1
|
Waheed M, Hussain MB, Saeed F, Afzaal M, Ahmed A, Irfan R, Akram N, Ahmed F, Hailu GG. Phytochemical Profiling and Therapeutic Potential of Thyme ( Thymus spp.): A Medicinal Herb. Food Sci Nutr 2024; 12:9893-9912. [PMID: 39723027 PMCID: PMC11666979 DOI: 10.1002/fsn3.4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 12/28/2024] Open
Abstract
Thymol is a phenol monoterpene that is naturally derived from cymene and is an isomer of carvacrol. It constitutes a significant portion (10%-64%) of the essential oils found in thyme (Thymus vulgaris L., Lamiaceae), a medicinal plant renowned for its therapeutic properties. Wild thyme is native to the Mediterranean region and has been used in cooking and medicine for a long time. In contemporary contexts, both thymol and thyme offer diverse functional applications in the pharmaceutical, food, and cosmetic industries. Thymol has attracted scientific interest for its potential therapeutic applications in pharmaceuticals and nutraceuticals. Studies have explored its efficacy in treating respiratory, nervous, and cardiovascular disorders, highlighting its promising role in diverse therapeutic interventions. Additionally, this compound demonstrates antimicrobial, antioxidant, anticarcinogenic, anti-inflammatory, and antispasmodic properties. It also shows potential as a growth enhancer and has immunomodulatory properties as well. Other discussed aspects include thymol toxicity, bioavailability, metabolism, and distribution in animals and humans. This review summarizes the most significant data regarding the beneficial effects of thyme bioactive compounds and their applications as a food preservative while taking into account the thyme plant extract and its essential oil.
Collapse
Affiliation(s)
- Marwa Waheed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | | | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Rushba Irfan
- Institute of Home Sciences, Faculty of Food, Nutrition & Home SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | |
Collapse
|
2
|
Kianmehr M, Khazdair MR, Abbasnezhad A, Akram M. Effects of Lamiaceae family plants and their bioactive ingredients on coronavirus-induced lung inflammation. Food Sci Nutr 2024; 12:1528-1544. [PMID: 38455203 PMCID: PMC10916600 DOI: 10.1002/fsn3.3903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 03/09/2024] Open
Abstract
Coronaviruses (CoVs) are a family of viruses that cause infection in respiratory and intestinal systems. Different types of CoVs, those responsible for the SARS-CoV and the new global pandemic of coronavirus disease 2019 in people, have been found. Some plants were used as food additives: spices and dietary and/or medicinal purposes in folk medicine. We aimed to provide evidence about possible effects of two Lamiaceae family plants on control or treatment of CoVs-induced inflammation. The keywords including coronaviruses, Thymus vulgaris, Zataria multiflora, thymol, carvacrol, antivirus, and anti-inflammatory and antioxidant effects were searched in various databases such as PubMed, Web of Sciences (ISI), and Google Scholar until September 2022. The medicinal herbs and their main ingredients, thymol and carvacrol, showed antiviral properties and reduced inflammatory mediators, including IL-1β; IL-6, and TNF-α, at both gene and protein levels but increased the levels of IFN-γ in the serum as anti-inflammatory cytokine. These medicinal herbs and their constituents also reduce oxidative stress and enhance antioxidant capacity. The results of molecular docking analyses also indicated that polyphenol components such as thymol, carvone, and carvacrol could inhibit the entry of the viruses into the host cells in molecular docking analyses. The antiviral, anti-inflammatory, and antioxidant effects of these plants may be due to actions of their phenolic compounds that modulate immune response and may be useful in the control and treatment of CoV-induced lung disorder.
Collapse
Affiliation(s)
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Abbasali Abbasnezhad
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineGonabad University of Medical SciencesGonabadIran
| | - Muhammad Akram
- Department of Eastern MedicineGovernment College University FaisalabadFaisalabadPakistan
| |
Collapse
|
3
|
Hadzhieva B, Petkova-Dimitrova V. Proportion of Over-The-Counter Medicines Containing a Plant Component and Those with Synthetic Substances Administered among Children in a Bulgarian Population. Pharmaceuticals (Basel) 2024; 17:192. [PMID: 38399407 PMCID: PMC10892009 DOI: 10.3390/ph17020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Over-the-counter medicines are intended to influence a number of symptoms and also to cure some human diseases without having to see the doctor. These medicines are used for self-medication and parents also give them to their children. The following fall within the scope of over-the-counter medicines: analgesics, antipyretics, antihistamines, decongestants, gastroprotectors, anti-cough medicines, and others. Their composition also includes one or a combination of medicinal plants. In addition to synthetic substances, some nonprescription medicines contain plant substances and their derivatives. Medicinal plants and their extracted derivatives are applicable in the therapies of a number of diseases. Considering the fact that over-the-counter medicines can be used among children from birth, the subject of our study is those whose composition includes biologically active plant substances. Within this study, we have established the number of nonprescription medicines containing a plant substance individually or in combination with another substance of the same kind and/or other substances, which have been included in a list published on the website of the Bulgarian Drug Agency. The objective of our study is to present the percentage of OTC medicines containing a plant substance intended to affect the symptoms of upper respiratory tract diseases and pain, which are used among children during different periods of their development. Some of these medicines also contain substances such as antihistamines (pheniramine maleate) and decongestants (pseudoephedrine, phenylephrine hydrochloride, dimetidine) that can cause various unwanted side effects. Considering the aforementioned aspects and also the peculiarities of childhood, we recommend that self-treatment be conducted only after consulting a health specialist.
Collapse
Affiliation(s)
- Bozhidarka Hadzhieva
- Medical College, Medical University of Plovdiv, 15a Vasil Aprilov Blvd., 4000 Plovdiv, Bulgaria
| | - Valentina Petkova-Dimitrova
- Department of Social Pharmacy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| |
Collapse
|
4
|
Usmani K, Jain SK, Yadav S. Mechanism of action of certain medicinal plants for the treatment of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116828. [PMID: 37369335 DOI: 10.1016/j.jep.2023.116828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is often treated and prevented using the pharmacological properties of traditional medicinal plants. These healthcare systems are among the most well-known, conveniently accessible, and economically priced in India and several other Asian countries. Traditional Indian Ayurvedic plants have the potential to be used as phyto-therapeutics, to create novel anti-asthmatic drugs, and as a cost-effective source of pharmaceuticals. Current conventional therapies have drawbacks, including serious side effects and expensive costs that interfere with treatment compliance and affect the patient's quality of life. The primary objective of the article is to comprehensively evaluate the advancement of research on the protective phytochemicals of traditional plants that target immune responses and signaling cascades in inflammatory experimental asthma models. The study would assist in paving the way for the creation of natural phytomedicines that are protective, anti-inflammatory, and immunomodulatory against asthma, which may then be used in individualized asthma therapy. AIM OF THE STUDY The study demonstrates the mechanisms of action of phytochemicals present in traditional medicinal plants, diminish pulmonary disorder in both in vivo and in vitro models of asthma. MATERIALS AND METHODS A comprehensive review of the literature on conventional plant-based asthma therapies was performed from 2006 to 2022. The study uses authoritative scientific sources such as PubMed, PubChem Compound, Wiley Online Library, Science Direct, Springer Link, and Google Scholar to collect information on potential phytochemicals and their mechanisms of action. World Flora Online (http://www.worldfloraonline.org) and Plants of the World Online (https://wcsp.science.kew.org) databases were used for the scientific names of medicinal plants. RESULTS The study outlines the phytochemical mechanisms of some traditional Ayurveda botanicals used to treat asthma. Active phytochemicals including curcumin, withaferin-A, piperine, glabridin, glycyrrhizin, 18β-glycyrrhetinic acid, trans-cinnamaldehyde, α-hederin, thymoquinone, eugenol, [6]-shogoal, and gingerol may treat asthma by controlling inflammation and airway remodeling. The study concluded that certain Ayurvedic plants' phytochemicals have the ability to reduce inflammation and modulate the immune system, that can effectively cure asthma. CONCLUSION Plants used in traditional Ayurvedic medicine have been utilized for millennia, advocating phyto-therapy as a treatment for a variety of illnesses. A theoretical foundation for the use of cutting-edge asthma treatments has been built with the growth of experimental research on traditional phytochemicals. In-depth phytochemical research for the treatment of asthma using Indian Traditional Ayurvedic herbs is compiled in the study. The approach for preventative therapeutics and cutting-edge alternatives to battle the molecular pathways in the pathophysiology of asthma are the key themes of the study. The phytochemical mechanism of action of traditional Ayurvedic herbs is explained to get the attention of the pharmaceutical industry so they can make future anti-asthma drugs for personalized asthma care in the community. The study develops strategies for customized phyto-therapeutics, concentrating on low-cost, side-effect-free approaches that employ bioactive phytochemicals from plants as the major source of effective anti-asthmatic therapy.
Collapse
Affiliation(s)
- Kainat Usmani
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Subodh Kumar Jain
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Shweta Yadav
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
5
|
Veldman LBM, Belt-Van Zoen E, Baars EW. Mechanistic Evidence of Andrographis paniculata (Burm. f.) Wall. ex Nees, Pelargonium sidoides DC., Echinacea Species and a Combination of Hedera helix L., Primula veris L./ Primula elatior L. and Thymus vulgaris L./ Thymus zygis L. in the Treatment of Acute, Uncomplicated Respiratory Tract Infections: A Systematic Literature Review and Expert Interviews. Pharmaceuticals (Basel) 2023; 16:1206. [PMID: 37765014 PMCID: PMC10537612 DOI: 10.3390/ph16091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Reducing inappropriate antibiotic (AB) use by using effective non-antibiotic treatments is one strategy to prevent and reduce antimicrobial resistance (AMR). Andrographis paniculata (Burm. f.) Wall. ex Nees, Pelargonium sidoides DC., Echinacea species and a combination of ivy (Hedera helix L.), primrose (Primula veris L./Primula elatior L.) and thyme (Thymus vulgaris L./Thymus zygis L.) have promising clinical effects in uncomplicated, acute upper respiratory tract infections (URTI) treatment. However, mechanistic evidence of these herbal treatments is lacking. The objective of this Pstudy is to provide an overview of mechanistic evidence for these effects. Thirty-eight databases were searched. Included studies were mechanistic studies (in vitro, animal, and human studies and reviews) on these herbs; published before June 2021. Non-mechanistic studies or studies on combinations of herbs other than ivy/primrose/thyme were excluded. Furthermore, three experts in traditional, complementary and integrative healthcare (TCIH) research and pharmacognosy were interviewed to collect additional expert knowledge. The results show that A. paniculata acts through immunomodulation and antiviral activity, possibly supplemented by antibacterial and antipyretic effects. P. sidoides acts through antiviral, indirect antibacterial, immunomodulatory and expectorant effects. Echinacea species likely act through immunomodulation. The combination of ivy/primrose/thyme combines secretolytic and spasmolytic effects from ivy with antibacterial effects from thyme. Studies on primrose were lacking. This mechanistic evidence supports the difference-making evidence from clinical studies, contributes to evidence-based recommendations for their use in URTI treatment, and guides future mechanistic studies on URTI treatments.
Collapse
Affiliation(s)
- Liesbeth B. M. Veldman
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
| | - Eefje Belt-Van Zoen
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
| | - Erik W. Baars
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
- Louis Bolk Institute, 3981 Bunnik, The Netherlands
| |
Collapse
|
6
|
Antonelo FA, Rodrigues Soares M, Cruz LC, Pagnoncelli MG, Alves da Cunha MA, Bonatto SJR, Busso C, Júnior AW, Montanher PF. Bioactive compounds derived from Brazilian Myrtaceae species: Chemical composition and antioxidant, antimicrobial and cytotoxic activities. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Yang W, Yang X, Jiang L, Song H, Huang G, Duan K, Jiang X, Li M, Liu P, Chen J. Combined biological effects and lung proteomics analysis in mice reveal different toxic impacts of electronic cigarette aerosol and combustible cigarette smoke on the respiratory system. Arch Toxicol 2022; 96:3331-3347. [PMID: 36173423 PMCID: PMC9521563 DOI: 10.1007/s00204-022-03378-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Combustible cigarettes produce many toxic substances that have been linked to diseases, such as lung cancer and chronic obstructive pulmonary disease. For those smokers unable or unwilling to quit, electronic cigarettes (e-cigarettes) could be used as an alternative to cigarettes. However, the effects and mechanisms of e-cigarette aerosol (ECA) on respiratory function have not been fully elucidated, and in vivo studies of its safety are limited compared to cigarette smoke (CS). In this article, we chose nicotine levels as dosing references and C57BL/6 mice for a 10-week subchronic inhalation toxicity study. A comprehensive set of toxicological endpoints was used to study the effect of exposure. Both CS (6 mg/kg) and ECA (6 or 12 mg/kg) inhalation had decreased the animal's lung function and increased levels of inflammation markers, along with pathological changes in the airways and lungs, with ECA displaying a relatively small effect at the same dose. Proteomic analysis of lung tissue showed greater overall protein changes by CS than that of ECA, with more severe inflammatory network perturbations. Compared with ECA, KEGG analysis of CS revealed upregulation of more inflammatory and virus-related pathways. Protein-protein interactions (PPI) showed that both ECA and CS significantly changed ribosome and complement system-related proteins in mouse lung tissue. The results support that e-cigarette aerosol is less harmful to the respiratory system than cigarette smoke at the same dose using this animal model, thus providing additional evidence for the relative safety of e-cigarettes.
Collapse
Affiliation(s)
- Wanchun Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xuemin Yang
- RELX Lab, Shenzhen RELX Tech. Co., Ltd., Shenzhen, Guangdong, 518000, People's Republic of China
| | - Lujing Jiang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hongjia Song
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Guangye Huang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Kun Duan
- RELX Lab, Shenzhen RELX Tech. Co., Ltd., Shenzhen, Guangdong, 518000, People's Republic of China
| | - Xingtao Jiang
- RELX Lab, Shenzhen RELX Tech. Co., Ltd., Shenzhen, Guangdong, 518000, People's Republic of China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
- National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
- National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Jianwen Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
- National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
8
|
Xavier JKAM, Baia TGC, Alegria OVC, Figueiredo PLB, Carneiro AR, Moreira ECDO, Maia JGS, Setzer WN, da Silva JKR. Essential Oil Chemotypes and Genetic Variability of Cinnamomum verum Leaf Samples Commercialized and Cultivated in the Amazon. Molecules 2022; 27:7337. [PMID: 36364159 PMCID: PMC9655072 DOI: 10.3390/molecules27217337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/01/2023] Open
Abstract
Cinnamomum verum (Lauraceae), also known as "true cinnamon" or "Ceylon cinnamon" has been widely used in traditional folk medicine and cuisine for a long time. The systematics of C. verum presents some difficulties due to genetic variation and morphological similarity between other Cinnamomum species. The present work aimed to find chemical and molecular markers of C. verum samples from the Amazon region of Brazil. The leaf EOs and the genetic material (DNA) were extracted from samples cultivated and commercial samples. The chemical composition of the essential oils from samples of C. verum cultivated (Cve1-Cve5) and commercial (Cve6-c-Cv9-c) was grouped by multivariate statistical analysis of Principal Component Analysis (PCA). The major compounds were rich in benzenoids and phenylpropanoids, such as eugenol (0.7-91.0%), benzyl benzoate (0.28-76.51%), (E)-cinnamyl acetate (0.36-32.1%), and (E)-cinnamaldehyde (1.0-19.73%). DNA barcodes were developed for phylogenetic analysis using the chloroplastic regions of the matK and rbcL genes, and psbA-trnH intergenic spacer. The psbA-trnH sequences provided greater diversity of nucleotides, and matK confirmed the identity of C. verum. The combination of DNA barcode and volatile profile was found to be an important tool for the discrimination of C. verum varieties and to examine the authenticity of industrial sources.
Collapse
Affiliation(s)
| | - Talissa Gabriele C. Baia
- Programa Institucional de Bolsas de Iniciação Científica, Universidade Federal do Pará, Belém 66075-900, Brazil
| | - Oscar Victor C. Alegria
- Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém 66075-900, Brazil
| | - Pablo Luis B. Figueiredo
- Departamento de Ciências Naturais, Centro de Ciências Sociais e Educação, Universidade do Estado do Pará, Belém 66050-540, Brazil
| | - Adriana R. Carneiro
- Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém 66075-900, Brazil
| | - Edith Cibelle de O. Moreira
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá 68501-970, Brazil
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-900, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
| | - Joyce Kelly R. da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-900, Brazil
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
| |
Collapse
|
9
|
Csikós E, Csekő K, Kemény Á, Draskóczi L, Kereskai L, Kocsis B, Böszörményi A, Helyes Z, Horváth G. Pinus sylvestris L. and Syzygium aromaticum (L.) Merr. & L. M. Perry Essential Oils Inhibit Endotoxin-Induced Airway Hyperreactivity despite Aggravated Inflammatory Mechanisms in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123868. [PMID: 35744988 PMCID: PMC9229653 DOI: 10.3390/molecules27123868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Scots pine (SO) and clove (CO) essential oils (EOs) are commonly used by inhalation, and their main components are shown to reduce inflammatory mediator production. The aim of our research was to investigate the chemical composition of commercially available SO and CO by gas chromatography–mass spectrometry and study their effects on airway functions and inflammation in an acute pneumonitis mouse model. Inflammation was evoked by intratracheal endotoxin and EOs were inhaled three times during the 24 h experimental period. Respiratory function was analyzed by unrestrained whole-body plethysmography, lung inflammation by semiquantitative histopathological scoring, myeloperoxidase (MPO) activity and cytokine measurements. α-Pinene (39.4%) was the main component in SO, and eugenol (88.6%) in CO. Both SO and CO significantly reduced airway hyperresponsiveness, and prevented peak expiratory flow, tidal volume increases and perivascular edema formation. Meanwhile, inflammatory cell infiltration was not remarkably affected. In contrast, MPO activity and several inflammatory cytokines (IL-1β, KC, MCP-1, MIP-2, TNF-α) were aggravated by both EOs. This is the first evidence that SO and CO inhalation improve airway function, but enhance certain inflammatory parameters. These results suggest that these EOs should be used with caution in cases of inflammation-associated respiratory diseases.
Collapse
Affiliation(s)
- Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pecs, H-7624 Pecs, Hungary;
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Lilla Draskóczi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - László Kereskai
- Department of Pathology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| | - Andrea Böszörményi
- Institute of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, H-1085 Budapest, Hungary;
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, H-7624 Pecs, Hungary; (K.C.); (Á.K.); (L.D.); (Z.H.)
- Szentágothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
- PharmInVivo Ltd., H-7629 Pecs, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pecs, H-7624 Pecs, Hungary;
- Correspondence: ; Tel.: +36-72-503650-28823
| |
Collapse
|
10
|
Bottoni M, Milani F, Galimberti PM, Vignati L, Romanini PL, Lavezzo L, Martinetti L, Giuliani C, Fico G. Ca' Granda, Hortus simplicium: Restoring an Ancient Medicinal Garden of XV-XIX Century in Milan (Italy). Molecules 2021; 26:6933. [PMID: 34834025 PMCID: PMC8620247 DOI: 10.3390/molecules26226933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
This work is based on the study of 150 majolica vases dated back to the mid XVII century that once preserved medicinal remedies prepared in the ancient Pharmacy annexed to the Ospedale Maggiore Ca' Granda in Milan (Lombardy, Italy). The Hortus simplicium was created in 1641 as a source of plant-based ingredients for those remedies. The main objective of the present work is to lay the knowledge base for the restoration of the ancient Garden for educational and informative purposes. Therefore, the following complementary phases were carried out: (i) the analysis of the inscriptions on the jars, along with the survey on historical medical texts, allowing for the positive identification of the plant ingredients of the remedies and their ancient use as medicines; (ii) the bibliographic research in modern pharmacological literature in order to validate or refute the historical uses; (iii) the realization of the checklist of plants potentially present in cultivation at the ancient Garden, concurrently with the comparison with the results of a previous in situ archaeobotanical study concerning pollen grains. For the species selection, considerations were made also regarding drug amounts in the remedies and pedoclimatic conditions of the study area. Out of the 150 vases, 108 contained plant-based remedies, corresponding to 148 taxa. The remedies mainly treated gastrointestinal and respiratory disorders. At least one of the medicinal uses was validated in scientific literature for 112 out of the 148 examined species. Finally, a checklist of 40 taxa, presumably hosted in the Hortus simplicium, was assembled.
Collapse
Affiliation(s)
- Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Paolo M. Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122 Milan, Italy;
| | - Lucia Vignati
- Landscape Ecomuseum of Parabiago, P.za della Vittoria 7, 20015 Milan, Italy;
| | - Patrizia Luise Romanini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Luca Lavezzo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Livia Martinetti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| |
Collapse
|
11
|
Khazdair MR, Boskabady MH. Possible treatment with medicinal herbs and their ingredients of lung disorders induced by sulfur mustard exposures: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54191-54208. [PMID: 34382165 DOI: 10.1007/s11356-021-15697-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Chemical warfare (CW) agents are toxic synthetic chemicals that affect human's health, and sulfur mustard (SM) is a well-known chemical weapon that caused deaths of victims. The lung is the main target of SM exposure, and there are no definitive therapeutic modalities for lung injury induced by this agent. The possible therapeutic effects of medicinal plants and their active ingredients on lung injury induced by SM were reviewed in this article until the end of June 2021. Medicinal plants including Crocus sativus, Curcuma longa, Thymus vulgaris, Nigella sativa, and Zataria multiflora and also natural compounds showed therapeutic potential in improving of various features of lung injury induced by SM and other related chemical agents. Several studies showed therapeutic effects of some medicinal plants and natural products on lung inflammation, oxidative stress, and immune responses in experimental studies in SM-induced lung injury. In addition, clinical studies also showed the effect of medicinal plants and natural compounds on respiratory symptoms, pulmonary function tests (PFTs), and inflammatory markers. The therapeutic effects of medicinal plants and natural products on lung disorder induced by SM and related chemical agents were shown through amelioration of various features of lung injury.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Cinnamon and its possible impact on COVID-19: The viewpoint of traditional and conventional medicine. Biomed Pharmacother 2021; 143:112221. [PMID: 34563952 PMCID: PMC8452493 DOI: 10.1016/j.biopha.2021.112221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 global epidemic caused by coronavirus has affected the health and other aspects of life for more than one year. Despite the current pharmacotherapies, there is still no specific treatment, and studies are in progress to find a proper therapy with high efficacy and low side effects. In this way, Traditional Persian Medicine (TPM), due to its holistic view, can provide recommendations for the prevention and treatment of new diseases such as COVID-19. The muco-obstruction of the airway, which occurs in SARS-CoV-2, has similar features in TPM textbooks that can lead us to new treatment approaches. Based on TPM and pharmacological studies, Cinnamomum verum (Darchini)'s potential effective functions can contribute to SARS-CoV-2 infection treatment and has been known to be effective in corona disease in Public beliefs. From the viewpoint of TPM theories, Cinnamon can be effective in SARS-CoV-2 improvement and treatment through its anti-obstructive, diuretic, tonic and antidote effects. In addition, there is pharmacological evidence on anti-viral, anti-inflammatory, antioxidant, organ-o-protective and anti-depression effects of Cinnamon that are in line with the therapeutic functions mentioned in TPM.Overall, Cinnamon and its ingredients can be recommended for SARS-CoV2 management due to multi-targeting therapies. This review provides basic information for future studies on this drug's effectiveness in preventing and treating COVID-19 and similar diseases.
Collapse
|
13
|
Yu W, Cheng H, Zhu B, Yan J. Network Pharmacology-Based Validation of the Efficacy of Huiyangjiuji Decoction in the Treatment of Experimental Colitis. Front Pharmacol 2021; 12:666432. [PMID: 34122086 PMCID: PMC8193934 DOI: 10.3389/fphar.2021.666432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023] Open
Abstract
Ulcerative colitis (UC) is the major type of inflammatory bowel disease (IBD) characterized by an overactive immune responses and destruction of the colorectal epithelium with intricate pathological factors. In China, Huiyangjiuji decoction (HYJJ) has been widely administered against inflammation, but the underlying mechanical mechanisms are not known. A murine model of colitis was established by orally feeding 4% dextran sodium sulfate for 5 days. Intestinal organoids (IOs) were treated with TNFα (Tumor necrosis factor-α) as an ex-vivo UC model. A scratch assay combined with a co-culture system that incubated murine epithelial cell line (IEC-6) with macrophages (Mφs) was utilized to assess epithelial recovery under inflammatory conditions. Network pharmacology analysis was performed to elucidate the mechanism of HYJJ decoction. In the present study, we confirmed that HYJJ considerably alleviated of DSS-induced colitis, as evidenced by the improved intestinal injury and fecal albumin, as well as feces blood. Network pharmacology analysis identified the active components in HYJJ formula, and KEGG enrichment analysis indicated that HYJJ-target genes were enriched in pathogen-induced infections, cancer-related as well as inflammatory pathways. Consistently, RNA-sequencing demonstrated that HYJJ treated inhibited cytokine-cytokine interaction, IBD as well as TNF signaling pathways, confirming the anti-inflammatory and anti-neoplastic role of HYJJ decoction. In-vitro experimental evidence confirmed the suppression of pro-interleukins by HYJJ, including IL-2, IL-10 and IL-12. Moreover, the contribution of HYJJ to mucosal healing was corroborated by ex-vivo experiments, in which HYJJ rescued TNFα-compromised IOs functions, i.e., elevated mitochondrial stress (MOS) and impaired regeneration capacity. IEC-6 cells co-culture with Mφs from HYJJ-treated experimental colitis mice showed an improved migration capacity as compared to those incubated with Mφs from untreated colitis mice. We conclude that HYJJ re-establishes homeostasis of the gut epithelium during colitis by suppressing inflammation and orchestrating cytokines interaction.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining, China
| | - Hongju Cheng
- Department of Physiology, Jining Medical University, Jining, China
| | - Baoliang Zhu
- Department of Physiology, Jining Medical University, Jining, China
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining, China
| |
Collapse
|
14
|
Capatina L, Todirascu-Ciornea E, Napoli EM, Ruberto G, Hritcu L, Dumitru G. Thymus vulgaris Essential Oil Protects Zebrafish against Cognitive Dysfunction by Regulating Cholinergic and Antioxidants Systems. Antioxidants (Basel) 2020; 9:antiox9111083. [PMID: 33158153 PMCID: PMC7694219 DOI: 10.3390/antiox9111083] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Thymus vulgaris L. is an aromatic herb used for medicinal purposes such as antimicrobial, spasmolytic, antioxidant, anti-inflammatory, antinociceptive, antitumor, and may have beneficial effects in the treatment of Alzheimer’s disease. The present study aimed to investigate whether Thymus vulgaris L. essential oil enhances cognitive function via the action on cholinergic neurons using scopolamine (Sco)-induced zebrafish (Danio rerio) model of memory impairments. Thymus vulgaris L. essential oil (TEO, 25, 150, and 300 µL/L) was administered by immersion to zebrafish once daily for 13 days, whereas memory impairment was induced by Sco (100 μM), a muscarinic receptor antagonist, delivered 30 min before behavioral tests. Spatial memory was assessed using the Y-maze test and novel object recognition test (NOR). Anxiety and depression were measured in the novel tank diving test (NTT). Gas Chromatograph-Mass Spectrometry (GC-MS) analysis was used to study the phytochemical composition of TEO. Acetylcholinesterase (AChE) activity and oxidative stress response in the brain of zebrafish were determined. TEO ameliorated Sco-induced increasing of AChE activity, amnesia, anxiety, and reduced the brain antioxidant capacity. These results suggest that TEO may have preventive and/or therapeutic potentials in the management of memory deficits and brain oxidative stress in zebrafish with amnesia.
Collapse
Affiliation(s)
- Luminita Capatina
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
- Correspondence: ; Tel.: +40-232-201-666
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (E.T.-C.); (G.D.)
| |
Collapse
|