were characterized by NMR (1H and 13C) and HRMS analysis. The antioxidant activity of the synthesized compounds 5(a-c) and 6(a-c) was evaluated using in vitro reduction assays, including ferric reducing antioxidant power (FRAP) and total antioxidant capacity (TAC). The results indicated that products 5c, 6b, and 6c exhibit higher antioxidant activity compared to the reference compounds and showed a remarkable ability to effectively remove the radical at IC50 (14.00 ± 0.14, 12.47± 0.02, and 12.82 ± 0.10 µM, respectively) under the TAC assessment. Conversely, compound 6c showed excellent activity at IC50 (68.97 ± 0.26 µM) in the FRAP assay. We carried out molecular docking and dynamics simulations to investigate the binding mode and stability of 5c, 6b, and 6c in the active site of human Peroxiredoxin 5. An ADMET study was conducted to determine the drug properties of the synthesized compounds.
Collapse
Affiliation(s)
- Mohamed Adardour
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
| | - Marouane Ait Lahcen
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
| | - Mehdi Oubahmane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
| | - Walid Ettahiri
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| | - Ismail Hdoufane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
| | - Hafida Bouamama
- Laboratory of Sustainable Development and Health Research, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech 40000, Morocco;
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Driss Cherqaoui
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
- Sustainable Materials Research Center (SUSMAT-RC), University of Mohammed VI Polytechnic, Benguerir 43150, Morocco
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| | - Elena Zaballos Garcia
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Ave. Vte. Andres Estelles s/n, 46100 Valencia, Spain;
| | - Abdesselam Baouid
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, 2390, Cadi Ayyad University, Marrakech 40001, Morocco; (M.A.L.); (M.O.); (W.E.); (I.H.); (D.C.); (A.B.)
| |
Collapse
|
11
|
Kaushik S, Paliwal SK, Iyer MR, Patil VM. Promising Schiff bases in antiviral drug design and discovery. Med Chem Res 2023; 32:1063-1076. [PMID: 37305208 PMCID: PMC10171175 DOI: 10.1007/s00044-023-03068-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Emerging and re-emerging illnesses will probably present a new hazard of infectious diseases and have fostered the urge to research new antiviral agents. Most of the antiviral agents are analogs of nucleosides and only a few are non-nucleoside antiviral agents. There is quite a less percentage of marketed/clinically approved non-nucleoside antiviral medications. Schiff bases are organic compounds that possess a well-demonstrated profile against cancer, viruses, fungus, and bacteria, as well as in the management of diabetes, chemotherapy-resistant cases, and malarial infections. Schiff bases resemble aldehydes or ketones with an imine/azomethine group instead of a carbonyl ring. Schiff bases have a broad application profile not only in therapeutics/medicine but also in industrial applications. Researchers have synthesized and screened various Schiff base analogs for their antiviral potential. Some of the important heterocyclic compounds like istatin, thiosemicarbazide, quinazoline, quinoyl acetohydrazide, etc. have been used to derive novel Schiff base analogs. Keeping in view the outbreak of viral pandemics and epidemics, this manuscript compiles a review of Schiff base analogs concerning their antiviral properties and structural-activity relationship analysis.
Collapse
Affiliation(s)
- Shikha Kaushik
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan India
| | | | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, NIAAA/NIH, Rockville, MD USA
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
| |
Collapse
|
12
|
Aroua LM, Alosaimi AH, Alminderej FM, Messaoudi S, Mohammed HA, Almahmoud SA, Chigurupati S, Albadri AEAE, Mekni NH. Synthesis, Molecular Docking, and Bioactivity Study of Novel Hybrid Benzimidazole Urea Derivatives: A Promising α-Amylase and α-Glucosidase Inhibitor Candidate with Antioxidant Activity. Pharmaceutics 2023; 15:457. [PMID: 36839780 PMCID: PMC9963656 DOI: 10.3390/pharmaceutics15020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
A novel series of benzimidazole ureas 3a-h were elaborated using 2-(1H-benzoimidazol-2-yl) aniline 1 and the appropriate isocyanates 2a-h. The antioxidant and possible antidiabetic activities of the target benzimidazole-ureas 3a-h were evaluated. Almost all compounds 3a-h displayed strong to moderate antioxidant activities. When tested using the three antioxidant techniques, TAC, FRAP, and MCA, compounds 3b and 3c exhibited marked activity. The most active antioxidant compound in this family was compound 3g, which had excellent activity using four different methods: TAC, FRAP, DPPH-SA, and MCA. In vitro antidiabetic assays against α-amylase and α-glucosidase enzymes revealed that the majority of the compounds tested had good to moderate activity. The most favorable results were obtained with compounds 3c, 3e, and 3g, and analysis revealed that compounds 3c (IC50 = 18.65 ± 0.23 μM), 3e (IC50 = 20.7 ± 0.06 μM), and 3g (IC50 = 22.33 ± 0.12 μM) had good α-amylase inhibitory potential comparable to standard acarbose (IC50 = 14.21 ± 0.06 μM). Furthermore, the inhibitory effect of 3c (IC50 = 17.47 ± 0.03 μM), 3e (IC50 = 21.97 ± 0.19 μM), and 3g (IC50 = 23.01 ± 0.12 μM) on α-glucosidase was also comparable to acarbose (IC50 = 15.41 ± 0.32 μM). According to in silico molecular docking studies, compounds 3a-h had considerable affinity for the active sites of human lysosomal acid α-glucosidase (HLAG) and pancreatic α-amylase (HPA), indicating that the majority of the examined compounds had potential anti-hyperglycemic action.
Collapse
Affiliation(s)
- Lotfi M. Aroua
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
- Laboratory of Structural Organic Chemistry—Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Abdulelah H. Alosaimi
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Suliman A. Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Qassim Main Campus, King Abdulaziz Road, P.O. Box 6644, Al-Malida, Buraydah 51452, Saudi Arabia
| | - Nejib H. Mekni
- Laboratory of Structural Organic Chemistry—Synthesis and Physicochemical Studies (LR99ES14), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- High Institute of Medical Technologies of Tunis, El Manar University, Tunis 1006, Tunisia
| |
Collapse
|
13
|
Microfluidics Biocatalysis System Applied for the Synthesis of N-Substituted Benzimidazole Derivatives by Aza-Michael Addition. Catalysts 2022. [DOI: 10.3390/catal12121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Benzimidazole scaffolds became an attractive subject due to their broad spectrum of pharmacological activities. In this work, a methodology was developed for the synthesis of N-substituted benzimidazole derivatives from benzimidazoles and α, β-unsaturated compounds (acrylonitriles, acrylate esters, phenyl vinyl sulfone) catalyzed by lipase TL IM from Thermomyces lanuginosus in continuous-flow microreactors. Investigations were conducted on reaction parameters such as solvent, substrate ratio, reaction temperature, reactant donor/acceptor structures, and reaction time. The transformation is promoted by inexpensive and readily available lipase in methanol at 45 °C for 35 min. A wide range of β-amino sulfone, β-amino nitrile, and β-amino carbonyl compounds were efficiently and selectively synthesized in high yields (76–97%). All in all, a microfluidic biocatalysis system was applied to the synthesis of N-substituted benzimidazole derivatives, and could serve as a promising fast synthesis strategy for further research to develop novel and highly potent active drugs.
Collapse
|
14
|
Abdullah MN, Hamid SA, Salhimi SM, Jalil NAS, Al-Amin M, Jumali NS. Design and Synthesis of 1-sec/tert-Butyl-2-Chloro/Nitrophenylbenzimidazole Derivatives: Molecular Docking and In Vitro Evaluation against MDA-MB-231 and MCF-7 Cell Lines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Erol M, Celik I, Sağlık BN, Karayel A, Mellado M, Mella J. Synthesis, molecular modeling, 3D-QSAR and biological evaluation studies of new benzimidazole derivatives as potential MAO-A and MAO-B inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Cai Z, Zhang W, Yan Z, Du X. Synthesis of Novel α-Trifluorothioanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. Molecules 2022; 27:molecules27185879. [PMID: 36144624 PMCID: PMC9505602 DOI: 10.3390/molecules27185879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
To discover novel herbicidal compounds with favorable activity, a range of phenylpyridine-moiety-containing α-trifluorothioanisole derivatives were designed, synthesized, and identified via NMR and HRMS. Preliminary screening of greenhouse-based herbicidal activity revealed that compound 5a exhibited >85% inhibitory activity against broadleaf weeds Amaranthus retroflexus, Abutilon theophrasti, and Eclipta prostrate at 37.5 g a.i./hm2, which was slightly superior to that of fomesafen. The current study suggests that compound 5a could be further optimized as an herbicide candidate to control various broadleaf weeds.
Collapse
Affiliation(s)
- Zengfei Cai
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenliang Zhang
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhongjie Yan
- Agrowin (Ningbo) Bioscience Co., Ltd., Ningbo 315100, China
| | - Xiaohua Du
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
17
|
Basha NJ. Therapeutic Efficacy of Benzimidazole and Its Analogs: An Update. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous Bengaluru, India
| |
Collapse
|
18
|
Vázquez-Jiménez LK, Juárez-Saldivar A, Gómez-Escobedo R, Delgado-Maldonado T, Méndez-Álvarez D, Palos I, Bandyopadhyay D, Gaona-Lopez C, Ortiz-Pérez E, Nogueda-Torres B, Ramírez-Moreno E, Rivera G. Ligand-Based Virtual Screening and Molecular Docking of Benzimidazoles as Potential Inhibitors of Triosephosphate Isomerase Identified New Trypanocidal Agents. Int J Mol Sci 2022; 23:10047. [PMID: 36077439 PMCID: PMC9456061 DOI: 10.3390/ijms231710047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Trypanosoma cruzi (T. cruzi) is a parasite that affects humans and other mammals. T. cruzi depends on glycolysis as a source of adenosine triphosphate (ATP) supply, and triosephosphate isomerase (TIM) plays a key role in this metabolic pathway. This enzyme is an attractive target for the design of new trypanocidal drugs. In this study, a ligand-based virtual screening (LBVS) from the ZINC15 database using benzimidazole as a scaffold was accomplished. Later, a molecular docking on the interface of T. cruzi TIM (TcTIM) was performed and the compounds were grouped by interaction profiles. Subsequently, a selection of compounds was made based on cost and availability for in vitro evaluation against blood trypomastigotes. Finally, the compounds were analyzed by molecular dynamics simulation, and physicochemical and pharmacokinetic properties were determined using SwissADME software. A total of 1604 molecules were obtained as potential TcTIM inhibitors. BP2 and BP5 showed trypanocidal activity with half-maximal lytic concentration (LC50) values of 155.86 and 226.30 µM, respectively. Molecular docking and molecular dynamics simulation analyzes showed a favorable docking score of BP5 compound on TcTIM. Additionally, BP5 showed a low docking score (-5.9 Kcal/mol) on human TIM compared to the control ligand (-7.2 Kcal/mol). Both compounds BP2 and BP5 showed good physicochemical and pharmacokinetic properties as new anti-T. cruzi agents.
Collapse
Affiliation(s)
- Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Rogelio Gómez-Escobedo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Domingo Méndez-Álvarez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Isidro Palos
- Unidad Académica Multidisciplinaria Reynosa-Rodhe, Universidad Autónoma de Tamaulipas, Reynosa 88779, Mexico
| | - Debasish Bandyopadhyay
- Department of Chemistry and SEEMS, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Carlos Gaona-Lopez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Esther Ramírez-Moreno
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México 07320, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
19
|
Rubio-Hernández M, Alcolea V, Pérez-Silanes S. Potential of sulfur-selenium isosteric replacement as a strategy for the development of new anti-chagasic drugs. Acta Trop 2022; 233:106547. [PMID: 35667455 DOI: 10.1016/j.actatropica.2022.106547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Current treatment for Chagas disease is based on only two drugs: benznidazole and nifurtimox. Compounds containing sulfur (S) in their structure have shown promising results in vitro and in vivo against Trypanosoma cruzi, the parasite causing Chagas disease. Notably, some reports show that the isosteric replacement of S by selenium (Se) could be an interesting strategy for the development of new compounds for the treatment of Chagas disease. To date, the activity against T. cruzi of three Se- containing groups has been compared with their S counterparts: selenosemicarbazones, selenoquinones, and selenocyanates. More studies are needed to confirm the positive results of Se compounds. Therefore, we have investigated S compounds described in the literature tested against T. cruzi. We focused on those tested in vivo that allowed isosteric replacement to propose their Se counterparts as promising compounds for the future development of new drugs against Chagas disease.
Collapse
|
20
|
González-García C, García-Pascual C, Burón R, Calatayud DG, Perles J, Antonia Mendiola M, López-Torres E. Structural variety, fluorescence and photocatalytic activity of dissymmetric thiosemicarbazone complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Hernández-López H, Tejada-Rodríguez CJ, Leyva-Ramos S. A Panoramic Review of Benzimidazole Derivatives and Their Potential Biological Activity. Mini Rev Med Chem 2022; 22:1268-1280. [PMID: 34983345 DOI: 10.2174/1389557522666220104150051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
The therapeutic potential of the benzimidazole nucleus dates back to 1944, being and important heterocycle system due to its presence in a wide range of bioactive compounds such as antiviral, anticancer, antibacterial, and so on, where optimization of substituents in this class of pharmacophore has resulted in many drugs. Its extensive biological activity is due to its physicochemical properties like hydrogen bond donor-acceptor capability, π → π stacking interactions, coordination bonds with metals as ligands and hydrophobic interactions; properties that allow them to easily bind with a series of biomolecules, including enzymes and nucleic acids, causing a growing interest in these types of molecules. This review aims to present an overview to leading benzimidazole derivatives, as well as to show the importance of the nature and type of substituents at the N1, C2, and C5(6) positions, when they are biologically evaluated, which can lead to obtaining potent drug candidate with significant range of biological activities.
Collapse
Affiliation(s)
- Hiram Hernández-López
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98160, Zacatecas, Zac. México
| | | | - Socorro Leyva-Ramos
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, SLP, México
| |
Collapse
|
22
|
López-Gastélum KA, Velázquez-Contreras EF, García JJ, Flores-Alamo M, Aguirre G, Chávez-Velasco D, Narayanan J, Rocha-Alonzo F. Mononuclear and Tetranuclear Copper(II) Complexes Bearing Amino Acid Schiff Base Ligands: Structural Characterization and Catalytic Applications. Molecules 2021; 26:molecules26237301. [PMID: 34885882 PMCID: PMC8658810 DOI: 10.3390/molecules26237301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
Two new glycine-Schiff base copper(II) complexes were synthesized. Single crystal X-ray diffraction (SCXRD) allowed us to establish the structure of both complexes in the solid state. The glycine-Schiff base copper(II) complex derived from 2′-hydroxy-5′-nitroacetophenone showed a mononuclear hydrated structure, in which the Schiff base acted as a tridentate ligand, and the glycine-Schiff base copper(II) complex derived from 2′-hydroxy-5′-methylacetophenone showed a less common tetranuclear anhydrous metallocyclic structure, in which the Schiff base acted as a tetradentate ligand. In both compounds, copper(II) had a tetracoordinated square planar geometry. The results of vibrational, electronic, and paramagnetic spectroscopies, as well as thermal analysis, were consistent with the crystal structures. Both complexes were evaluated as catalysts in the olefin cyclopropanation by carbene transference, and both led to very high diastereoselectivity (greater than 98%).
Collapse
Affiliation(s)
- Karla-Alejandra López-Gastélum
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales and Luis Encinas s/n, Col. Centro, Hermosillo 83000, Sonora, Mexico
- Correspondence: (K.-A.L.-G.); (E.F.V.-C.); (F.R.-A.)
| | - Enrique F. Velázquez-Contreras
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales and Luis Encinas s/n, Col. Centro, Hermosillo 83000, Sonora, Mexico
- Correspondence: (K.-A.L.-G.); (E.F.V.-C.); (F.R.-A.)
| | - Juventino J. García
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior Cd. Universitaria, Coyoacán, Ciudad de México 04510, Ciudad de México, Mexico; (J.J.G.); (M.F.-A.)
| | - Marcos Flores-Alamo
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior Cd. Universitaria, Coyoacán, Ciudad de México 04510, Ciudad de México, Mexico; (J.J.G.); (M.F.-A.)
| | - Gerardo Aguirre
- Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana 22000, Baja California, Mexico; (G.A.); (D.C.-V.)
| | - Daniel Chávez-Velasco
- Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana 22000, Baja California, Mexico; (G.A.); (D.C.-V.)
| | - Jayanthi Narayanan
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Col. Villa Esmeralda, Tultitlan 54910, Estado de México, Mexico;
| | - Fernando Rocha-Alonzo
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas s/n, Col. Centro, Hermosillo 83000, Sonora, Mexico
- Correspondence: (K.-A.L.-G.); (E.F.V.-C.); (F.R.-A.)
| |
Collapse
|
23
|
Aroua LM, Almuhaylan HR, Alminderej FM, Messaoudi S, Chigurupati S, Al-Mahmoud S, Mohammed HA. A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity. Bioorg Chem 2021; 114:105073. [PMID: 34153810 DOI: 10.1016/j.bioorg.2021.105073] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/25/2021] [Accepted: 06/06/2021] [Indexed: 12/23/2022]
Abstract
Synthetic routes to a series of benzoylarylbenzimidazol 3a-h have been derived from 3,4-diaminobenzophenone and an appropriate arylaldehyde in the presence of ammonium chloride or a mixture of ammonium chloride and sodium metabisulfite as catalyst. The antioxidant activity of targeted compounds 3a-h has been measured by four different methods and the overall antioxidant evaluation of the compounds indicated the significant MCA, FRAP, and (DPPH-SA) of the compounds except for the compound 3h. In vitro antidiabetic assay of α-amylase and α-glucosidase suggest a good to excellent activity for most tested compounds. The target benzimidazole 3f containing hydroxyl motif at para-position of phenyl revealed an important activity inhibitor against α- amylase (IC50 = 12.09 ± 0.38 µM) and α-glucosidase (IC50 = 11.02 ± 0.04 µM) comparable to the reference drug acarbose. The results of the anti hyperglycemic activity were supported by means of in silico molecular docking calculations showing strong binding affinity of compounds 3a-h with human pancreatic α-amylase (HPA) and human lysosomal acid-α-glucosidase (HLAG) active sites that confirm a good to excellent activity for most of tested compounds.
Collapse
Affiliation(s)
- Lotfi M Aroua
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia; Laboratory of Organic Structural Chemistry and Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, El Manar I 2092, Tunis, Tunisia; Carthage University, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia.
| | - Hind R Almuhaylan
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Campus University, King Abdulaziz Road, Al-Malida, 51452-P.O. Box: 6644, Buraydah, Qassim, Saudi Arabia; Carthage University, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Suliman Al-Mahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
24
|
Novel N-bridged pyrazole-1-carbothioamides with potential antiproliferative activity: design, synthesis, in vitro and in silico studies. Future Med Chem 2021; 13:1743-1766. [PMID: 34427113 DOI: 10.4155/fmc-2021-0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thiazole-substituted pyrazole is an important structural feature of many bioactive compounds, including antiviral, antitubercular, analgesic and anticancer agents. Herein we describe an efficient and facile approach for the synthesis of two series of 36 novel N-bridged pyrazole-1-phenylthiazoles. The antiproliferative activity of a set of representative compounds was evaluated in vitro against different human cancer cell lines. Among the identified compounds, compound 18 showed potent anticancer activity against the examined cancer cell lines. The in silico molecular docking study revealed that compound 18 possesses high binding affinity toward both SK1 and CDK2. Overall, these results indicate that compound 18 is a promising lead anticancer compound which may be exploited for development of antiproliferative drugs.
Collapse
|
25
|
Marinescu M. Synthesis of Antimicrobial Benzimidazole-Pyrazole Compounds and Their Biological Activities. Antibiotics (Basel) 2021; 10:1002. [PMID: 34439052 PMCID: PMC8389006 DOI: 10.3390/antibiotics10081002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
The synthesis of new compounds with antimicrobial and antiviral properties is a central objective today in the context of the COVID-19 pandemic. Benzimidazole and pyrazole compounds have remarkable biological properties, such as antimicrobial, antiviral, antitumor, analgesic, anti-inflammatory, anti-Alzheimer's, antiulcer, antidiabetic. Moreover, recent literature mentions the syntheses and antimicrobial properties of some benzimidazole-pyrazole hybrids, as well as other biological properties thereof. In this review, we aim to review the methods of synthesis of these hybrids, the antimicrobial activities of the compounds, their correlation with various groups present on the molecule, as well as their pharmaceutical properties.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Soseaua Panduri, 030018 Bucharest, Romania
| |
Collapse
|
26
|
Zeyrek CT, Arpacı ÖT, Arısoy M, Onurdağ FK. Synthesis, antimicrobial activity, density functional modelling and molecular docking with COVID-19 main protease studies of benzoxazole derivative: 2-(p-chloro-benzyl)-5-[3-(4-ethly-1-piperazynl) propionamido]-benzoxazole. J Mol Struct 2021; 1237:130413. [PMID: 33846658 PMCID: PMC8026219 DOI: 10.1016/j.molstruc.2021.130413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/20/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022]
Abstract
This study contains synthesis, antimicrobial activity, density functional modelling and molecular docking studies of benzoxazole derivative: 2-(p-chloro-benzyl)-5-[3-(4-ethly-1-piperazynl) propionamido]-benzoxazole. The synthetic procedure of investigated compound is given in detail. The newly synthesized benzoxazole compound and standard drugs were evaluated for their antimicrobial activity against some Gram-positive, Gram-negative bacteria and fungus C. albicans and their drug-resistant isolates. The benzoxazole compound has been characterized by using 1H-NMR, IR and MASS spectrometry and elemental analysis techniques. The molecular structure of the compound in the ground state has been modelling using density functional theory (DFT) with B3LYP/6-311++g(d,p) level. The molecular docking of 2-(p-chloro-benzyl)-5-[3-(4-ethly-1-piperazynl) propionamido]-benzoxazole with COVID-19 main protease has been also performed by using optimized geometry and the experimentally determined dimensional structure of the main protease (M-pro) of COVID-19.
Collapse
Affiliation(s)
- Celal Tuğrul Zeyrek
- Department of Academy and Publications, Turkish Energy, Nuclear and Mining Research Instution, TR-06100, Beşevler, Ankara, Turkey
| | - Özlem Temiz Arpacı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, TR-06100, Beşevler, Ankara, Turkey
| | - Mustafa Arısoy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, TR-06100, Beşevler, Ankara, Turkey
| | - Fatma Kaynak Onurdağ
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Trakya University, TR-22030, Edirne, Turkey
| |
Collapse
|
27
|
Kaur L, Utreja D, Dhillon NK. N-Alkylation of 2-Substituted Benzimidazole Derivatives and
Their Evaluation as Antinemic Agents. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021060129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Design, Synthesis, and Molecular Docking Study of New Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors Combining Resin Acids and Adamantane Moieties. Pharmaceuticals (Basel) 2021; 14:ph14050422. [PMID: 34062881 PMCID: PMC8147275 DOI: 10.3390/ph14050422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
In this paper, a series of novel abietyl and dehydroabietyl ureas, thioureas, amides, and thioamides bearing adamantane moieties were designed, synthesized, and evaluated for their inhibitory activities against tyrosil-DNA-phosphodiesterase 1 (TDP1). The synthesized compounds were able to inhibit TDP1 at micromolar concentrations (0.19–2.3 µM) and demonstrated low cytotoxicity in the T98G glioma cell line. The effect of the terpene fragment, the linker structure, and the adamantane residue on the biological properties of the new compounds was investigated. Based on molecular docking results, we suppose that adamantane derivatives of resin acids bind to the TDP1 covalent intermediate, forming a hydrogen bond with Ser463 and hydrophobic contacts with the Phe259 and Trp590 residues and the oligonucleotide fragment of the substrate.
Collapse
|
29
|
Alzhrani ZMM, Alam MM, Nazreen S. Recent advancements on Benzimidazole: A versatile scaffold in medicinal chemistry. Mini Rev Med Chem 2021; 22:365-386. [PMID: 33797365 DOI: 10.2174/1389557521666210331163810] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/30/2020] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Benzimidazole is nitrogen containing fused heterocycle which has been extensively explored in medicinal chemistry. Benzimidizole nucleus has been found to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, antiviral, antitubercular and antidiabetic. A number of benzimidazoles such as bendamustine, pantoprazole have been approved for the treatment of various illnesses whereas galeterone and GSK461364 are in clinical trials. The present review article gives an overview about the different biological activities exhibited by the benzimidazole derivatives as well as different methods used for the synthesis of benzimidazole derivatives for the past ten years.
Collapse
Affiliation(s)
| | - Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha. Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha. Saudi Arabia
| |
Collapse
|
30
|
AHMAD NASEEM, AZAD MOHAMMADIRFAN, KHAN ABDULRAHMAN, AZAD IQBAL. BENZIMIDAZOLE AS A PROMISING ANTIVIRAL HETEROCYCLIC SCAFFOLD: A REVIEW. JOURNAL OF SCIENCE AND ARTS 2021. [DOI: 10.46939/j.sci.arts-21.1-b05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Heterocyclic derivatives are unavoidable in many fields of natural disciplines. These derivatives play numerous significant roles in research, medication, and nature. Nitrogenous heterocyclic derivatives extremely are the main target of concern in synthetic chemistry to ensue active natural products with pharmaceuticals and agrochemicals interest. Benzimidazole skeleton is another example of some active heterocyclic moiety that significantly contributes in the numerous bioactive of essential compounds. Benzimidazole skeleton is studied as a prominent moiety of biologically active compounds with various activities including antimicrobial, antiprotozoal, anticancer, antiviral, acetylcholinesterase, antihistaminic, anti-inflammatory, antimalarial, analgesic, anti-HIV and antitubercular. Therefore, in this review we summarize the various antiviral activities of several benzimidazole derivatives and outline the correlation among the structures of different benzimidazoles scaffold with their therapeutic significance.
Collapse
Affiliation(s)
- NASEEM AHMAD
- Integral University, Department of Chemistry, 226026 Lucknow, India
| | - MOHAMMAD IRFAN AZAD
- Jamia Millia Islamia, Department of Chemistry, Jamia Nagar, 110025 New Delhi, India
| | | | - IQBAL AZAD
- Integral University, Department of Chemistry, 226026 Lucknow, India
| |
Collapse
|
31
|
Antibacterial and antiviral activities and action mechanism of flavonoid derivatives with a benzimidazole moiety. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2020.101194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Chen M, Tang X, Liu T, Peng F, Zhou Q, Luo H, He M, Xue W. Antimicrobial evaluation of myricetin derivatives containing benzimidazole skeleton against plant pathogens. Fitoterapia 2020; 149:104804. [PMID: 33309970 DOI: 10.1016/j.fitote.2020.104804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
A series of novel myricetin derivatives containing benzimidazole skeleton were constructed. The structure of compound 4g was further corroborated via X-ray single crystal diffractometer. The antimicrobial bioassays showed that all compounds exhibited potent inhibitory activities against Xanthomonas axonopodis pv. Citri (Xac), Ralstonia solanacearum (Rs) and Xanthomonas oryzae pv. Oryzae (Xoo) in vitro. Significantly, compound 4q showed the best inhibitory activities against Xoo, with the EC50 value of 8.2 μg/mL, which was better than thiodiazole copper (83.1 μg/mL) and bismerthiazol (60.1 μg/mL). In vivo experimental studies showed that compound 4q can treat rice bacterial leaf blight at 200 μg/mL, and the corresponding curative and protection efficiencies were 45.2 and 48.6%, respectively. Meanwhile, the antimicrobial mechanism of the compounds 4l and 4q were investigated through scanning electron microscopy (SEM). Studies showed that compounds 4l or 4q can cause deformation or rupture of Rs or Xoo cell membrane. These results indicated that novel benzimidazole-containing myricetin derivatives can be used as a potential antibacterial reagent.
Collapse
Affiliation(s)
- Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Feng Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hui Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
33
|
Pardeshi VAS, Chundawat NS, Pathan SI, Sukhwal P, Chundawat TPS, Singh GP. A review on synthetic approaches of benzimidazoles. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1841239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | | | - Priyal Sukhwal
- Department of Chemistry, Bhupal Nobles’ University, Udaipur, Rajasthan, India
| | | | - Girdhar Pal Singh
- Department of Chemistry, Bhupal Nobles’ University, Udaipur, Rajasthan, India
| |
Collapse
|
34
|
Srivastava R, Gupta SK, Naaz F, Sen Gupta PS, Yadav M, Singh VK, Singh A, Rana MK, Gupta SK, Schols D, Singh RK. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput Biol Chem 2020; 89:107400. [PMID: 33068917 PMCID: PMC7537607 DOI: 10.1016/j.compbiolchem.2020.107400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
New benzimidazole analogs synthesized as antivirals against HIV-1 and yellow fever virus. Molecular dynamics simulation studies indicated a stable ligand-protein complex of compound 3a within NNIBP of HIV-RT. DFT analysis confirmed the stability of hydrogen bonding interaction between the TRP 229 residue of HIV-RT and compound 3a. Molecules were tested for their anti-HIV and broad spectrum antiviral properties against different DNA and RNA viruses. Antiviral properties and cytotoxicity determined using MTT assay. Compound 3a showed anti-HIV activity and compound 2b showed excellent inhibition property against yellow fever virus.
A series of alkylated benzimidazole derivatives was synthesized and screened for their anti-HIV, anti-YFV, and broad-spectrum antiviral properties. The physicochemical parameters and drug-like properties of the compounds were assessed first, and then docking studies and MD simulations on HIV-RT allosteric sites were conducted to find the possible mode of their action. DFT analysis was also performed to confirm the nature of the hydrogen bonding interaction of active compounds. The in silico studies indicated that the molecules behaved like possible NNRTIs. The nature – polar or non-polar and position of the substituent present at fifth, sixth, and N-1 positions of the benzimidazole moiety played an important role in determining the antiviral properties of the compounds. Among the various compounds, 2-(5,6-dibromo-2-chloro-1H-benzimidazol-1-yl)ethan-1-ol (3a) showed anti-HIV activity with an appreciably low IC50 value as 0.386 × 10−5μM. Similarly, compound 2b, 3-(2-chloro-5-nitro-1H-benzimidazol-1-yl) propan-1-ol, showed excellent inhibitory property against the yellow fever virus (YFV) with EC50 value as 0.7824 × 10−2μM.
Collapse
Affiliation(s)
- Ritika Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Sunil K Gupta
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | - Madhu Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Vishal Kumar Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Anuradha Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | | | | | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|