1
|
Arsyad A, Lembang GKR, Linda SL, Djabir YY, Dobson GP. Low Calcium-High Magnesium Krebs-Henseleit Solution Combined with Adenosine and Lidocaine Improved Rat Aortic Function and Structure Following Cold Preservation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1284. [PMID: 39202566 PMCID: PMC11356418 DOI: 10.3390/medicina60081284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
Background and objectives: The main problem of vascular preservation is the maintenance of vessel graft quality and function following extended storage. Conventional preservation solutions such as histidine-tryptophan-ketoglutarate (HTK) solution, Phosphate-Buffer Solution (PBS), or sodium chloride 0.9% has been shown to be inadequate in preserving vascular physiological function after 3 days of cold storage. This study aimed to evaluate whether adenosine and lidocaine (AL) in a modified Krebs-Henseleit (KH) solution can preserve the function and histological structure of rat aortic rings after 6 days. Materials and Methods: Thirty-five aortic rings from male Wistar rats (200-300 g) were harvested and immediately immersed in one of the assigned cold preservation solutions: standard KH, modified KH (mod KH) with lower calcium (Ca2+) and higher magnesium content (Mg2+) with or without adenosine and lidocaine (mod KH-AL), and modified KH with AL, insulin, and melatonin (Mod KH-ALMI). The contraction and relaxation function of the aortic rings were examined using an isometric force transducer after 6 days of cold preservation. Hematoxylin and eosin staining were used to analyze the rings' histological structure. Results: Vascular contraction and relaxation functions were severely affected after a 6-day cold storage period in standard KH. Modifying the KH solution by reducing the Ca2+ and increasing the Mg2+ levels greatly recovered the vessel functions. The addition of AL or ALMI to the modified KH did not further recover vascular contractility. However, only the addition of AL to the modified KH increased the ACh-induced relaxation at 6 days when compared to the conventional KH, suggesting that endothelium preservation is improved. From histological analysis, it was found that the addition of AL but not ALMI further improved the endothelial lining and the structure of the elastic membrane layers of the preserved vessels after 6 days of cold preservation. Conclusions: The addition of AL to low calcium-high magnesium KH solution significantly enhanced endothelial preservation and improved endothelial-induced relaxation of preserved vessels after 6 days of cold storage.
Collapse
Affiliation(s)
- Aryadi Arsyad
- Department of Physiology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Geni K. R. Lembang
- Clinical Pharmacy Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (G.K.R.L.); (S.L.L.); (Y.Y.D.)
| | - Sesilia L. Linda
- Clinical Pharmacy Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (G.K.R.L.); (S.L.L.); (Y.Y.D.)
| | - Yulia Y. Djabir
- Clinical Pharmacy Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (G.K.R.L.); (S.L.L.); (Y.Y.D.)
| | - Geoffrey P. Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
2
|
Peters MC, Kruithof BPT, Bouten CVC, Voets IK, van den Bogaerdt A, Goumans MJ, van Wijk A. Preservation of human heart valves for replacement in children with heart valve disease: past, present and future. Cell Tissue Bank 2024; 25:67-85. [PMID: 36725733 PMCID: PMC10902036 DOI: 10.1007/s10561-023-10076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Valvular heart disease affects 30% of the new-borns with congenital heart disease. Valve replacement of semilunar valves by mechanical, bioprosthetic or donor allograft valves is the main treatment approach. However, none of the replacements provides a viable valve that can grow and/or adapt with the growth of the child leading to re-operation throughout life. In this study, we review the impact of donor valve preservation on moving towards a more viable valve alternative for valve replacements in children or young adults.
Collapse
Affiliation(s)
- M C Peters
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands.
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - B P T Kruithof
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - I K Voets
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - A van den Bogaerdt
- Heart Valve Department, ETB-BISLIFE Multi Tissue Center, 2333 BD, Beverwijk, The Netherlands
| | - M J Goumans
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - A van Wijk
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| |
Collapse
|
3
|
Ostróżka-Cieślik A. Modification of Preservative Fluids with Antioxidants in Terms of Their Efficacy in Liver Protection before Transplantation. Int J Mol Sci 2024; 25:1850. [PMID: 38339128 PMCID: PMC10855613 DOI: 10.3390/ijms25031850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Transplantation is currently the only effective treatment for patients with end-stage liver failure. In recent years, many advanced studies have been conducted to improve the efficiency of organ preservation techniques. Modifying the composition of the preservation fluids currently used may improve graft function and increase the likelihood of transplantation success. The modified fluid is expected to extend the period of safe liver storage in the peri-transplantation period and to increase the pool of organs for transplantation with livers from marginal donors. This paper provides a literature review of the effects of antioxidants on the efficacy of liver preservation fluids. Medline (PubMed), Scopus, and Cochrane Library databases were searched using a combination of MeSH terms: "liver preservation", "transplantation", "preservation solution", "antioxidant", "cold storage", "mechanical perfusion", "oxidative stress", "ischemia-reperfusion injury". Studies published up to December 2023 were included in the analysis, with a focus on publications from the last 30 years. A total of 45 studies met the inclusion criteria. The chemical compounds analyzed showed mostly bioprotective effects on hepatocytes, including but not limited to multifactorial antioxidant and free radical protective effects. It should be noted that most of the information cited is from reports of studies conducted in animal models, most of them in rodents.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland
| |
Collapse
|
4
|
Ostróżka-Cieślik A, Dolińska B, Ryszka F. Effect of Manganese on the Efficacy of Preservative Solution in Protecting Isolated Porcine Kidneys. Transplant Proc 2022; 54:874-877. [DOI: 10.1016/j.transproceed.2022.02.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
5
|
The Effect of Antioxidant Added to Preservation Solution on the Protection of Kidneys before Transplantation. Int J Mol Sci 2022; 23:ijms23063141. [PMID: 35328560 PMCID: PMC8954097 DOI: 10.3390/ijms23063141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemia–reperfusion injury is a key clinical problem of transplantology. Current achievements in optimizing organ rinse solutions and storage techniques have significantly influenced the degree of graft damage and its survival after transplantation. In recent years, intensive research has been carried out to maintain the viability of tissues and organs outside the integral environment of the body. Innovative solutions for improving the biochemical functions of the stored organ have been developed. The article discusses directions for modifying preservation solutions with antioxidants. Clinical and experimental studies aimed at optimizing these fluids, as well as perfusion and organ preservation techniques, are presented.
Collapse
|
6
|
Ostróżka-Cieślik A, Dolińska B, Ryszka F. Effectiveness Assessment of a Modified Preservation Solution Containing Thyrotropin or Follitropin Based on Biochemical Analysis in Perfundates and Homogenates of Isolated Porcine Kidneys after Static Cold Storage. Int J Mol Sci 2021; 22:ijms22168360. [PMID: 34445068 PMCID: PMC8395071 DOI: 10.3390/ijms22168360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
In this paper, we assess the nephroprotective effects of thyrotropin and follitropin during ischaemia. The studies were performed in vitro in a model of isolated porcine kidneys stored in Biolasol (FZNP, Biochefa, Sosnowiec, Poland) and modified Biolasol (TSH: 1 µg/L; FSH 1 µg/L). We used the static cold storage method. The study was carried out based on 30 kidneys. The kidneys were placed in 500 mL of preservation solution chilled to 4 °C. The samples for biochemical tests were collected during the first kidney perfusion (after 2 h of storage) and during the second perfusion (after 48 h of storage). The results of ALT, AST, and LDH activities confirm the effectiveness of Biolasol + p-TSH in maintaining the structural integrity of renal cell membranes. Significantly reduced biochemical parameters of kidney function, i.e., creatinine and protein concentrations were also observed after 48 h storage. The protective effect of Biasol + p-TSH is most pronounced after 2 h of storage, suggesting a mild course of damage thereafter. A mild deterioration of renal function was observed after 48 h. The results of our analyses did not show any protective effect of Biolasol + p-FSH on the kidneys during ischaemia.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
- Correspondence:
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
- “Biochefa” Pharmaceutical Research and Production Plant, Kasztanowa 3, 41-200 Sosnowiec, Poland;
| | - Florian Ryszka
- “Biochefa” Pharmaceutical Research and Production Plant, Kasztanowa 3, 41-200 Sosnowiec, Poland;
| |
Collapse
|
7
|
Biochemical Studies in Perfundates and Homogenates of Isolated Porcine Kidneys after Flushing with Zinc or Zinc-Prolactin Modified Preservation Solution Using a Static Cold Storage Technique. Molecules 2021; 26:molecules26113465. [PMID: 34200394 PMCID: PMC8200954 DOI: 10.3390/molecules26113465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc is an effective anti-inflammatory and antioxidant trace element. The aim of this study was to analyse the protective effect of zinc and zinc–prolactin systems as additives of preservation solutions in the prevention of nephron damage caused during ischemia. The study used a model for storing isolated porcine kidneys in Biolasol®. The solution was modified with the addition of Zn at a dose of 1 µg/L and Zn: 1 µg/L with prolactin (PRL): 0.1 µg/L. After 2 h and 48 h of storage, the levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, sodium, potassium, creatinine and total protein were determined. Zinc added to the Biolasol® composition at a dose of 1 µg/L showed minor effectiveness in the protection of nephrons. In turn, Zn2+ added to Biolasol + PRL (PRL: 0.1 µg/L) acted as a prolactin inhibitor. We do not recommend the addition of Zn(II) (1 µg/L) and Zn(II) (1 µg/L) + PRL (0.1 µg/L) to the Biolasol solution.
Collapse
|
8
|
Baburina Y, Lomovsky A, Krestinina O. Melatonin as a Potential Multitherapeutic Agent. J Pers Med 2021; 11:jpm11040274. [PMID: 33917344 PMCID: PMC8067360 DOI: 10.3390/jpm11040274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MEL) is a hormone produced by the pineal gland that was discovered many years ago. The physiological roles of this hormone in the body are varied. The beneficial effects of MEL administration may be related to its influence on mitochondrial physiology. Mitochondrial dysfunction is considered an important factor in various physiological and pathological processes, such as the development of neurodegenerative and cardiovascular diseases, diabetes, various forms of liver disease, skeletal muscle disorders, and aging. Mitochondrial dysfunction induces an increase in the permeability of the inner membrane, which leads to the formation of a permeability transition pore (mPTP) in the mitochondria. The long-term administration of MEL has been shown to improve the functional state of mitochondria and inhibit the opening of the mPTP during aging. It is known that MEL is able to suppress the initiation, progression, angiogenesis, and metastasis of cancer as well as the sensitization of malignant cells to conventional chemotherapy and radiation therapy. This review summarizes the studies carried out by our group on the combined effect of MEL with chemotherapeutic agents (retinoic acid, cytarabine, and navitoclax) on the HL-60 cells used as a model of acute promyelocytic leukemia. Data on the effects of MEL on oxidative stress, aging, and heart failure are also reported.
Collapse
|
9
|
Therapeutic Potential of Selenium as a Component of Preservation Solutions for Kidney Transplantation. Molecules 2020; 25:molecules25163592. [PMID: 32784639 PMCID: PMC7463670 DOI: 10.3390/molecules25163592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 01/23/2023] Open
Abstract
Selenium has strong antioxidant properties and diverse effects on the immune system. The aim of the study was to analyse the protective effect of selenium as a component of a kidney preservation solution on the prevention of ischemia-reperfusion injury of nephrons. The solution was modified by the addition of Se (1 µg/L), prolactin (0.1 µg/L) and Se with prolactin (1 µg/L Se + 0.1 µg/L PRL). The study used a model for storing isolated porcine kidneys in Biolasol® (modified Biolasol®), which minimizes ischemia-reperfusion injury of grafts. The introduction of Se4+ ions at a dose of 1 µg/L into the Biolasol® preservation solution in the form of Na2SeO3 caused an increase in the activity/concentration of the analysed biochemical parameters: aspartate transaminase, alanine transaminase, urea and protein. This suggests an adverse effect of Se4+ on nephron function during ischemia-reperfusion. The best graft protection was obtained by using Biolasol® modified with the addition of selenium (IV) at a dose of 1 µg/L and prolactin at a concentration of 0.1 µg/L. We proposed the mechanism of prolactin action in the metabolic reduction of selenite (SO32−) during ischemia/reperfusion.
Collapse
|