1
|
Liang Y, Zhang P, Liu M, Liu H, He B, Zhu Y, Wang J. Plant-based protein amyloid fibrils: Origins, formation, extraction, applications, and safety. Food Chem 2025; 469:142559. [PMID: 39732075 DOI: 10.1016/j.foodchem.2024.142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Amyloid fibrils (AFs) are highly ordered nanostructures formed through the self-assembly of proteins under specific conditions. Due to their unique properties, AFs have garnered significant attention as biomaterials over the past decade. Nevertheless, the increasing reliance on animal proteins for AFs production raises sustainability concerns, highlighting the need for a transition to plant-based proteins as more environmentally friendly feedstocks. This review summarizes the conditions, mechanisms, and factors influencing the fibrillisation of over 20 plant-based protein amyloid fibrils (PAFs). The effectiveness of enzymatic extraction and membrane separation for isolating PAFs was also evaluated. Additionally, the review discusses the potential for enhancing PAFs' suitability through cross-linking with external agents. In the future, PAFs may be developed as advanced nanomaterials for a range of applications, including food hydrogels, cell-cultured meat scaffolds, and food detection sensors. However, thorough investigation of safety concerns and process improvements remain the primary challenges for the development of PAFs.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Penghui Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou R&D Center for high-quality innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Petay M, Tang E, Bouderlique E, Zaworski J, Dazzi A, Letavernier E, Bazin D, Mathurin J, Deniset-Besseau A. Nano-Investigation of Mineralized Biological Samples Chemical Composition: Experimental Challenges, Constraints, and Considerations. Anal Chem 2025; 97:4954-4961. [PMID: 40028890 DOI: 10.1021/acs.analchem.4c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Understanding the chemical composition of calcifications in biological tissues at the nanoscale is crucial for deciphering their formation processes and possible pathological implications. Atomic Force Microscopy Infrared Spectroscopy (AFM-IR), by allowing IR spectroscopy at the nanoscale, is thus a promising strategy to access such highly spatially resolved chemical information. However, these specimens' inherent morphological and mechanical heterogeneities pose significant challenges for standard resonance-enhanced (RE-AFM-IR) and tapping AFM-IR acquisition modes. This study introduces a dual-mode approach combining tapping and RE-AFM-IR to address these challenges. Tapping AFM-IR is first employed to acquire the topography of the soft and rough surfaces, while RE-AFM-IR provides chemical description at the submicrometric scale through hyperspectral (HS) imaging. This dual-mode methodology is validated on different mineralized biological samples, including breast microcalcifications, revealing the local chemical heterogeneous distribution within the calcium phosphate matrice. Our results outline that dual-mode AFM-IR, coupled with HS imaging, enables robust chemical characterization of highly heterogeneous biomaterials and offers a more comprehensive description compared to conventional AFM-IR single-wavenumber mapping and local spectra.
Collapse
Affiliation(s)
- Margaux Petay
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ellie Tang
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Elise Bouderlique
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Jeremy Zaworski
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Alexandre Dazzi
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Emmanuel Letavernier
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
- Service des Explorations Fonctionnelles Multidisciplinaires, Hôpital TENON, 4 rue de la Chine, 75020 Paris, France
| | - Dominique Bazin
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Jérémie Mathurin
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ariane Deniset-Besseau
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
3
|
Wang S, Zhang W, Fu P, Zhong Y, Piatkevich KD, Zhang D, Lee HJ. Structural diversity of Alzheimer-related protein aggregations revealed using photothermal ratio-metric micro-spectroscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6768-6782. [PMID: 39679398 PMCID: PMC11640567 DOI: 10.1364/boe.537461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024]
Abstract
The crucial link between pathological protein aggregations and lipids in Alzheimer's disease pathogenesis is increasingly recognized, yet its spatial dynamics remain challenging for labeling-based microscopy. Here, we demonstrate photothermal ratio-metric infrared spectro-microscopy (PRISM) to investigate the in situ structural and molecular compositions of pathological features in brain tissues at submicron resolution. By identifying the vibrational spectroscopic signatures of protein secondary structures and lipids, PRISM tracks the structural dynamics of pathological proteins, including amyloid and hyperphosphorylated Tau (pTau). Amyloid-associated lipid features in major brain regions were observed, notably the enrichment of lipid-dissociated plaques in the hippocampus. Spectroscopic profiling of pTau revealed significant heterogeneity in phosphorylation levels and a distinct lipid-pTau relationship that contrasts with the anticipated lipid-plaque correlation. Beyond in vitro studies, our findings provide direct visualization evidence of aggregate-lipid interactions across the brain, offering new insights into mechanistic and therapeutic research of neurodegenerative diseases.
Collapse
Affiliation(s)
- Siming Wang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, and School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Wenhao Zhang
- School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Pengcheng Fu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, and School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310024, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310024, China
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Delong Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, and School of Physics, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration of Zhejiang University, Hangzhou 310027, China
- Innovative and Entrepreneur Team of Zhejiang for Year 2020 Biomarker Driven Basic and Translational Research on Major Brain Diseases, Zhejiang University, Hangzhou 310027, China
| | - Hyeon Jeong Lee
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration of Zhejiang University, Hangzhou 310027, China
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Hekmat A, Kostova I, Saboury AA. Application of metallic nanoparticles-amyloid protein supramolecular materials in tissue engineering and drug delivery: Recent progress and perspectives. Colloids Surf B Biointerfaces 2024; 244:114185. [PMID: 39226848 DOI: 10.1016/j.colsurfb.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Supramolecular medicine refers to the formulation of therapeutic and diagnostic agents through supramolecular techniques, amid treating, diagnosing, and preventing disease. Recently, there has been growing interest in developing metal nanoparticles (MNPs)-amyloid hybrid materials, which have the potential to revolutionize medical applications. Furthermore, the development of MNPs-amyloid hydrogel/scaffold supramolecules represents a promising new direction in amyloid nanotechnology, with potential applications in tissue engineering and biomedicine. This review first provides a brief introduction to the formation process of protein amyloid aggregates and their unique nanostructures. Subsequently, we focused on recent investigations into the use of MNPs-amyloid hybrid materials in tissue engineering and biomedicine. We anticipate that MNPs-amyloid supramolecular materials will pave the way for new functional materials in medical science, particularly in the field of tissue engineering.
Collapse
Affiliation(s)
- Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Irena Kostova
- Faculty of Pharmacy, Medical University Sofia, Bulgaria
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Tatulian SA. Analysis of protein-protein and protein-membrane interactions by isotope-edited infrared spectroscopy. Phys Chem Chem Phys 2024; 26:21930-21953. [PMID: 39108200 DOI: 10.1039/d4cp01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The objective of this work is to highlight the power of isotope-edited Fourier transform infrared (FTIR) spectroscopy in resolving important problems encountered in biochemistry, biophysics, and biomedical research, focusing on protein-protein and protein membrane interactions that play key roles in practically all life processes. An overview of the effects of isotope substitutions in (bio)molecules on spectral frequencies and intensities is given. Data are presented demonstrating how isotope-labeled proteins and/or lipids can be used to elucidate enzymatic mechanisms, the mode of membrane binding of peripheral proteins, regulation of membrane protein function, protein aggregation, and local and global structural changes in proteins during functional transitions. The use of polarized attenuated total reflection FTIR spectroscopy to identify the spatial orientation and the secondary structure of a membrane-bound interfacial enzyme and the mode of lipid hydrolysis is described. Methods of production of site-directed, segmental, and domain-specific labeling of proteins by the synthetic, semisynthetic, and recombinant strategies, including advanced protein engineering technologies such as nonsense suppression and frameshift quadruplet codons are overviewed.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
6
|
Juković M, Ratkaj I, Kalafatovic D, Bradshaw NJ. Amyloids, amorphous aggregates and assemblies of peptides - Assessing aggregation. Biophys Chem 2024; 308:107202. [PMID: 38382283 DOI: 10.1016/j.bpc.2024.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Amyloid and amorphous aggregates represent the two major categories of aggregates associated with diseases, and although exhibiting distinct features, researchers often treat them as equivalent, which demonstrates the need for more thorough characterization. Here, we compare amyloid and amorphous aggregates based on their biochemical properties, kinetics, and morphological features. To further decipher this issue, we propose the use of peptide self-assemblies as minimalistic models for understanding the aggregation process. Peptide building blocks are significantly smaller than proteins that participate in aggregation, however, they make a plausible means to bridge the gap in discerning the aggregation process at the more complex, protein level. Additionally, we explore the potential use of peptide-inspired models to research the liquid-liquid phase separation as a feasible mechanism preceding amyloid formation. Connecting these concepts can help clarify our understanding of aggregation-related disorders and potentially provide novel drug targets to impede and reverse these serious illnesses.
Collapse
Affiliation(s)
- Maja Juković
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Ratkaj
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Daniela Kalafatovic
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
7
|
Bashir S, Aiman A, Chaudhary AA, Khan N, Ahanger IA, Sami N, Almugri EA, Ali MA, Khan SUD, Shahid M, Basir SF, Hassan MI, Islam A. Probing protein aggregation through spectroscopic insights and multimodal approaches: A comprehensive review for counteracting neurodegenerative disorders. Heliyon 2024; 10:e27949. [PMID: 38689955 PMCID: PMC11059433 DOI: 10.1016/j.heliyon.2024.e27949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Aberrant accumulation of protein misfolding can cause aggregation and fibrillation and is one of the primary characteristic features of neurodegenerative diseases. Because they are disordered, misfolded, and aggregated proteins pose a significant setback in drug designing. The structural study of intermediate steps in these kinds of aggregated proteins will allow us to determine the conformational changes as well as the probable pathways encompassing various neurodegenerative disorders. The analysis of protein aggregates involved in neurodegenerative diseases relies on a diverse toolkit of biophysical techniques, encompassing both morphological and non-morphological methods. Additionally, Thioflavin T (ThT) assays and Circular Dichroism (CD) spectroscopy facilitate investigations into aggregation kinetics and secondary structure alterations. The collective application of these biophysical techniques empowers researchers to comprehensively unravel the intricate nature of protein aggregates associated with neurodegeneration. Furthermore, the topics covered in this review have summed up a handful of well-established techniques used for the structural analysis of protein aggregation. This multifaceted approach advances our fundamental understanding of the underlying mechanisms driving neurodegenerative diseases and informs potential therapeutic strategies.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ayesha Aiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Nashrah Khan
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Eman Abdullah Almugri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A.M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic Universi-ty (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, AlKharj, 11942, Saudi Arabia
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
8
|
Sallaberry CA, Voss BJ, Stone WB, Estrada F, Bhatia A, Soto JD, Griffin CW, Vander Zanden CM. Curcumin Reduces Amyloid Beta Oligomer Interactions with Anionic Membranes. ACS Chem Neurosci 2023; 14:4026-4038. [PMID: 37906715 DOI: 10.1021/acschemneuro.3c00512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Many neurodegenerative diseases involve amyloidogenic proteins forming surface-bound aggregates on anionic membranes, and the peptide amyloid β (Aβ) in Alzheimer's disease is one prominent example of this. Curcumin is a small polyphenolic molecule that provides an interesting opportunity to understand the fundamental mechanisms of membrane-mediated aggregation because it embeds into membranes to alter their structure while also altering Aβ aggregation in an aqueous environment. The purpose of this work was to understand interactions among curcumin, β-sheet-rich Aβ fibrillar oligomers (FO), and a model anionic membrane. From a combination of liquid surface X-ray scattering experiments and molecular dynamics simulations, we found that curcumin embedded into an anionic 1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) membrane to rest between the lipid headgroups and the tails, causing disorder and membrane thinning. FO accumulation on the membrane was reduced by ∼66% in the presence of curcumin, likely influenced by membrane thinning. Simulation results suggested curcumin clusters near exposed phenylalanine residues on a membrane-embedded FO structure. Altogether, curcumin inhibited FO interactions with a DMPG membrane, likely through a combination of altered membrane structure and interactions with the FO surface. This work elucidates the mechanism of curcumin as a small molecule that inhibits amyloidogenesis through a combination of both membrane and protein interactions.
Collapse
Affiliation(s)
- Chad A Sallaberry
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Barbie J Voss
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - William B Stone
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Fabiola Estrada
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Advita Bhatia
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - J Daniel Soto
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Charles W Griffin
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Crystal M Vander Zanden
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
9
|
Siddiquee R, Lo V, Johnston CL, Buffier AW, Ball SR, Ciofani JL, Zeng YC, Mahjoub M, Chrzanowski W, Rezvani-Baboli S, Brown L, Pham CLL, Sunde M, Kwan AH. Surface-Induced Hydrophobin Assemblies with Versatile Properties and Distinct Underlying Structures. Biomacromolecules 2023; 24:4783-4797. [PMID: 37747808 DOI: 10.1021/acs.biomac.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Hydrophobins are remarkable proteins due to their ability to self-assemble into amphipathic coatings that reverse surface wettability. Here, the versatility of the Class I hydrophobins EASΔ15 and DewY in diverse nanosuspension and coating applications is demonstrated. The hydrophobins are shown to coat or emulsify a range of substrates including oil, hydrophobic drugs, and nanodiamonds and alter their solution and surface behavior. Surprisingly, while the coatings confer new properties, only a subset is found to be resistant to hot detergent treatment, a feature previously thought to be characteristic of the functional amyloid form of Class I hydrophobins. These results demonstrate that substrate surface properties can influence the molecular structures and physiochemical properties of hydrophobin and possibly other functional amyloids. Functional amyloid assembly with different substrates and conditions may be analogous to the propagation of different polymorphs of disease-associated amyloid fibrils with distinct structures, stability, and clinical phenotypes. Given that amyloid formation is not required for Class I hydrophobins to serve diverse applications, our findings open up new opportunities for their use in applications requiring a range of chemical and physical properties. In hydrophobin nanotechnological applications where high stability of assemblies is required, simultaneous structural and functional characterization should be carried out. Finally, while results in this study pertain to synthetic substrates, they raise the possibility that at least some members of the pseudo-Class I and Class III hydrophobins, reported to form assemblies with noncanonical properties, may be Class I hydrophobins adopting alternative structures in response to environmental cues.
Collapse
Affiliation(s)
- Rezwan Siddiquee
- School of Life and Environmental Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Victor Lo
- School of Medical Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Caitlin L Johnston
- School of Medical Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aston W Buffier
- School of Life and Environmental Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sarah R Ball
- Formerly at School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan L Ciofani
- School of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yi Cheng Zeng
- Formerly at School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mahiar Mahjoub
- School of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | - Louise Brown
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Chi L L Pham
- Formerly at School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ann H Kwan
- School of Life and Environmental Sciences and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
V. D. dos Santos AC, Hondl N, Ramos-Garcia V, Kuligowski J, Lendl B, Ramer G. AFM-IR for Nanoscale Chemical Characterization in Life Sciences: Recent Developments and Future Directions. ACS MEASUREMENT SCIENCE AU 2023; 3:301-314. [PMID: 37868358 PMCID: PMC10588935 DOI: 10.1021/acsmeasuresciau.3c00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 10/24/2023]
Abstract
Despite the ubiquitous absorption of mid-infrared (IR) radiation by virtually all molecules that belong to the major biomolecules groups (proteins, lipids, carbohydrates, nucleic acids), the application of conventional IR microscopy to the life sciences remained somewhat limited, due to the restrictions on spatial resolution imposed by the diffraction limit (in the order of several micrometers). This issue is addressed by AFM-IR, a scanning probe-based technique that allows for chemical analysis at the nanoscale with resolutions down to 10 nm and thus has the potential to contribute to the investigation of nano and microscale biological processes. In this perspective, in addition to a concise description of the working principles and operating modes of AFM-IR, we present and evaluate the latest key applications of AFM-IR to the life sciences, summarizing what the technique has to offer to this field. Furthermore, we discuss the most relevant current limitations and point out potential future developments and areas for further application for fruitful interdisciplinary collaboration.
Collapse
Affiliation(s)
| | - Nikolaus Hondl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Victoria Ramos-Garcia
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Julia Kuligowski
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Bernhard Lendl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Georg Ramer
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
11
|
Paul S, Jeništová A, Vosough F, Berntsson E, Mörman C, Jarvet J, Gräslund A, Wärmländer SKTS, Barth A. 13C- and 15N-labeling of amyloid-β and inhibitory peptides to study their interaction via nanoscale infrared spectroscopy. Commun Chem 2023; 6:163. [PMID: 37537303 PMCID: PMC10400569 DOI: 10.1038/s42004-023-00955-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Interactions between molecules are fundamental in biology. They occur also between amyloidogenic peptides or proteins that are associated with different amyloid diseases, which makes it important to study the mutual influence of two polypeptides on each other's properties in mixed samples. However, addressing this research question with imaging techniques faces the challenge to distinguish different polypeptides without adding artificial probes for detection. Here, we show that nanoscale infrared spectroscopy in combination with 13C, 15N-labeling solves this problem. We studied aggregated amyloid-β peptide (Aβ) and its interaction with an inhibitory peptide (NCAM1-PrP) using scattering-type scanning near-field optical microscopy. Although having similar secondary structure, labeled and unlabeled peptides could be distinguished by comparing optical phase images taken at wavenumbers characteristic for either the labeled or the unlabeled peptide. NCAM1-PrP seems to be able to associate with or to dissolve existing Aβ fibrils because pure Aβ fibrils were not detected after mixing.
Collapse
Affiliation(s)
- Suman Paul
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- attocube systems AG, Haar, Germany
| | - Adéla Jeništová
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Elina Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cecilia Mörman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
12
|
Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023; 290:554-583. [PMID: 34862849 DOI: 10.1111/febs.16312] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Disrupted protein folding or decreased protein stability can lead to the accumulation of (partially) un- or misfolded proteins, which ultimately cause the formation of protein aggregates. Much of the interest in protein aggregation is associated with its involvement in a wide range of human diseases and the challenges it poses for large-scale biopharmaceutical manufacturing and formulation of therapeutic proteins and peptides. On the other hand, protein aggregates can also be functional, as observed in nature, which triggered its use in the development of biomaterials or therapeutics as well as for the improvement of food characteristics. Thus, unmasking the various steps involved in protein aggregation is critical to obtain a better understanding of the underlying mechanism of amyloid formation. This knowledge will allow a more tailored development of diagnostic methods and treatments for amyloid-associated diseases, as well as applications in the fields of new (bio)materials, food technology and therapeutics. However, the complex and dynamic nature of the aggregation process makes the study of protein aggregation challenging. To provide guidance on how to analyse protein aggregation, in this review we summarize the most commonly investigated aspects of protein aggregation with some popular corresponding methods.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Waeytens J, De Meutter J, Goormaghtigh E, Dazzi A, Raussens V. Determination of Secondary Structure of Proteins by Nanoinfrared Spectroscopy. Anal Chem 2023; 95:621-627. [PMID: 36598929 PMCID: PMC9851152 DOI: 10.1021/acs.analchem.2c01431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/21/2022] [Indexed: 01/05/2023]
Abstract
Nanoscale infrared spectroscopy (AFMIR) is becoming an important tool for the analysis of biological sample, in particular protein assemblies, at the nanoscale level. While the amide I band is usually used to determine the secondary structure of proteins in Fourier transform infrared spectroscopy, no tool has been developed so far for AFMIR. The paper introduces a method for the study of secondary structure of protein based on a protein library of 38 well-characterized proteins. Ascending stepwise linear regression (ASLR) and partial least square (PLS) regression were used to correlate spectrum characteristic bands with the major secondary structures (α-helixes and β-sheets). ASLR appears to provide better results than PLS. The secondary structure predictions are characterized by a root mean square standard error in a cross validation of 6.39% for α-helixes and 6.23% for β-sheets.
Collapse
Affiliation(s)
- Jehan Waeytens
- Center
for Structural Biology and Bioinformatics, Laboratory for the Structure
and Function of Biological Membranes, Université
libre de Bruxelles, 1050Brussels, Belgium
- Institut
de Chimie Physique d’Orsay, CNRS
UMR8000, Université Paris-Saclay, 91400Orsay, France
| | - Joëlle De Meutter
- Center
for Structural Biology and Bioinformatics, Laboratory for the Structure
and Function of Biological Membranes, Université
libre de Bruxelles, 1050Brussels, Belgium
| | - Erik Goormaghtigh
- Center
for Structural Biology and Bioinformatics, Laboratory for the Structure
and Function of Biological Membranes, Université
libre de Bruxelles, 1050Brussels, Belgium
| | - Alexandre Dazzi
- Institut
de Chimie Physique d’Orsay, CNRS
UMR8000, Université Paris-Saclay, 91400Orsay, France
| | - Vincent Raussens
- Center
for Structural Biology and Bioinformatics, Laboratory for the Structure
and Function of Biological Membranes, Université
libre de Bruxelles, 1050Brussels, Belgium
| |
Collapse
|
14
|
Xing H, Rodger A, Comer J, Picco AS, Huck-Iriart C, Ezell EL, Conda-Sheridan M. Urea-Modified Self-Assembling Peptide Amphiphiles That Form Well-Defined Nanostructures and Hydrogels for Biomedical Applications. ACS APPLIED BIO MATERIALS 2022; 5:4599-4610. [PMID: 35653507 DOI: 10.1021/acsabm.2c00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hydrogen bonding plays a critical role in the self-assembly of peptide amphiphiles (PAs). Herein, we studied the effect of replacing the amide linkage between the peptide and lipid portions of the PA with a urea group, which possesses an additional hydrogen bond donor. We prepared three PAs with the peptide sequence Phe-Phe-Glu-Glu (FFEE): two are amide-linked with hydrophobic tails of different lengths and the other possesses an alkylated urea group. The differences in the self-assembled structures formed by these PAs were assessed using diverse microscopies, nuclear magnetic resonance (NMR), and dichroism techniques. We found that the urea group influences the morphology and internal arrangement of the assemblies. Molecular dynamics simulations suggest that there are about 50% more hydrogen bonds in nanostructures assembled from the urea-PA than those assembled from the other PAs. Furthermore, in silico studies suggest the presence of urea-π stacking interactions with the phenyl group of Phe, which results in distinct peptide conformations in comparison to the amide-linked PAs. We then studied the effect of the urea modification on the mechanical properties of PA hydrogels. We found that the hydrogel made of the urea-PA exhibits increased stability and self-healing ability. In addition, it allows cell adhesion, spreading, and growth as a matrix. This study reveals that the inclusion of urea bonds might be useful in controlling the morphology, mechanical, and biological properties of self-assembled nanostructures and hydrogels formed by the PAs.
Collapse
Affiliation(s)
- Huihua Xing
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Alison Rodger
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jeffrey Comer
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Agustín S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, INIFTA-CONICET-UNLP, Diagonal 113 and Calle 64, La Plata 1900, Argentina
| | - Cristián Huck-Iriart
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, San Martín, Buenos Aires 1650, Argentina
| | - Edward L Ezell
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Martin Conda-Sheridan
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
15
|
Applications of Single-Molecule Vibrational Spectroscopic Techniques for the Structural Investigation of Amyloid Oligomers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196448. [PMID: 36234985 PMCID: PMC9573641 DOI: 10.3390/molecules27196448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Amyloid oligomeric species, formed during misfolding processes, are believed to play a major role in neurodegenerative and metabolic diseases. Deepening the knowledge about the structure of amyloid intermediates and their aggregation pathways is essential in understanding the underlying mechanisms of misfolding and cytotoxicity. However, structural investigations are challenging due to the low abundance and heterogeneity of those metastable intermediate species. Single-molecule techniques have the potential to overcome these difficulties. This review aims to report some of the recent advances and applications of vibrational spectroscopic techniques for the structural analysis of amyloid oligomers, with special focus on single-molecule studies.
Collapse
|
16
|
Schaefer A, Naser D, Siebeneichler B, Tarasca MV, Meiering EM. Methodological advances and strategies for high resolution structure determination of cellular protein aggregates. J Biol Chem 2022; 298:102197. [PMID: 35760099 PMCID: PMC9396402 DOI: 10.1016/j.jbc.2022.102197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins is at the nexus of molecular processes crucial to aging, disease, and employing proteins for biotechnology and medical applications. There has been much recent progress in determining the structural features of protein aggregates that form in cells; yet, owing to prevalent heterogeneity in aggregation, many aspects remain obscure and often experimentally intractable to define. Here, we review recent results of structural studies for cell-derived aggregates of normally globular proteins, with a focus on high-resolution methods for their analysis and prediction. Complementary results obtained by solid-state NMR spectroscopy, FTIR spectroscopy and microspectroscopy, cryo-EM, and amide hydrogen/deuterium exchange measured by NMR and mass spectrometry, applied to bacterial inclusion bodies and disease inclusions, are uncovering novel information on in-cell aggregation patterns as well as great diversity in the structural features of useful and aberrant protein aggregates. Using these advances as a guide, this review aims to advise the reader on which combination of approaches may be the most appropriate to apply to their unique system.
Collapse
Affiliation(s)
- Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
17
|
Banerjee S, Holcombe B, Ringold S, Foes A, Naik T, Baghel D, Ghosh A. Nanoscale Infrared Spectroscopy Identifies Structural Heterogeneity in Individual Amyloid Fibrils and Prefibrillar Aggregates. J Phys Chem B 2022; 126:5832-5841. [PMID: 35914320 DOI: 10.1021/acs.jpcb.2c04797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amyloid plaques are one of the central manifestations of Alzheimer's disease pathology. Aggregation of the amyloid beta (Aβ) protein from amorphous oligomeric species to mature fibrils has been extensively studied. However, structural heterogeneities in prefibrillar species, and how that affects the structure of later-stage aggregates are not yet well understood. The integration of infrared spectroscopy with atomic force microscopy (AFM-IR) allows for identifying the signatures of individual nanoscale aggregates by spatially resolving spectra. We use AFM-IR to demonstrate that amyloid oligomers exhibit significant structural variations as evidenced in their infrared spectra. This heterogeneity is transmitted to and retained in protofibrils and fibrils. We show that amyloid fibrils do not always conform to their putative ordered structure and structurally different domains exist in the same fibril. We further demonstrate that these structural heterogeneities manifest themselves as a lack of β sheet structure in amyloid plaques in Alzheimer's tissue using infrared imaging.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Brooke Holcombe
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Sydney Ringold
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Abigail Foes
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Tanmayee Naik
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
18
|
Deol HK, Broom HR, Sienbeneichler B, Lee B, Leonenko Z, Meiering EM. Immature ALS-associated mutant superoxide dismutases form variable aggregate structures through distinct oligomerization processes. Biophys Chem 2022; 288:106844. [DOI: 10.1016/j.bpc.2022.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022]
|
19
|
Nucara A, Ripanti F, Sennato S, Nisini G, De Santis E, Sefat M, Carbonaro M, Mango D, Minicozzi V, Carbone M. Influence of Cortisol on the Fibril Formation Kinetics of Aβ42 Peptide: A Multi-Technical Approach. Int J Mol Sci 2022; 23:ijms23116007. [PMID: 35682687 PMCID: PMC9180743 DOI: 10.3390/ijms23116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Amyloid-β peptide (Aβ) aggregates are known to be correlated with pathological neurodegenerative diseases. The fibril formation process of such peptides in solution is influenced by several factors, such as the ionic strength of the buffer, concentration, pH, and presence of other molecules, just to mention a few. In this paper, we report a detailed analysis of in vitro Aβ42 fibril formation in the presence of cortisol at different relative concentrations. The thioflavin T fluorescence assay allowed us to monitor the fibril formation kinetics, while a morphological characterization of the aggregates was obtained by atomic force microscopy. Moreover, infrared absorption spectroscopy was exploited to investigate the secondary structure changes along the fibril formation path. Molecular dynamics calculations allowed us to understand the intermolecular interactions with cortisol. The combined results demonstrated the influence of cortisol on the fibril formation process: indeed, at cortisol-Aβ42 concentration ratio (ρ) close to 0.1 a faster organization of Aβ42 fragments into fibrils is promoted, while for ρ = 1 the formation of fibrils is completely inhibited.
Collapse
Affiliation(s)
- Alessandro Nucara
- Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy;
- Correspondence: (A.N.); (F.R.)
| | - Francesca Ripanti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Correspondence: (A.N.); (F.R.)
| | - Simona Sennato
- CNR-ISC Sede Sapienza, Department of Physics, Sapienza University, P.le A. Moro 5, 00185 Rome, Italy;
| | - Giacomo Nisini
- Department of Physics, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy;
| | - Emiliano De Santis
- Department of Physics and Astronomy and Department of Chemistry-BMC, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden;
| | - Mahta Sefat
- School of Pharmacy, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (M.S.); (D.M.)
| | - Marina Carbonaro
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Dalila Mango
- School of Pharmacy, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (M.S.); (D.M.)
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Velia Minicozzi
- Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| |
Collapse
|
20
|
Ami D, Mereghetti P, Natalello A. Contribution of Infrared Spectroscopy to the Understanding of Amyloid Protein Aggregation in Complex Systems. Front Mol Biosci 2022; 9:822852. [PMID: 35463965 PMCID: PMC9023755 DOI: 10.3389/fmolb.2022.822852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Infrared (IR) spectroscopy is a label-free and non-invasive technique that probes the vibrational modes of molecules, thus providing a structure-specific spectrum. The development of infrared spectroscopic approaches that enable the collection of the IR spectrum from a selected sample area, from micro- to nano-scale lateral resolutions, allowed to extend their application to more complex biological systems, such as intact cells and tissues, thus exerting an enormous attraction in biology and medicine. Here, we will present recent works that illustrate in particular the applications of IR spectroscopy to the in situ characterization of the conformational properties of protein aggregates and to the investigation of the other biomolecules surrounding the amyloids. Moreover, we will discuss the potential of IR spectroscopy to the monitoring of cell perturbations induced by protein aggregates. The essential support of multivariate analyses to objectively pull out the significant and non-redundant information from the spectra of highly complex systems will be also outlined.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- *Correspondence: Diletta Ami, ; Antonino Natalello,
| | | | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- *Correspondence: Diletta Ami, ; Antonino Natalello,
| |
Collapse
|
21
|
Prasad AK, Tiwari C, Ray S, Holden S, Armstrong DA, Rosengren KJ, Rodger A, Panwar AS, Martin LL. Secondary Structure Transitions for a Family of Amyloidogenic, Antimicrobial Uperin 3 Peptides in Contact with Sodium Dodecyl Sulfate. Chempluschem 2022; 87:e202100408. [DOI: 10.1002/cplu.202100408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/10/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Anup K. Prasad
- IITB-Monash Research Academy Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Chandni Tiwari
- IITB-Monash Research Academy Indian Institute of Technology Bombay Powai Mumbai 400076 India
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - Sourav Ray
- IITB-Monash Research Academy Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Stephanie Holden
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - David A. Armstrong
- School of Biomedical Sciences The University of Queensland Brisbane QLD, 4072 Australia
| | - K. Johan Rosengren
- School of Biomedical Sciences The University of Queensland Brisbane QLD, 4072 Australia
| | - Alison Rodger
- Department of Molecular Sciences Macquarie University Macquarie Park NSW, 2109 Australia
| | - Ajay S. Panwar
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | | |
Collapse
|
22
|
Raussens V, Waeytens J. Characterization of Bacterial Amyloids by Nano-infrared Spectroscopy. Methods Mol Biol 2022; 2538:117-129. [PMID: 35951297 DOI: 10.1007/978-1-0716-2529-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic force microscopy has been used for decades to study the topography of proteins during aggregation but with a lack of information on the secondary structure. On the contrary, infrared spectroscopy was able to study structural changes during the aggregation, but this analysis is complicated due to the presence of different species in mixtures and the poor spatial (~μm) resolution of the FTIR microscopy. Recently, Professor Alexandre Dazzi combined those techniques in the so-called AFM-IR. This method allows acquiring IR spectra at the nanometric scale and becomes a new standard method for the characterization of amyloid fibrils and, more generally, for the aggregation of proteins.
Collapse
Affiliation(s)
- Vincent Raussens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium.
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Sud, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
23
|
Irizarry BA, Davis J, Zhu X, Boon BDC, Rozemuller AJM, Van Nostrand WE, Smith SO. Human cerebral vascular amyloid contains both antiparallel and parallel in-register Aβ40 fibrils. J Biol Chem 2021; 297:101259. [PMID: 34599967 PMCID: PMC8528725 DOI: 10.1016/j.jbc.2021.101259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 01/02/2023] Open
Abstract
The accumulation of fibrillar amyloid-β (Aβ) peptides alongside or within the cerebral vasculature is the hallmark of cerebral amyloid angiopathy (CAA). This condition commonly co-occurs with Alzheimer's disease (AD) and leads to cerebral microbleeds, intracranial hemorrhages, and stroke. CAA also occurs sporadically in an age-dependent fashion and can be accelerated by the presence of familial Aβ mutant peptides. Recent studies using Fourier transform infrared (FTIR) spectroscopy of vascular Aβ fibrils derived from rodents containing the double E22Q/D23N mutations indicated the presence of a novel antiparallel β-sheet structure. To address whether this structure is associated solely with the familial mutations or is a common feature of CAA, we propagated Aβ fibrils from human brain vascular tissue of patients diagnosed with nonfamilial CAA. Aβ fibrils were isolated from cerebral blood vessels using laser capture microdissection in which specific amyloid deposits were removed from thin slices of the brain tissue. Transmission electron microscopy revealed that these deposits were organized into a tight meshwork of fibrils, which FTIR measurements showed could serve as seeds to propagate the growth of Aβ40 fibrils for structural studies. Solid-state NMR measurements of the fibrils propagated from vascular amyloid showed they contained a mixture of parallel, in-register, and antiparallel β-sheet structures. The presence of fibrils with antiparallel structure derived from vascular amyloid is distinct from the typical parallel, in-register β-sheet structure that appears in fibrils derived from parenchymal amyloid in AD. These observations reveal that different microenvironments influence the structures of Aβ fibrils in the human brain.
Collapse
Affiliation(s)
- Brandon A Irizarry
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Judianne Davis
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Xiaoyue Zhu
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Baayla D C Boon
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - VUmc, Amsterdam, the Netherlands; Department of Pathology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - VUmc, Amsterdam, the Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - VUmc, Amsterdam, the Netherlands
| | - William E Van Nostrand
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Steven O Smith
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
24
|
Otzen DE, Dueholm MS, Najarzadeh Z, Knowles TPJ, Ruggeri FS. In situ Sub-Cellular Identification of Functional Amyloids in Bacteria and Archaea by Infrared Nanospectroscopy. SMALL METHODS 2021; 5:e2001002. [PMID: 34927901 DOI: 10.1002/smtd.202001002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/16/2021] [Indexed: 06/14/2023]
Abstract
Formation of amyloid structures is originally linked to human disease. However, amyloid materials are found extensively in the animal and bacterial world where they stabilize intra- and extra-cellular environments like biofilms or cell envelopes. To date, functional amyloids have largely been studied using optical microscopy techniques in vivo, or after removal from their biological context for higher-resolution studies in vitro. Furthermore, conventional microscopies only indirectly identify amyloids based on morphology or unspecific amyloid dyes. Here, the high chemical and spatial (≈20 nm) resolution of Infrared Nanospectroscopy (AFM-IR) to investigate functional amyloid from Escherichia coli (curli), Pseudomonas (Fap), and the Archaea Methanosaeta (MspA) in situ is exploited. It is demonstrated that AFM-IR identifies amyloid protein within single intact cells through their cross β-sheet secondary structure, which has a unique spectroscopic signature in the amide I band of protein. Using this approach, nanoscale-resolved chemical images and spectra of purified curli and Methanosaeta cell wall sheaths are provided. The results highlight significant differences in secondary structure between E. coli cells with and without curli. Taken together, these results suggest that AFM-IR is a new and powerful label-free tool for in situ investigations of the biophysical state of functional amyloid and biomolecules in general.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Morten S Dueholm
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, 9220, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB30HE, UK
| | - Francesco Simone Ruggeri
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
- Laboratory of Physical Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
| |
Collapse
|
25
|
Waeytens J, Mathurin J, Deniset-Besseau A, Arluison V, Bousset L, Rezaei H, Raussens V, Dazzi A. Probing amyloid fibril secondary structures by infrared nanospectroscopy: experimental and theoretical considerations. Analyst 2021; 146:132-145. [PMID: 33107501 DOI: 10.1039/d0an01545h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amyloid fibrils are composed of aggregated peptides or proteins in a fibrillary structure with a higher β-sheet content than their native structure. Attenuated total reflection Fourier transform infrared spectroscopy only provides bulk analysis of a sample therefore it is impossible to discriminate between different aggregated structures. To overcome this limitation, near-field techniques like AFM-IR have emerged in the last twenty years to allow infrared nanospectroscopy. This technique obtains IR spectra with a spatial resolution of ten nanometres, the size of isolated fibrils. Here, we present essential practical considerations to avoid misinterpretations and artefacts during these analyses. Effects of polarization of the incident IR laser, illumination configuration and coating of the AFM probes are discussed, including the advantages and drawbacks of their use. This approach will improve interpretation of AFM-IR spectra especially for the determination of secondary structures of species not accessible using classical ATR-FTIR.
Collapse
Affiliation(s)
- Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgique.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Martins PM, Navarro S, Silva A, Pinto MF, Sárkány Z, Figueiredo F, Pereira PJB, Pinheiro F, Bednarikova Z, Burdukiewicz M, Galzitskaya OV, Gazova Z, Gomes CM, Pastore A, Serpell LC, Skrabana R, Smirnovas V, Ziaunys M, Otzen DE, Ventura S, Macedo-Ribeiro S. MIRRAGGE - Minimum Information Required for Reproducible AGGregation Experiments. Front Mol Neurosci 2020; 13:582488. [PMID: 33328883 PMCID: PMC7729192 DOI: 10.3389/fnmol.2020.582488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.
Collapse
Affiliation(s)
- Pedro M Martins
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alexandra Silva
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria F Pinto
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory - Department of Atomic Structure - Composition of Materials, Braga, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Annalisa Pastore
- UK-DRI Centre at King's College London, the Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Rostislav Skrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Pignataro MF, Herrera MG, Dodero VI. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020; 25:E4854. [PMID: 33096797 PMCID: PMC7587993 DOI: 10.3390/molecules25204854] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
| | - María Georgina Herrera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Verónica Isabel Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|