1
|
Wang Q, Jiang J, Liang Y, Li S, Xia Y, Zhang L, Wang X. Expansion and functional divergence of terpene synthase genes in angiosperms: a driving force of terpene diversity. HORTICULTURE RESEARCH 2025; 12:uhae272. [PMID: 39897732 PMCID: PMC11725647 DOI: 10.1093/hr/uhae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/09/2024] [Indexed: 02/04/2025]
Abstract
Angiosperms are prolific producers of structurally diverse terpenes, which are essential for plant defense responses, as well as the formation of floral scents, fruit flavors, and medicinal constituents. Terpene synthase genes (TPSs) play crucial roles in the biosynthesis of terpenes. This study specifically focuses on the catalytic products of 222 functionally characterized TPSs in 24 angiosperms, which mainly comprise monoterpenes, sesquiterpenes, diterpenes, and sesterterpene. Our systematic analysis of these TPSs uncovered a significant expansion of the angiosperm-specific TPS-a, b, and g subfamilies in comparison to the TPS-e/f and c subfamilies. The expanded subfamilies can be further partitioned into distinct branches, within which considerable functional innovation and diversification have been observed. Numerous TPSs exhibit bifunctional or even trifunctional activities in vitro, yet they exhibit only a single activity in vivo, which may be largely determined by their inherent properties, subcellular localization, and the availabilities of endogenous substrates. Additionally, we explored the biological functions of terpenes in various organs and tissues of angiosperms. We propose that the expansion and functional divergence of TPSs contribute to the adaptability and diversity of angiosperms, facilitating the production of a broad spectrum of terpenes that enable diverse interactions with the environment and other organisms. Our findings provide a foundation for comprehending the correlation between the evolutionary features of TPSs and the diversity of terpenes in angiosperms, which is significant for terpene biosynthesis research.
Collapse
Affiliation(s)
- Qi Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| | - Jie Jiang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| | - Yuwei Liang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| | - Shanshan Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya 572024, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, West Lake District, Hangzhou 310058, China
| |
Collapse
|
2
|
Cao Z, Wang L, Huang D, Wu G, Li X, Yue Y, Yu Y, Yu R, Fan Y. Identification and functional analysis of floral terpene synthase genes in Curcuma alismatifolia. PLANTA 2024; 260:26. [PMID: 38861179 DOI: 10.1007/s00425-024-04440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/12/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION CaTPS2 and CaTPS3 were significantly expressed in flowers of Curcuma alismatifolia 'Shadow' and demonstrated bifunctional enzyme activity, CaTPS2 generated linalool and nerolidol as products, and CaTPS3 catalyzed β-myrcene and β-farnesene formation. This study presents the discovery and functional characterization of floral terpene synthase (TPS) genes in Curcuma alismatifolia 'Shadow', a cultivar renowned for its unique fragrance. Addressing the gap in understanding the genetic basis of floral scent in this species, we identified eight TPS genes through comprehensive transcriptome sequencing. Among these, CaTPS2 and CaTPS3 were significantly expressed in floral tissues and demonstrated bifunctional enzyme activity corresponding to the major volatile compounds detected in 'Shadow'. Functional analyses, including in vitro assays complemented with rigorous controls and alternative identification methods, elucidated the roles of these TPS genes in terpenoid biosynthesis. In vitro studies were conducted via heterologous expression in E. coli, followed by purification of the recombinant protein using affinity chromatography, enzyme assays were performed with GPP/FPP as the substrate, and volatile products were inserted into the GC-MS for analysis. Partially purified recombinant protein of CaTPS2 catalyzed GPP and FPP to produce linalool and nerolidol, respectively, while partially purified recombinant protein of CaTPS3 generated β-myrcene and β-farnesene with GPP and FPP as substrates, respectively. Real-time quantitative PCR further validated the expression patterns of these genes, correlating with terpenoid accumulation in different plant tissues. Our findings illuminate the molecular mechanisms underpinning floral fragrance in C. alismatifolia and provide a foundation for future genetic enhancements of floral scent in ornamental plants. This study, therefore, contributes to the broader understanding of terpenoid biosynthesis in plant fragrances, paving the way for biotechnological applications in horticulture plant breeding.
Collapse
Affiliation(s)
- Zihan Cao
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Di Huang
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guilan Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Li X, Liu L, Chu J, Wei G, Li J, Sun X, Fan H. Functional characterization of terpene synthases SmTPS1 involved in floral scent formation in Salvia miltiorrhiza. PHYTOCHEMISTRY 2024; 221:114045. [PMID: 38460781 DOI: 10.1016/j.phytochem.2024.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Plants attract beneficial insects and promote pollination by releasing floral scents. Salvia miltiorrhiza, as an insect-pollinated flowering plant, which has been less studied for its floral aroma substances. This study revealed that S. miltiorrhiza flowers produce various volatile terpenoids, including five monoterpenes and ten sesquiterpenes, with the sesquiterpene compound (E)-β-caryophyllene being the most abundant, accounting for 28.1% of the total volatile terpenoids. Y-tube olfactometer experiments were conducted on the primary pollinator of S. miltiorrhiza, the Apis ceranas. The results indicated that (E)-β-caryophyllene compound had an attractive effect on the Apis ceranas. By comparing the homologous sequences with the genes of (E)-β-caryophyllene terpene synthases in other plants, the SmTPS1 gene was selected for further experiment. Subcellular localization experiments showed SmTPS1 localized in the cytoplasm, and its in vitro enzyme assay revealed that it could catalyze FPP into β-Elemene, (E)-β-caryophyllene and α-Humulene. Overexpression of SmTPS1 in S. miltiorrhiza resulted in a 5.29-fold increase in gene expression. The GC-MS analysis revealed a significant increase in the concentration of (E)-β-caryophyllene in the transgenic plants, with levels 2.47-fold higher compared to the empty vector plants. Furthermore, Y-tube olfactometer experiments showed that the transgenic plants were significantly more attractive to Apis ceranas compared to the empty vector plants. Co-expression analysis suggested that four SmMYCs (SmMYC1, SmMYC5, SmMYC10, and SmMYC11) may be involved in the transcriptional regulation of SmTPS1. The yeast one-hybrid screen and the Dual luciferase assay indicated that SmMYC10 positively regulates the expression of SmTPS1. In conclusion, this study lays a foundation for the functional analysis and transcriptional regulation of terpene synthase genes in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiaohong Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Lin Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jin Chu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jiaxue Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Honghong Fan
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Wei G, Xu Y, Xu M, Shi X, Wang J, Feng L. Identification of Volatile Compounds and Terpene Synthase ( TPS) Genes Reveals ZcTPS02 Involved in β-Ocimene Biosynthesis in Zephyranthes candida. Genes (Basel) 2024; 15:185. [PMID: 38397175 PMCID: PMC10887521 DOI: 10.3390/genes15020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Zephyranthes candida is a frequently cultivated ornamental plant containing several secondary metabolites, including alkaloids, flavonoids, and volatile organic compounds (VOCs). However, extensive research has been conducted only on non-VOCs found in the plant, whereas the production of VOCs and the molecular mechanisms underlying the biosynthesis of terpenes remain poorly understood. In this study, 17 volatile compounds were identified from Z. candida flowers using gas chromatography-mass spectrometry (GC-MS), with 16 of them being terpenoids. Transcriptome sequencing resulted in the identification of 17 terpene synthase (TPS) genes; two TPS genes, ZcTPS01 and ZcTPS02, had high expression levels. Biochemical characterization of two enzymes encoded by both genes revealed that ZcTPS02 can catalyze geranyl diphosphate (GPP) into diverse products, among which is β-ocimene, which is the second most abundant compound found in Z. candida flowers. These results suggest that ZcTPS02 plays a vital role in β-ocimene biosynthesis, providing valuable insights into terpene biosynthesis pathways in Z. candida. Furthermore, the expression of ZcTPS02 was upregulated after 2 h of methyl jasmonate (MeJA) treatment and downregulated after 4 h of the same treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.X.); (M.X.); (X.S.); (J.W.)
| |
Collapse
|
5
|
Chen X, Nowicki M, Wadl PA, Zhang C, Köllner TG, Payá‐Milans M, Huff ML, Staton ME, Chen F, Trigiano RN. Chemical profile and analysis of biosynthetic pathways and genes of volatile terpenes in Pityopsis ruthii, a rare and endangered flowering plant. PLoS One 2023; 18:e0287524. [PMID: 37352235 PMCID: PMC10289357 DOI: 10.1371/journal.pone.0287524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
It is critical to gather biological information about rare and endangered plants to incorporate into conservation efforts. The secondary metabolism of Pityopsis ruthii, an endangered flowering plant that only occurs along limited sections of two rivers (Ocoee and Hiwassee) in Tennessee, USA was studied. Our long-term goal is to understand the mechanisms behind P. ruthii's adaptation to restricted areas in Tennessee. Here, we profiled the secondary metabolites, specifically in flowers, with a focus on terpenes, aiming to uncover the genomic and molecular basis of terpene biosynthesis in P. ruthii flowers using transcriptomic and biochemical approaches. By comparative profiling of the nonpolar portion of metabolites from various tissues, P. ruthii flowers were rich in terpenes, which included 4 monoterpenes and 10 sesquiterpenes. These terpenes were emitted from flowers as volatiles with monoterpenes and sesquiterpenes accounting for almost 68% and 32% of total emission of terpenes, respectively. These findings suggested that floral terpenes play important roles for the biology and adaptation of P. ruthii to its limited range. To investigate the biosynthesis of floral terpenes, transcriptome data for flowers were produced and analyzed. Genes involved in the terpene biosynthetic pathway were identified and their relative expressions determined. Using this approach, 67 putative terpene synthase (TPS) contigs were detected. TPSs in general are critical for terpene biosynthesis. Seven full-length TPS genes encoding putative monoterpene and sesquiterpene synthases were cloned and functionally characterized. Three catalyzed the biosynthesis of sesquiterpenes and four catalyzed the biosynthesis of monoterpenes. In conclusion, P. ruthii plants employ multiple TPS genes for the biosynthesis of a mixture of floral monoterpenes and sesquiterpenes, which probably play roles in chemical defense and attracting insect pollinators alike.
Collapse
Affiliation(s)
- Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Phillip A. Wadl
- United States Department of Agriculture, Agricultural Research Service, U. S. Vegetable Laboratory, Charleston, SC, United States of America
| | - Chi Zhang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Tobias G. Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Miriam Payá‐Milans
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Matthew L. Huff
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Margaret E. Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Robert N. Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
6
|
Functional Analysis of Two Terpene Synthase Genes Isolated from the Flowers of Hosta ‘So Sweet’. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Hosta hybrid cultivar ‘So Sweet’, an important ornamental and widely used horticultural plant, is noted for its rich, fragrant white flowers. The main aroma components of Hosta flowers are terpenoids, mainly monoterpenes. Until now, the terpene synthases responsible for terpene production in Hosta were not described. In this study, two terpene synthase (TPS) genes (HsTPS1 and HsTPS2) were cloned and characterized to further study their function. Furthermore, the volatile terpenes of Hosta ’So Sweet’ in two flower development stages from two in vitro enzyme tests were analyzed by gas chromatography–mass spectrometry (GC–MS). We analyzed the expression levels of two genes at four different developmental stages using quantitative real-time PCR, while localization was analyzed using Nicotina benthamiana leaves. In vitro, the two proteins were identified to mainly produce linalool and nerol. In addition, the active products of the two recombinant proteins were (E,E)-farnesol and (E,E)-farnesal, respectively, using farnesyl pyrophosphate as a substrate. The high expression of HsTPS1 and HsTPS2 was correlated with the release of components of Hosta flowers. To our knowledge, this is the first time that the terpene synthase genes of Hosta species have been isolated and identified, providing an opportunity to study the terpene metabolic pathways in Hosta species.
Collapse
|
7
|
A Rapid Integration Method of Wild Ornamental Plant Resources Based on Improved Clustering Algorithm. J FOOD QUALITY 2022. [DOI: 10.1155/2022/7574406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wild ornamental plants are beneficial as well as dangerous for the environment. Because the introduction of attractive plants that are not suited to the local ecosystem can result in significant environmental damage, a quick integration strategy based on an enhanced clustering algorithm is proposed for wild ornamental plant resources. The technique is enhanced with density stratification by integrating the k-means distance measurement formula and establishing the objective function of clustering optimization. The cluster termination condition is controlled by the number of clusters k, and the wild plant data categories are continually merged. Uneven density distribution is used to deal with the wild plant distribution dataset. To obtain the distribution of wild ornamental plants in different regions, to estimate the optimal parameters of wild plant samples, to combine with maximum likelihood classification to obtain the plant flora differentiation degree, and to complete the resource integration, remote sensing images were used. Comprehensive survey and systematic sampling were used to conduct a complete survey of the protected area. The heat map of the plant size distribution shows that there is a clear negative correlation between the spatial scale difference and the overall density difference of the plant distribution, that is, it appears spatially. From the experimental analysis, it is observed that the high-density small-scale and low-density large-scale agglomeration distribution characteristics delay is 1.96 s.
Collapse
|
8
|
Jiang Y, Liu G, Zhang W, Zhang C, Chen X, Chen Y, Yu C, Yu D, Fu J, Chen F. Biosynthesis and emission of methyl hexanoate, the major constituent of floral scent of a night-blooming water lily Victoriacruziana. PHYTOCHEMISTRY 2021; 191:112899. [PMID: 34481346 DOI: 10.1016/j.phytochem.2021.112899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Among the factors that have made flowering plants the most species-rich lineage of land plants is the interaction between flower and insect pollinators, for which floral scent plays a pivotal role. Water lilies belong to the ANA (Amborellales, Nymphaeales, and Austrobaileyales) grade of basal flowering plants. In this study, Victoria cruziana was investigated as a model night-blooming water lily for floral scent biosynthesis. Four volatile compounds, including three benzenoids and one fatty acid methyl ester methyl hexanoate, were detected from the flowers of V. cruziana during their first bloom, with methyl hexanoate accounting for 45 % of total floral volatile emission. Emission rates were largely constant before significant drop starting at the end of second bloom. To understand the molecular basis of floral scent biosynthesis in V. cruziana, particularly methyl hexanoate, a transcriptome from the whole flowers at the full-bloom stage was created and analyzed. Methyl hexanoate was hypothesized to be biosynthesized by SABATH methyltransferases. From the transcriptome, three full-length SABATH genes designated VcSABATH1-3 were identified. A full-length cDNA for each of the three VcSABATH genes was expressed in Escherichia coli to produce recombinant proteins. When tested in in vitro methyltransferase enzyme assays with different fatty acids, both VcSABATH1 and VcSABATH3 exhibited highest levels of activity with hexanoic acid to produce methyl hexanoate, with the specific activity of VcSABATH1 being about 15 % of that for VcSABATH3. VcSABATH1 and VcSABATH3 showed the highest levels of expression in stamen and pistil, respectively. In phylogenetic analysis, three VcSABATH genes clustered with other water lily SABATH methyltransferase genes including the one known for making other fatty acid methyl esters, implying both a common evolutionary origin and functional divergence. Fatty acid methyl esters are not frequent constituents of floral scents of mesangiosperms, pointing to the importance for the evolution of novel fatty acid methyltransferase for making fatty acid methyl esters in the pollination biology of water lilies.
Collapse
Affiliation(s)
- Yifan Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanhua Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanbo Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chi Zhang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Yuchu Chen
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Cuiwei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Dongbei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|