1
|
Camillo L, Zavattaro E, Savoia P. Nicotinamide: A Multifaceted Molecule in Skin Health and Beyond. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:254. [PMID: 40005371 PMCID: PMC11857428 DOI: 10.3390/medicina61020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Nicotinamide (NAM), the amide form of vitamin B3, is a precursor to essential cofactors nicotinamide adenine dinucleotide (NAD⁺) and NADPH. NAD⁺ is integral to numerous cellular processes, including metabolism regulation, ATP production, mitochondrial respiration, reactive oxygen species (ROS) management, DNA repair, cellular senescence, and aging. NAM supplementation has demonstrated efficacy in restoring cellular energy, repairing DNA damage, and inhibiting inflammation by suppressing pro-inflammatory cytokines release. Due to its natural presence in a variety of foods and its excellent safety profile-even at high doses of up to 3 g/day-NAM is extensively used in the chemoprevention of non-melanoma skin cancers and the treatment of dermatological conditions such as blistering diseases, atopic dermatitis, rosacea, and acne vulgaris. Recently, its anti-aging properties have elevated NAM's prominence in skincare formulations. Beyond DNA repair and energy replenishment, NAM significantly impacts oxidative stress reduction, cell cycle regulation, and apoptosis modulation. Despite these multifaceted benefits, the comprehensive molecular mechanisms underlying NAM's actions remain not fully elucidated. This review consolidates recent research to shed light on these mechanisms, emphasizing the critical role of NAM in cellular health and its therapeutic potential. By enhancing our understanding, this work underscores the importance of continued exploration into NAM's applications, aiming to inform future clinical practices and skincare innovations.
Collapse
Affiliation(s)
| | | | - Paola Savoia
- Department of Health Science, Università del Piemonte Orientale, 28100 Novara, Italy; (L.C.); (E.Z.)
| |
Collapse
|
2
|
Wawrzyńczak A, Nowak I, Feliczak-Guzik A. SBA-15- and SBA-16-Functionalized Silicas as New Carriers of Niacinamide. Int J Mol Sci 2023; 24:17567. [PMID: 38139403 PMCID: PMC10743396 DOI: 10.3390/ijms242417567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Amorphous silica as a food additive (E 551) is used in food materials (e.g., sweeteners, dairy products) for its anti-caking properties. The physicochemical properties of SiO2 also make it suitable to serve as a carrier of active substances in functional foods, dietary supplements, and drugs. Deficiency of niacinamide (vitamin B3, niacin) leads to several pathologies in the nervous system and causes one of the nutritional diseases called pellagra. The present study focuses on the use of hybrid ordered mesoporous silicas (SBA-15/SBA-16) functionalized with amino groups introduced through grafting or co-condensation with (N-vinylbenzyl)aminoethylaminopropyltrimethoxysilane (Z-6032) as novel carriers of niacinamide. They combine the characteristics of a relatively stable and chemically inert amorphous silica matrix with well-defined structural/textural parameters and organic functional groups that give specific chemical properties. The highest degree of carrier loading with niacinamide (16 wt.%) was recorded for the unmodified SBA-15. On the other hand, the highest degree of niacinamide release characterizes the functionalized SBA-15 sample (60% after 24 h), indicating that the presence of amino groups affects the release profile of niacinamide from the structure of the mesoporous silica.
Collapse
Affiliation(s)
| | | | - Agnieszka Feliczak-Guzik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (A.W.); (I.N.)
| |
Collapse
|
3
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
4
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Mciteka LP. A Synthesis Review of Vitamins Involved in the Fight against Covid‐19. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Lulama P. Mciteka
- University of the Western Cape Department of Chemistry Private Bag X17, Bellville 7535 Cape Town South Africa
| |
Collapse
|
6
|
Nouh AH, Elshahid AR, Kadah AS, Zeyada YA. Topical niacinamide (Nicotinamide) treatment for discoid lupus erythematosus (DLE): A prospective pilot study. J Cosmet Dermatol 2023; 22:1647-1657. [PMID: 36683259 DOI: 10.1111/jocd.15628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cutaneous lupus erythematosus is an umbrella term for a group of autoimmune connective tissue disorders affecting the skin. Discoid lupus erythematosus (DLE) is the chronic condition and most common form of cutaneous lupus erythematosus. AIMS Current therapies of DLE are challenging and not completely satisfactory, highly expensive, off-label, or poorly available (like antimalarials due to COVID-19 outbreaks). Nicotinamide, also called niacinamide, is a water-soluble form of vitamin B3 (niacin). Its multiple effects let us think that nicotinamide could be a therapy for lupus-associated skin lesions. METHODS We performed a prospective randomized double-blind clinical trial on 60 subjects diagnosed with Discoid lupus erythematosus using topical Nicotinamide 2% and 4% preparations in form of cream and gel on skin and scalp lesions. Control group was included using only cream/gel base as placebo control. RESULTS Obtained data showed that topical Nicotinamide can be used for the treatment of DLE as adjuvant to other treatment regimens with good cosmetic results and minimal side effects. Topical 4% Nicotinamide is superior to 2% preparation in response but associated with a higher incidence of irritation. CONCLUSION Topical Nicotinamide can be used for the treatment of DLE as an adjuvant to other treatment regimens with good cosmetic results and minimal side effects. Further trials with long-term therapy, follow-up period, and bigger sample sizes are required.
Collapse
Affiliation(s)
- Ahmed H Nouh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine of Al-Azhar University, Cairo, Egypt
| | - Ahmed R Elshahid
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine of Al-Azhar University, Cairo, Egypt
| | - Ahmed S Kadah
- Dermatology and Venereology at Al-Hussein University Hospital of Al-Azhar University, Cairo, Egypt
| | - Youssef A Zeyada
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine of Al-Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Grzeczka A, Kordowitzki P. Resveratrol and SIRT1: Antiaging Cornerstones for Oocytes? Nutrients 2022; 14:5101. [PMID: 36501130 PMCID: PMC9736670 DOI: 10.3390/nu14235101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
It is well-known that there is an enormous variability in the aging-related decline of oocytes' quantity and their developmental competence among mammalian species. The implication of female germline aging is profound from the perspective of evolutionary conservation of the aging mechanism, a topic of continuous and widespread interest that has yet to be fully addressed for the mammalian oocyte. There is a certain need to develop novel antiaging strategies to delay or slow down aging, or even to reverse the aging phenotype in the oocyte. In the past two decades, several antioxidants have been tested for this purpose. Resveratrol is one of these latter-mentioned compounds, which has shown anti-inflammatory and antiaging properties in a dose-dependent manner. Interestingly, resveratrol appears to enhance the activity of so-called Sirtuin 1, too. Therefore, the aim of this review is to summarize and discuss the latest findings related to resveratrol, Sirtuin 1, and their crosstalk and influence on the mammalian oocyte to elucidate the question of whether these factors can delay or slow down reproductive aging.
Collapse
Affiliation(s)
| | - Paweł Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 1, 87-100 Torun, Poland
| |
Collapse
|
8
|
Zhu M, Liu X, Ye Y, Yan X, Cheng Y, Zhao L, Chen F, Ling Z. Gut Microbiota: A Novel Therapeutic Target for Parkinson's Disease. Front Immunol 2022; 13:937555. [PMID: 35812394 PMCID: PMC9263276 DOI: 10.3389/fimmu.2022.937555] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by motor dysfunction. Growing evidence has demonstrated that gut dysbiosis is involved in the occurrence, development and progression of PD. Numerous clinical trials have identified the characteristics of the changed gut microbiota profiles, and preclinical studies in PD animal models have indicated that gut dysbiosis can influence the progression and onset of PD via increasing intestinal permeability, aggravating neuroinflammation, aggregating abnormal levels of α-synuclein fibrils, increasing oxidative stress, and decreasing neurotransmitter production. The gut microbiota can be considered promising diagnostic and therapeutic targets for PD, which can be regulated by probiotics, psychobiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, diet modifications, and Chinese medicine. This review summarizes the recent studies in PD-associated gut microbiota profiles and functions, the potential roles, and mechanisms of gut microbiota in PD, and gut microbiota-targeted interventions for PD. Deciphering the underlying roles and mechanisms of the PD-associated gut microbiota will help interpret the pathogenesis of PD from new perspectives and elucidate novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Manlian Zhu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiru Ye
- Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Xiumei Yan
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| | - Yiwen Cheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| | - Feng Chen
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Shen L, Zhang H, Lin J, Gao Y, Chen M, Khan NU, Tang X, Hong Q, Feng C, Zhao Y, Cao X. A Combined Proteomics and Metabolomics Profiling to Investigate the Genetic Heterogeneity of Autistic Children. Mol Neurobiol 2022; 59:3529-3545. [PMID: 35348996 DOI: 10.1007/s12035-022-02801-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) has become one of the most common neurological developmental disorders in children. However, the study of ASD diagnostic markers faces significant challenges due to the existence of heterogeneity. In this study, genetic testing was performed on children who were clinically diagnosed with ASD. Children with ASD susceptibility genes and healthy controls were studied. The proteomics of plasma and peripheral blood mononuclear cells (PBMCs) as well as plasma metabolomics were carried out. The results showed that although there was genetic heterogeneity in children with ASD, the differentially expressed proteins (DEPs) in plasma, peripheral blood mononuclear cells, and differential metabolites in plasma could still effectively distinguish autistic children from controls. The mechanism associated with them focuses on several common and previously reported mechanisms of ASD. The biomarkers for ASD diagnosis could be found by taking differentially expressed proteins and differential metabolites into consideration. Integrating omics data, glycerophospholipid metabolism and N-glycan biosynthesis might play a critical role in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.,Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| |
Collapse
|
10
|
Moustafa SA, Mohamed S, Dawood A, Azar J, Elmorsy E, Rizk NAM, Salama M. Gut brain axis: an insight into microbiota role in Parkinson's disease. Metab Brain Dis 2021; 36:1545-1557. [PMID: 34370175 DOI: 10.1007/s11011-021-00808-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is one of the most common progressive neurodegenerative diseases. It is characterized neuropathologically by the presence of alpha-synuclein containing Lewy Bodies in the substantia nigra of the brain with loss of dopaminergic neurons in the pars compacta of the substantia nigra. The presence of alpha-synuclein aggregates in the substantia nigra and the enteric nervous system (ENS) drew attention to the possibility of a correlation between the gut microbiota and Parkinson's disease. The gut-brain axis is a two-way communication system, which explains how through the vagus nerve, the gut microbiota can affect the central nervous system (CNS), including brain functions related to the ENS, as well as how CNS can alter various gut secretions and immune responses. As a result, this dysbiosis or alteration in gut microbiota can be an early sign of PD with reported changes in short chain fatty acids, bile acids, and lipids. This gave rise to the use of probiotics and faecal microbiota transplantation as alternative approaches to improve the symptoms of patients with PD. The aim of this review is to discuss investigations that have been done to explore the gastrointestinal involvement in Parkinson's disease, the effect of dysbiosis, and potential therapeutic strategies for PD.
Collapse
Affiliation(s)
- Sara Ayman Moustafa
- Institute of Global Health and Human Ecology (IGHHE) Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Shrouk Mohamed
- Nanotechnology Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Abdelhameed Dawood
- Biotechnology Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Jihan Azar
- Institute of Global Health and Human Ecology (IGHHE) Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ekramy Elmorsy
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Pathology Department, Faculty of Medicine, Northern Border University-ARAR, North Region, Arar, Saudi Arabia
| | - Noura A M Rizk
- Molecular, Genetic and Population Health Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (IGHHE) Graduate Program, The American University in Cairo, New Cairo, 11835, Egypt.
- Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
78495111110.1152/physrev.00046.2020" />
Abstract
This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti‐viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.
Collapse
Affiliation(s)
- Alberto L. Horenstein
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Angelo C. Faini
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| |
Collapse
|
12
|
Abstract
This medical review addresses the hypothesis that CD38/NADase is at the center of a functional axis (i.e., intracellular Ca2+ mobilization/IFNγ response/reactive oxygen species burst) driven by severe acute respiratory syndrome coronavirus 2 infection, as already verified in respiratory syncytial virus pathology and CD38 activity in other cellular settings. Key features of the hypothesis are that 1) the substrates of CD38 (e.g., NAD+ and NADP+) are depleted by viral-induced metabolic changes; 2) the products of the enzymatic activity of CD38 [e.g., cyclic adenosine diphosphate-ribose (ADPR)/ADPR/nicotinic acid adenine dinucleotide phosphate] and related enzymes [e.g., poly(ADP-ribose)polymerase, Sirtuins, and ADP-ribosyl hydrolase] are involved in the anti‐viral and proinflammatory response that favors the onset of lung immunopathology (e.g., cytokine storm and organ fibrosis); and 3) the pathological changes induced by this kinetic mechanism may be reduced by distinct modulators of the CD38/NAD+ axis (e.g., CD38 blockers, NAD+ suppliers, among others). This view is supported by arrays of associative basic and applied research data that are herein discussed and integrated with conclusions reported by others in the field of inflammatory, immune, tumor, and viral diseases.
Collapse
Affiliation(s)
- Alberto L Horenstein
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Angelo C Faini
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| | - Fabio Malavasi
- Department of Medical Science, University of Turin, Turin, Italy; and Centro Ricerca Medicina, Sperimentale (CeRMS) and Fondazione Ricerca Molinette Onlus, Turin, Italy
| |
Collapse
|
13
|
Le Poole IC. Myron Gordon Award paper: Microbes, T-cell diversity and pigmentation. Pigment Cell Melanoma Res 2021; 34:244-255. [PMID: 33438345 DOI: 10.1111/pcmr.12957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
Melanocytes are static, minimally proliferative cells. This leaves them vulnerable in vitiligo. Yet upon malignant transformation, they form vicious tumors. This profound switch in physiology is accompanied by genetic change and is driven by environmental factors. If UV exposure in younger years supports malignant transformation and melanoma formation, it can likewise impart mutations on melanocytes that reduce their viability, to initiate vitiligo. A wide variety of microbes can influence these diametrically opposed outcomes before either disease takes hold. These microbes are vehicles of change that we are only beginning to study. Once a genetic modification occurs, there is a wide variety of immune cells ready to respond. Though it does not act alone, the T cell is among the most decisive responders in this process. The same biochemical process that offered the skin protection by producing melanin can become an Achilles heel for the cell when the T cells target melanosomal enzymes or, on occasion, neoantigens. T cells are precise, determined, and consequential when they strike. Here, we probe the relationship between the microbiome and its metabolites, epithelial integrity, and the activation of T cells that target benign and malignant melanocytes in vitiligo and melanoma.
Collapse
Affiliation(s)
- I Caroline Le Poole
- Department of Dermatology, Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18:134-149. [PMID: 33397266 PMCID: PMC8254823 DOI: 10.2174/1567202617999210104220334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders impact more than one billion individuals worldwide and are intimately tied to metabolic disease that can affect another nine hundred individuals throughout the globe. Nicotinamide is a critical agent that may offer fruitful prospects for neurodegenerative diseases and metabolic disorders, such as diabetes mellitus. Nicotinamide protects against multiple toxic environments that include reactive oxygen species exposure, anoxia, excitotoxicity, ethanolinduced neuronal injury, amyloid (Aß) toxicity, age-related vascular disease, mitochondrial dysfunction, insulin resistance, excess lactate production, and loss of glucose homeostasis with pancreatic β-cell dysfunction. However, nicotinamide offers cellular protection in a specific concentration range, with dosing outside of this range leading to detrimental effects. The underlying biological pathways of nicotinamide that involve the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and mammalian forkhead transcription factors (FoxOs) may offer insight for the clinical translation of nicotinamide into a safe and efficacious therapy through the modulation of oxidative stress, apoptosis, and autophagy. Nicotinamide is a highly promising target for the development of innovative strategies for neurodegenerative disorders and metabolic disease, but the benefits of this foundation depend greatly on gaining a further understanding of nicotinamide's complex biology.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
15
|
Badawy AB. Immunotherapy of COVID-19 with poly (ADP-ribose) polymerase inhibitors: starting with nicotinamide. Biosci Rep 2020; 40:BSR20202856. [PMID: 33063092 PMCID: PMC7601349 DOI: 10.1042/bsr20202856] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 induces a proinflammatory environment that is stronger in patients requiring intensive care. The cytokine components of this environment may determine efficacy or otherwise of glucocorticoid therapy. The immunity modulators, the aryl hydrocarbon receptor (AhR) and the nuclear NAD+-consuming enzyme poly (ADP-ribose) polymerase 1 (PARP 1) may play a critical role in COVID-19 pathophysiology. The AhR is overexpressed in coronaviruses, including COVID-19 and, as it regulates PARP gene expression, the latter is likely to be activated in COVID-19. PARP 1 activation leads to cell death mainly by depletion of NAD+ and adenosine triphosphate (ATP), especially when availability of these energy mediators is compromised. PARP expression is enhanced in other lung conditions: the pneumovirus respiratory syncytial virus (RSV) and chronic obstructive pulmonary disease (COPD). I propose that PARP 1 activation is the terminal point in a sequence of events culminating in patient mortality and should be the focus of COVID-19 immunotherapy. Potent PARP 1 inhibitors are undergoing trials in cancer, but a readily available inhibitor, nicotinamide (NAM), which possesses a highly desirable biochemical and activity profile, merits exploration. It conserves NAD+ and prevents ATP depletion by PARP 1 and Sirtuin 1 (silent mating type information regulation 2 homologue 1) inhibition, enhances NAD+ synthesis, and hence that of NADP+ which is a stronger PARP inhibitor, reverses lung injury caused by ischaemia/reperfusion, inhibits proinflammatory cytokines and is effective against HIV infection. These properties qualify NAM for therapeutic use initially in conjunction with standard clinical care or combined with other agents, and subsequently as an adjunct to stronger PARP 1 inhibitors or other drugs.
Collapse
Affiliation(s)
- Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, U.K
| |
Collapse
|
16
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|