1
|
Nawata K. Risk factors for heart, cerebrovascular, and kidney diseases: evaluation of potential side effects of medications to control hypertension, hyperglycemia, and hypercholesterolemia. Front Cardiovasc Med 2023; 10:1103250. [PMID: 37332577 PMCID: PMC10272769 DOI: 10.3389/fcvm.2023.1103250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Background Heart disease (HD), cerebrovascular disease (CBD), and kidney disease (KD) are serious diseases worldwide. These diseases constitute the leading causes of death worldwide and are costly to treat. An analysis of risk factors is necessary to prevent these diseases. Data and Methods Risk factors were analyzed using data from 2,837,334, 2,864,874, and 2,870,262 medical checkups obtained from the JMDC Claims Database. The side effects of medications used to control hypertension (antihypertensive medications), hyperglycemia (antihyperglycemic medications), and hypercholesterolemia (cholesterol medications), including their interactions, were also evaluated. Logit models were used to calculate the odds ratios and confidence intervals. The sample period was from January 2005 to September 2019. Results Age and history of diseases were found to be very important factors, and the risk of having diseases could be almost doubled. Urine protein levels and recent large weight changes were also important factors for all three diseases and made the risks 10%-30% higher, except for KD. For KD, the risk was more than double for individuals with high urine protein levels. Negative side effects were observed with antihypertensive, antihyperglycemic, and cholesterol medications. In particular, when antihypertensive medications were used, the risks were almost doubled for HD and CBD. The risk would be triple for KD when individuals were taking antihypertensive medications. If they did not take antihypertensive medications and took other medications, these values were lower (20%-40% for HD, 50%-70% for CBD, and 60%-90% for KD). The interactions between the different types of medications were not very large. When antihypertensive and cholesterol medications were used simultaneously, the risk increased significantly in cases of HD and KD. Conclusion It is very important for individuals with risk factors to improve their physical condition for the prevention of these diseases. Taking antihypertensive, antihyperglycemic, and cholesterol medications, especially antihypertensive medications, may be serious risk factors. Special care and additional studies are necessary to prescribe these medications, particularly antihypertensive medications. Limitations No experimental interventions were performed. As the dataset was comprised of the results of health checkups of workers in Japan, individuals aged 76 and above were not included. Since the dataset only contained information obtained in Japan and the Japanese are ethnically homogeneous, potential ethnic effects on the diseases were not evaluated.
Collapse
Affiliation(s)
- Kazumitsu Nawata
- Hitotsubashi Institute for Advanced Study (HISA), Hitotsubashi University, Kunitachi, Japan
| |
Collapse
|
2
|
Lee GY, Kim KO, Ryu JH, Park SH, Chung HR, Butler M. Exploring Perceived Barriers to Physical Activity in Korean Older Patients with Hypertension: Photovoice Inquiry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14020. [PMID: 36360900 PMCID: PMC9655165 DOI: 10.3390/ijerph192114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
This study attempted to explore the barriers to physical activity of older patients with Hypertension. It aimed to provide robust evidence produced through their eyes. First, through the data analysis of the accelerometer and the decision of the research team, 10 out of the 30 applicants were invited to participate in a photovoice study. Photovoice is one example of participatory action research. Photovoice participants can communicate their unique experiences through photographs, providing a highly realistic and authentic perspective that is not possible to be understood with traditional qualitative research. This study inductively identified four main themes; health illiteracy, distortion of health information, fear of physical activity, and rejection of any life changes. Based on a specific understanding of the population's perception of physical activity, this study attempted to provide evidence of why many elderly Korean patients with Hypertension stay inactive.
Collapse
Affiliation(s)
- Gun-Young Lee
- Department of Gerokinesiology, Kyungil University, Kyungsan 38428, Korea
| | - Kyung-O Kim
- Department of Gerokinesiology, Kyungil University, Kyungsan 38428, Korea
| | - Jae-Hyeong Ryu
- Chungbuk Boeun Naebuk Public Health Center, Boen 28917, Korea
| | | | - Hae-Ryong Chung
- Health and Fitness Management, College of Health, Clayton State University, Morrow, GA 30260, USA
| | - Marcia Butler
- Health Care Management, College of Health, Clayton State University, Morrow, GA 30260, USA
| |
Collapse
|
3
|
Sandhiutami NMD, Dewi RS, Rahma F, Yang F. Potential Use of Some Indonesian Plants to Inhibits Angiotensin-converting Enzyme In Vitro. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND: Some Indonesian plants, such as Vaccinium varingiaefolium Miq., Plectranthus scutellarioides (L.) R.Br., Syzygium myrtifolium Walp., and Eclipta prostrata (L.) L., are rich of flavonoid and anthocyanin. Flavonoid, flavan-3-ol, quercetin, anthocyanin, and tannin compounds can reduce systemic vascular resistance because they cause vasodilation and are thought to be able to influence the function of angiotensin-converting enzyme (ACE) and inhibit ACE activity, which plays an important role in the process of hypertension.
AIM: This study aims to determine the potential of some Indonesian plants to inhibit ACE activity.
METHODS: Testing of ACE inhibitory activity is carried out by the hippuric acid compounds formed as a result of the reaction between the substrate and the enzyme, then measured spectrophotometrically. The inhibitory and IC50 values of each test sample were compared with the positive control of Captopril.
RESULTS: The four plant extracts contained secondary metabolites, such as flavonoids, tannins, saponins, quinones, steroids, triterpenoids, and essential oils. Ethanol extract of V. varingiaefolium Miq., P. scutellarioides (L.) R.Br., S. myrtifolium Walp., and E. prostrata (L.) L. each had an IC50 value of ACE inhibition activity of 131.4 ppm, 206. 7 ppm, 151.2 ppm, and 196.0 ppm. The IC50 value of the Captopril with inhibition of ACE activity is 11.1 ppm.
CONCLUSION: This study shows that some Indonesian plants have the activity to inhibit the ACE and potential antihypertensive drug candidates with ACE inhibitory activity.
Collapse
|
4
|
Antibacterial activity and cytotoxicity of sequentially extracted medicinal plant Blumea balsamifera Lin. (DC). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Najafi N, Mehri S, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive review. Phytother Res 2022; 36:2300-2323. [PMID: 35234312 DOI: 10.1002/ptr.7406] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS) is a multifactorial disease with medical conditions such as hypertension, diabetes, obesity, dyslipidemia, and insulin resistance. Alpha-lipoic acid (α-LA) possesses various pharmacological effects, including antidiabetic, antiobesity, hypotensive, and hypolipidemia actions. It exhibits reactive oxygen species scavenger properties against oxidation and age-related inflammation and refines MetS components. Also, α-LA activates the 5' adenosine monophosphate-activated protein kinase and inhibits the NFκb. It can decrease cholesterol biosynthesis, fatty acid β-oxidation, and vascular stiffness. α-LA decreases lipogenesis, cholesterol biosynthesis, low-density lipoprotein and very low-density lipoprotein levels, and atherosclerosis. Moreover, α-LA increases insulin secretion, glucose transport, and insulin sensitivity. These changes occur via PI3K/Akt activation. On the other hand, α-LA treats central obesity by increasing adiponectin levels and mitochondrial biogenesis and can reduce food intake mainly by SIRT1 stimulation. In this review, the most relevant articles have been discussed to determine the effects of α-LA on different components of MetS with a special focus on different molecular mechanisms behind these effects. This review exhibits the potential properties of α-LA in managing MetS; however, high-quality studies are needed to confirm the clinical efficacy of α-LA.
Collapse
Affiliation(s)
- Nahid Najafi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Goyzueta-Mamani LD, Barazorda-Ccahuana HL, Chávez-Fumagalli MA, F. Alvarez KL, Aguilar-Pineda JA, Vera-Lopez KJ, Lino Cardenas CL. In Silico Analysis of Metabolites from Peruvian Native Plants as Potential Therapeutics against Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030918. [PMID: 35164183 PMCID: PMC8838509 DOI: 10.3390/molecules27030918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
Abstract
Background: Despite research on the molecular bases of Alzheimer’s disease (AD), effective therapies against its progression are still needed. Recent studies have shown direct links between AD progression and neurovascular dysfunction, highlighting it as a potential target for new therapeutics development. In this work, we screened and evaluated the inhibitory effect of natural compounds from native Peruvian plants against tau protein, amyloid beta, and angiotensin II type 1 receptor (AT1R) pathologic AD markers. Methods: We applied in silico analysis, such as virtual screening, molecular docking, molecular dynamics simulation (MD), and MM/GBSA estimation, to identify metabolites from Peruvian plants with inhibitory properties, and compared them to nicotinamide, telmisartan, and grapeseed extract drugs in clinical trials. Results: Our results demonstrated the increased bioactivity of three plants’ metabolites against tau protein, amyloid beta, and AT1R. The MD simulations indicated the stability of the AT1R:floribundic acid, amyloid beta:rutin, and tau:brassicasterol systems. A polypharmaceutical potential was observed for rutin due to its high affinity to AT1R, amyloid beta, and tau. The metabolite floribundic acid showed bioactivity against the AT1R and tau, and the metabolite brassicasterol showed bioactivity against the amyloid beta and tau. Conclusions: This study has identified molecules from native Peruvian plants that have the potential to bind three pathologic markers of AD.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
- Correspondence: (L.D.G.-M.); (C.L.L.C.)
| | - Haruna Luz Barazorda-Ccahuana
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru;
| | - Miguel Angel Chávez-Fumagalli
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Karla Lucia F. Alvarez
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Jorge Alberto Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Karin Jannet Vera-Lopez
- Laboratory of Genomics and Neurovascular Diseases, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (M.A.C.-F.); (K.L.F.A.); (J.A.A.-P.); (K.J.V.-L.)
| | - Christian Lacks Lino Cardenas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence: (L.D.G.-M.); (C.L.L.C.)
| |
Collapse
|
7
|
Chakraborty R, Roy S. Angiotensin-converting enzyme inhibitors from plants: A review of their diversity, modes of action, prospects, and concerns in the management of diabetes-centric complications. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:478-492. [PMID: 34642085 DOI: 10.1016/j.joim.2021.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/10/2021] [Indexed: 12/29/2022]
Abstract
Angiotensin-converting enzyme (ACE) inhibitors are antihypertensive medications often used in the treatment of diabetes-related complications. Synthetic ACE inhibitors are known to cause serious side effects like hypotension, renal insufficiency, and hyperkalaemia. Therefore, there has been an intensifying search for natural ACE inhibitors. Many plants or plant-based extracts are known to possess ACE-inhibitory activity. In this review, articles focusing on the natural ACE inhibitors extracted from plants were retrieved from databases like Google Scholar, PubMed, Scopus, and Web of Science. We have found more than 50 plant species with ACE-inhibitory activity. Among them, Angelica keiskei, Momordica charantia, Muntingia calabura, Prunus domestica, and Peperomia pellucida were the most potent, showing comparatively lower half-maximal inhibitory concentration values. Among the bioactive metabolites, peptides (e.g., Tyr-Glu-Pro, Met-Arg-Trp, and Gln-Phe-Tyr-Ala-Val), phenolics (e.g., cyanidin-3-O-sambubioside and delphinidin-3-O-sambubioside), flavonoids ([-]-epicatechin, astilbin, and eupatorin), terpenoids (ursolic acid and oleanolic acid) and alkaloids (berberine and harmaline) isolated from several plant and fungus species were found to possess significant ACE-inhibitory activity. These were also known to possess promising antioxidant, antidiabetic, antihyperlipidemic and anti-inflammatory activities. Considering the minimal side effects and lower toxicity of herbal compounds, development of antihypertensive drugs from these plant extracts or phytocompounds for the treatment of diabetes-associated complications is an important endeavour. This review, therefore, focuses on the ACE inhibitors extracted from different plant sources, their possible mechanisms of action, present status, and any safety concerns.
Collapse
Affiliation(s)
- Rakhi Chakraborty
- Department of Botany, A.P.C. Roy Government College, Matigara 734010, West Bengal, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur 734011, West Bengal, India.
| |
Collapse
|
8
|
Ogunrinola OO, Kanmodi RI, Ogunrinola OA. Medicinal plants as immune booster in the palliative management of viral diseases: A perspective on coronavirus. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Olabisi O. Ogunrinola
- Department of Biochemistry, Faculty of Science Lagos State University Ojo Lagos Nigeria
| | - Rahmon I. Kanmodi
- Department of Biochemistry, Faculty of Science Lagos State University Ojo Lagos Nigeria
| | | |
Collapse
|
9
|
Del Mondo A, Smerilli A, Ambrosino L, Albini A, Noonan DM, Sansone C, Brunet C. Insights into phenolic compounds from microalgae: structural variety and complex beneficial activities from health to nutraceutics. Crit Rev Biotechnol 2021; 41:155-171. [PMID: 33530761 DOI: 10.1080/07388551.2021.1874284] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phenolic compounds (PCs) are a family of secondary metabolites with recognized biological activities making them attractive for the biomedical "red" biotechnology. The development of the eco-sustainable production of natural bioactive metabolites requires using easy cultivable organisms, such as microalgae, which represents one of the most promising sources for biotechnological applications. Microalgae are photosynthetic organisms inhabiting aquatic systems, displaying high levels of biological and functional diversities, and are well-known producers of fatty acids and carotenoids. They are also rich in other families of bioactive molecules e.g. phenolic compounds. Microalgal PCs however are less investigated than other molecular components. This study aims to provide a state-of-art picture of the actual knowledge on microalgal phenolic compounds, reviewing information on the PC content variety and chemodiversity in microalgae, their environmental modulation, and we aim to report discuss data on PC biosynthetic pathways. We report the challenges of promoting microalgae as a relevant source of natural PCs, further enhancing the interests of microalgal "biofactories" for biotechnological applications (i.e. nutraceutical, pharmacological, or cosmeceutical products).
Collapse
Affiliation(s)
- Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Luca Ambrosino
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Douglas M Noonan
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Napoli, Italy
| |
Collapse
|