1
|
Alsehli M, Sheikh Ali AA, Nafie MS, Bardaweel S, Aljuhani A, Darwish KM, Alraqa SY, Rezki N, Aouad MR. Discovery of novel tris-1,2,3-triazole-based hybrids as VEGFR2 inhibitors with potent anti-proliferative and cytotoxicity through apoptosis induction. Bioorg Chem 2025; 155:108131. [PMID: 39798451 DOI: 10.1016/j.bioorg.2025.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anti-cancer drugs motivated us to synthesize a new series of triple 1,2,3-triazole-based arm scaffolds featuring distinct un functionalized alkyl and/or aryl side chains with possible anti-cancer action using the click chemistry approach under both conventional and green microwave irradiation (MWI) methods. The Cu(I) catalyzed cycloaddition reaction of targeted tris-alkyne with un functionalized aliphatic and aromatic azides has been adopted as an efficient approach for synthesizing the desired click adducts. Microwave irradiation improved the synthetic processes, resulting in higher yields and faster reaction times. Spectroscopic techniques (FT-IR, 1H, 13C NMR andCHN analysis) were used for the elucidation of the resulting click structures. The newly synthesized tris-1,2,3-triazoles exhibited promising cytotoxicity, particularly compounds 26 and 28, with IC50 values of 22.18 µM and 20.3 µM against A549 and CaCo-2 cells, respectively. While they had IC50 values of 23.06 µM and 21.91 µM against T-47D and CaCo-2 cells, respectively. Both compounds exhibited promising anti-proliferative activity through the wound healing assay. Additionally, both compounds induced total apoptotic cell death by 68.3 % and 58.5 %, respectively, compared to untreated cells (7.7 %). Furthermore, they induced necrotic cell death by 1.4 % and 10.5 %, respectively, compared to 0.1 % in the untreated cells. For the molecular target, compounds 26 and 28 exhibited potent VEGFR2 inhibition with IC50 values of 35.5 nM and 27.8 nM, respectively, and this was highlighted through the molecular docking findings. Tris-1,2,3-triazoles (26 and 28) exhibited promising cytotoxicity and anti-proliferative against T-47D breast cancer cells through apoptosis and VEGFR2 inhibition using both enzyme kit and western blotting protein expression assays. Molecular docking study highlighted the binding affinity of tested compounds towards the VEGFR2 protein. Accordingly, tris-1,2,3-triazoles (26 and 28) can be further developed as more potent anti-cancer agents.
Collapse
Affiliation(s)
- Mosa Alsehli
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia
| | - Adeeb Al Sheikh Ali
- Chemistry Department, Kuwait University, Sabah Al Salem University City, Kuwait.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (P.O. 27272) United Arab Emirates; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia (P.O. 41522) Egypt.
| | - Sanaa Bardaweel
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman 11942 Jordan.
| | - Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713 Egypt.
| | - Shaya Yahya Alraqa
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia.
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia.
| |
Collapse
|
2
|
Guarrochena X, Anderla M, Salomon P, Feiner IVJ, Nock BA, Maina T, Mindt TL. Combination of the amide-to-triazole substitution strategy with alternative structural modifications for the metabolic stabilization of tumor-targeting, radiolabeled peptides. J Pept Sci 2025; 31:e3654. [PMID: 39262129 PMCID: PMC11602245 DOI: 10.1002/psc.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Radiolabeled peptides play a key role in nuclear medicine to selectively deliver radionuclides to malignancies for diagnosis (imaging) and therapy. Yet, their efficiency is often compromised by low metabolic stability. The use of 1,4-disubstituted 1,2,3-triazoles (1,4-Tzs) as stable amide bond bioisosteres can increase the half-life of peptides in vivo while maintaining their biological properties. Previously, the amide-to-triazole substitution strategy was used for the stabilization of the pansomatostatin radioligand [111In]In-AT2S, resulting in the mono-triazolo-peptidomimetic [111In]In-XG1, a radiotracer with moderately enhanced stability in vivo and retained ability to bind multiple somatostatin receptor (SSTR) subtypes. However, inclusion of additional 1,4-Tz led to a loss of affinity towards SST2R, the receptor overexpressed by most SSTR-positive cancers. To enhance further the stability of [111In]In-XG1, alternative modifications at the enzymatically labile position Thr10-Phe11 were employed. Three novel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-peptide conjugates were synthesized with a 1,4-Tz (Asn5-Ψ[Tz]-Phe6) and either a β-amino acid (β-Phe11), reduced amide bond (Thr10-Ψ[NH]-Phe11), or N-methylated amino acid (N-Me-Phe11). Two of the new peptidomimetics were more stable in blood plasma in vitro than [111In]In-XG1. Yet none of them retained high affinity towards SST2R. We demonstrate for the first time the combination of the amide-to-triazole substitution strategy with alternative stabilization methods to improve the metabolic stability of tumor-targeting peptides.
Collapse
Affiliation(s)
- Xabier Guarrochena
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
| | - Maximilian Anderla
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna and Medical University of ViennaViennaAustria
| | - Philipp Salomon
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna and Medical University of ViennaViennaAustria
| | - Irene V. J. Feiner
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsViennaAustria
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”AthensGreece
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”AthensGreece
| | - Thomas L. Mindt
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna and Medical University of ViennaViennaAustria
| |
Collapse
|
3
|
Czuczi T, Murányi J, Móra I, Gurbi B, Varga A, Papp D, Schlosser G, Csala M, Csámpai A. Development of Novel Imipridones with Alkyne- and Triazole-Linked Warheads on the Tricyclic Skeleton, Showing Superior Ability to Eradicate PANC-1 and Fadu Cells Compared to ONC201. Int J Mol Sci 2024; 25:13176. [PMID: 39684886 DOI: 10.3390/ijms252313176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Our ongoing research focuses on the development of new imipridone derivatives. We aim to design compounds that can completely and selectively eradicate cancer cells after relatively short treatment. We have synthetized systematically designed novel hybrids and evaluated their antiproliferative activity against PANC-1 and Fadu cell lines. We have also conducted preliminary studies on the mechanism, including colony formation as well as dose-response tests in HEK293T wild-type (WT) and HEK293T CLPP-/- cells. Following gradual structural fine-tuning based on high throughput screening, we identified two imipridone hybrids as the most potent derivatives. Their unique substitution pattern includes N-methylated propargylamine and ferrocenyl/phenyltriazole moieties on the benzyl groups attached to opposite sides of the imipridone core. We found that the compounds with IC50 values similar to those of ONC201 completely eradicated cancer cells at about 4 μM, while ONC201 treatment at even higher concentrations left 30-50% of viable cells behind. Both compounds exerted equal activity in WT and CLPP-/- HEK293T cells, indicating a ClpP-independent mechanism. Further development is needed to improve the tumor selectivity of the two potent imipridone derivatives. By preserving tumor cytotoxicity, we aim to generate new drug candidates that evade resistance and can be applied in a sufficiently broad therapeutic window.
Collapse
Affiliation(s)
- Tamás Czuczi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
| | - József Murányi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
| | - István Móra
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Bianka Gurbi
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Attila Varga
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Dávid Papp
- Hevesy György PhD School of Chemistry, Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Lendület (Momentum) Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület (Momentum) Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Antal Csámpai
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
4
|
Harms M, Haase A, Rodríguez-Alfonso A, Löffler J, Almeida-Hernández Y, Ruiz-Blanco YB, Albers D, Gilg A, von Bank F, Zech F, Groß R, Datta M, Jaikishan J, Draphoen B, Habib M, Ständker L, Wiese S, Lindén M, Winter G, Rasche V, Beer AJ, Jumaa H, Abadi AH, Kirchhoff F, Busch M, Dünker N, Sanchez-Garcia E, Münch J. Fatty acid conjugated EPI-X4 derivatives with increased activity and in vivo stability. J Control Release 2024; 373:583-598. [PMID: 39047872 DOI: 10.1016/j.jconrel.2024.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Dysregulation of the CXCL12/CXCR4 axis is implicated in autoimmune, inflammatory, and oncogenic diseases, positioning CXCR4 as a pivotal therapeutic target. We evaluated optimized variants of the specific endogenous CXCR4 antagonist, EPI-X4, addressing existing challenges in stability and potency. Our structure-activity relationship study investigates the conjugation of EPI-X4 derivatives with long-chain fatty acids, enhancing serum albumin interaction and receptor affinity. Molecular dynamic simulations revealed that the lipid moieties stabilize the peptide-receptor interaction through hydrophobic contacts at the receptor's N-terminus, anchoring the lipopeptide within the CXCR4 binding pocket and maintaining essential receptor interactions. Accordingly, lipidation resulted in increased receptor affinities and antagonistic activities. Additionally, by interacting with human serum albumin lipidated EPI-X4 derivatives displayed sustained stability in human plasma and extended circulation times in vivo. Selected candidates showed significant therapeutic potential in human retinoblastoma cells in vitro and in ovo, with our lead derivative exhibiting higher efficacies compared to its non-lipidated counterpart. This study not only elucidates the optimization trajectory for EPI-X4 derivatives but also underscores the intricate interplay between stability and efficacy, crucial for delineating their translational potential in clinical applications.
Collapse
Affiliation(s)
- Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany.
| | - André Haase
- Institute for Anatomy II, Department of Neuroanatomy, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Armando Rodríguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm 89081, Germany; Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm 89081, Germany
| | - Jessica Löffler
- Department of Nuclear Medicine, Ulm University Medical Center, Ulm 89081, Germany
| | - Yasser Almeida-Hernández
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, 44227 Dortmund, Germany
| | - Yasser B Ruiz-Blanco
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, 44227 Dortmund, Germany
| | - Dan Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Andrea Gilg
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Franziska von Bank
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Moumita Datta
- Institute of Immunology, Ulm University Medical Center, Ulm 89081, Germany
| | - Janeni Jaikishan
- Institute of Immunology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Monica Habib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; Pharmaceutical Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm 89081, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm 89081, Germany
| | - Mika Lindén
- Institute for Inorganic Chemistry II, 89081 Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, Ulm 89081, Germany
| | - Volker Rasche
- Experimental Cardiovascular Imaging (ExCaVI), Ulm University Medical Center, Ulm 89081, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University Medical Center, Ulm 89081, Germany
| | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Ulm 89081, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Maike Busch
- Institute for Anatomy II, Department of Neuroanatomy, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Nicole Dünker
- Institute for Anatomy II, Department of Neuroanatomy, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Bioengineering, Department of Biochemical and Chemical Engineering, 44227 Dortmund, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| |
Collapse
|
5
|
Nakahata M, Hashidzume A. Density Function Theory Study on the Energy and Circular Dichroism Spectrum for Methylene-Linked Triazole Diads Depending on the Substitution Position and Conformation. Molecules 2024; 29:2931. [PMID: 38930995 PMCID: PMC11206612 DOI: 10.3390/molecules29122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Since the discovery of metal-catalyzed azide-alkyne cycloadditions, 1,2,3-triazoles have been widely used as linkers for various residues. 1,2,3-Triazole is an aromatic five-membered cyclic compound consisting of three nitrogen and two carbon atoms with large dipoles that absorb UV light. In the past decade, we have been working on the synthesis of dense triazole polymers possessing many 1,2,3-triazole residues linked through a carbon atom in their backbone as a new type of functional polymer. Recently, we reported that stereoregular dense triazole uniform oligomers exhibit a circular dichroism signal based on the chiral arrangement of two neighboring 1,2,3-triazole residues. In this study, to investigate the chiral conformation of two neighboring 1,2,3-triazole residues in stereoregular dense triazole uniform oligomers, density functional theory (DFT) calculations were performed using 1,2,3-triazole diads with different substitution positions and conformations as model compounds and compared with our previous results.
Collapse
Affiliation(s)
| | - Akihito Hashidzume
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan;
| |
Collapse
|
6
|
Wall BJ, Sharma KK, O’Brien EA, Donovan A, VanVeller B. General Installation of (4 H)-Imidazolone cis-Amide Bioisosteres Along the Peptide Backbone. J Am Chem Soc 2024; 146:11648-11656. [PMID: 38629317 PMCID: PMC11062833 DOI: 10.1021/jacs.3c13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Imidazolones represent an important class of heterocycles present in a wide range of pharmaceuticals, metabolites, and bioactive natural products and serve as the active chromophore in green fluorescent protein. Recently, imidazolones have received attention for their ability to act as a nonaromatic amide bond bioisotere which improves pharmacological properties. Herein, we present a tandem amidine installation and cyclization with an adjacent ester to yield (4H)-imidazolone products. Using amino acid building blocks, we can access the first examples of α-chiral imidazolones that have been previously inaccessible. Additionally, our method is amenable to on-resin installation which can be seamlessly integrated into existing solid-phase peptide synthesis protocols. Finally, we show that peptide imidazolones are potent cis-amide bond surrogates that preorganize linear peptides for head-to-tail macrocyclization. This work represents the first general approach to the backbone and side-chain insertion of imidazolone bioisosteres at various positions in linear and cyclic peptides.
Collapse
Affiliation(s)
- Brendan J. Wall
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | | | - Aaron Donovan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Osman AMA, Arabi AA. Average Electron Density: A Quantitative Tool for Evaluating Non-Classical Bioisosteres of Amides. ACS OMEGA 2024; 9:13172-13182. [PMID: 38524460 PMCID: PMC10955596 DOI: 10.1021/acsomega.3c09732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
Bioisosterism is strategically used in drug design to enhance the pharmacokinetic and pharmacodynamic properties of therapeutic molecules. The average electron density (AED) tool has been used in several studies to quantify similarities among nonclassical bioisosteres of carboxylic acid. In this study, the AED tool is used to quantify the similarities among nonclassical bioisosteres of an amide group. In particular, amide-to-1,2,3-triazole bioisosterism is considered. To evaluate the AED differences exhibited by isomers of nonclassical bioisosteres, both isomers of amide (cis and trans) and 1,2,3-triazole (1,4 and 1,5 disubstituted moieity) were considered. The amide and 1,2,3-triazole bioisosteric moieties were capped with various R groups (R= methyl, hydrogen, and chloro) to account for changes in their environment. Amide-to-triazole bioisosteric substitutions were then explored in a more realistic environment, that is, within the FDA-approved anticancer imatinib drug. The AED tool effectively identified similarities between substantially different moieties, 1,2,3-triazole and amide, showing AED differences of no more than 4%. The AED tool was also proven to be useful in evaluating the contribution of various factors affecting triazole-amide bioisosterism including isomerism and changes in their environment. The AED values of each bioisostere were transferable within a maximum difference of 2.6%, irrespective of the change in environment. The 1,4- and 1,5-disubstituted isomers of 1,2,3-triazole have AED values that differ by less than unity, 0.52%. Similarly, the AED values of the cis- and trans-amide isomers differ by only 1.31%. Overall, the AED quantitative tool not only replicated experimental observations regarding similarities in bioisosteres, but also explained and quantified each contributing factor. This demonstrates the extended utility of the AED tool from nonclassical carboxylic acid bioisosteres to amide equivalents.On the contrary, electrostatic potential maps, usually used in the literature to qualitatively evaluate bioisosterism, were not similar for the 1,2,3-triazole and amide bioisosteres, under different environments. Overall, the AED tool proves to be powerful in quantitatively evaluating and predicting bioisosterism across diverse moieties considering structural and environmental variations, making it valuable in drug design.
Collapse
Affiliation(s)
- Alaa MA Osman
- College of Medicine and Health
Sciences, Department of Biochemistry and Molecular Biology, United Arab Emirates University, AlAin P.O. Box: 15551, United Arab Emirates
| | - Alya A. Arabi
- College of Medicine and Health
Sciences, Department of Biochemistry and Molecular Biology, United Arab Emirates University, AlAin P.O. Box: 15551, United Arab Emirates
| |
Collapse
|
8
|
Guarrochena X, Kanellopoulos P, Stingeder A, Rečnik LM, Feiner IVJ, Brandt M, Kandioller W, Maina T, Nock BA, Mindt TL. Amide-to-Triazole Switch in Somatostatin-14-Based Radioligands: Impact on Receptor Affinity and In Vivo Stability. Pharmaceutics 2024; 16:392. [PMID: 38543286 PMCID: PMC10976246 DOI: 10.3390/pharmaceutics16030392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 11/28/2024] Open
Abstract
The use of metabolically stabilized, radiolabeled somatostatin (SST) analogs ([68Ga]Ga/[177Lu]Lu-DOTA-TATE/TOC/NOC) is well established in nuclear medicine. Despite the pivotal role of these radioligands in the diagnosis and therapy of neuroendocrine tumors (NETs), their inability to interact with all five somatostatin receptors (SST1-5R) limits their clinical potential. [111In]In-AT2S is a radiolabeled DOTA-conjugate derived from the parent peptide SST-14 that exhibits high binding affinity to all SSTR subtypes, but its poor metabolic stability represents a serious disadvantage for clinical use. In order to address this issue, we have replaced strategic trans-amide bonds of [111In]In-AT2S with metabolically stable 1,4-disubstituted 1,2,3-triazole bioisosteres. From the five cyclic triazolo-peptidomimetics investigated, only [111In]In-XG1 combined a preserved nanomolar affinity for the SST1,2,3,5R subtypes in vitro and an improved stability in vivo (up to 17% of intact peptide 5 min postinjection (pi) versus 6% for [111In]In-AT2S). The involvement of neprilysin (NEP) in the metabolism of [111In]In-XG1 was confirmed by coadministration of Entresto®, a registered antihypertensive drug, in vivo releasing the selective and potent NEP-inhibitor sacubitrilat. A pilot SPECT/CT imaging study conducted in mice bearing hSST2R-positive xenografts failed to visualize the xenografts due to the pronounced kidney uptake (>200% injected activity (IA)/g at 4 h pi), likely the result of the formation of cationic metabolites. To corroborate the imaging data, the tumors and the kidneys were excised and analyzed with a γ-counter. Even if receptor-specific tumor uptake for [111In]In-XG1 could be confirmed (1.61% IA/g), further optimization is required to improve its pharmacokinetic properties for radiotracer development.
Collapse
Affiliation(s)
- Xabier Guarrochena
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | | | - Anna Stingeder
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Lisa-Maria Rečnik
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Irene V. J. Feiner
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Marie Brandt
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece
| | - Thomas L. Mindt
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, AKH Wien c/o Sekretariat Nuklearmedizin, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Wycisk V, Wagner MC, Urner LH. Trends in the Diversification of the Detergentome. Chempluschem 2024; 89:e202300386. [PMID: 37668309 DOI: 10.1002/cplu.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Detergents are amphiphilic molecules that serve as enabling steps for today's world applications. The increasing diversity of the detergentome is key to applications enabled by detergent science. Regardless of the application, the optimal design of detergents is determined empirically, which leads to failed preparations, and raising costs. To facilitate project planning, here we review synthesis strategies that drive the diversification of the detergentome. Synthesis strategies relevant for industrial and academic applications include linear, modular, combinatorial, bio-based, and metric-assisted detergent synthesis. Scopes and limitations of individual synthesis strategies in context with industrial product development and academic research are discussed. Furthermore, when designing detergents, the selection of molecular building blocks, i. e., head, linker, tail, is as important as the employed synthesis strategy. To facilitate the design of safe-to-use and tailor-made detergents, we provide an overview of established head, linker, and tail groups and highlight selected scopes and limitations for applications. It becomes apparent that most recent contributions to the increasing chemical diversity of detergent building blocks originate from the development of detergents for membrane protein studies. The overview of synthesis strategies and molecular blocks will bring us closer to the ability to predictably design and synthesize optimal detergents for challenging future applications.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Marc-Christian Wagner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
10
|
Nuti F, Larregola M, Staśkiewicz A, Retzl B, Tomašević N, Macchia L, Street ME, Jewgiński M, Lequin O, Latajka R, Rovero P, Gruber CW, Chorev M, Papini AM. Design, synthesis, conformational analysis, and biological activity of Cα 1-to-Cα 6 1,4- and 4,1-disubstituted 1 H-[1,2,3]triazol-1-yl-bridged oxytocin analogues. J Enzyme Inhib Med Chem 2023; 38:2254019. [PMID: 37735942 PMCID: PMC10519257 DOI: 10.1080/14756366.2023.2254019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Oxytocin (OT) is a neurohypophyseal peptide hormone containing a disulphide-bridged pseudocyclic conformation. The biomedical use of OT peptides is limited amongst others by disadvantageous pharmacokinetic parameters. To increase the stability of OT by replacing the disulphide bridge with the stable and more rigid [1,2,3]triazol-1-yl moiety, we employed the Cu2+-catalysed side chain-to-side chain azide-alkyne 1,3-cycloaddition. Here we report the design, synthesis, conformational analysis, and in vitro pharmacological activity of a homologous series of Cα1-to-Cα6 side chain-to-side chain [1,2,3]triazol-1-yl-containing OT analogues differing in the length of the bridge, location, and orientation of the linking moiety. Exploiting this macrocyclisation approach, it was possible to generate a systematic series of compounds providing interesting insight into the structure-conformation-function relationship of OT. Most analogues were able to adopt similar conformation to endogenous OT in water, namely, a type I β-turn. This approach may in the future generate stabilised pharmacological peptide tools to advance understanding of OT physiology.
Collapse
Affiliation(s)
- Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Maud Larregola
- CNRS, BioCIS, CY Cergy Paris Université, Cergy Pontoise and Paris Saclay Université, Orsay, France
| | - Agnieszka Staśkiewicz
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Florence, Italy
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Bernhard Retzl
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nataša Tomašević
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lorenzo Macchia
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Maria E. Street
- Dipartimento di Medicina e Chirurgia, Università di Parma e Clinica Pediatrica, AOU di Parma, Parma, Italy
| | - Michał Jewgiński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Olivier Lequin
- Laboratoire des Biomolécules, Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Paris, France
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Christian W. Gruber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Chorev
- Laboratory for Translational Research, Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
11
|
Carlucci R, Lisa MN, Labadie GR. 1,2,3-Triazoles in Biomolecular Crystallography: A Geometrical Data-Mining Approach. J Med Chem 2023; 66:14377-14390. [PMID: 37903297 DOI: 10.1021/acs.jmedchem.3c01097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The 1,2,3-triazole scaffold has become very attractive to identify new chemical entities in drug discovery projects. Despite the widespread use of click chemistry to synthesize numerous 123Ts, there are few drugs on the market that incorporate this scaffold as a substructure. To investigate the true potential of 123Ts in protein-ligand interactions, we examined the noncovalent interactions between the 1,2,3-triazole ring and amino acids in protein-ligand cocrystals using a geometrical approach. For this purpose, we constructed a nonredundant database of 220 PDB IDs from available 123T-protein cocrystal structures. Subsequently, using the Protein Ligand Interaction Profiler web platform (PLIP), we determined whether 1,2,3-triazoles primarily act as linkers or if they can be considered interactive scaffolds. We then manually analyzed the geometrical descriptors from 333 interactions between 1,4-disubstituted 123T rings and amino acid residues in proteins. This study demonstrates that 1,2,3-triazoles exhibit diverse preferred interactions with amino acids, which contribute to protein-ligand binding.
Collapse
Affiliation(s)
- Renzo Carlucci
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
| | - María-Natalia Lisa
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
- Plataforma de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, ARGENTINA
| |
Collapse
|
12
|
Singh A, Singh K, Kaur J, Kaur R, Sharma A, Kaur J, Kaur U, Chadha R, Bedi PMS. Pathogenesis of Alzheimer's Disease and Diversity of 1,2,3-Triazole Scaffold in Drug Development: Design Strategies, Structural Insights, and Therapeutic Potential. ACS Chem Neurosci 2023; 14:3291-3317. [PMID: 37683129 DOI: 10.1021/acschemneuro.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease is a most prevalent form of dementia all around the globe and currently poses a significant challenge to the healthcare system. Currently available drugs only slow the progression of this disease rather than provide proper containment. Identification of multiple targets responsible for this disease in the last three decades established it as a multifactorial neurodegenerative disorder that needs novel multifunctional agents for its management and the possible reason for the failure of currently available single target clinical drugs. 1,2,3-Triazole is a miraculous nucleus in medicinal chemistry and the first choice for development of multifunctional hybrid molecules. Apart from that, it is an integral component of various drugs in clinical trials as well as in clinical practice. This review is focused on the pathogenesis of Alzheimer's disease and 1,2,3-triazole containing derivatives developed in recent decades as potential anti-Alzheimer's agents. The review will provide (A) precise insight of various established targets of Alzheimer's disease including cholinergic, amyloid, tau, monoamine oxidases, glutamate, calcium, and reactive oxygen species hypothesis and (B) design hypothesis, structure-activity relationships, and pharmacological outcomes of 1,2,3-triazole containing multifunctional anti-Alzheimer's agents. This review will provide a baseline for various research groups working on Alzheimer's drug development in designing potent, safer, and effective multifunctional anti-Alzheimer's candidates of the future.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jashandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ramanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jasleen Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Uttam Kaur
- University School of Business, Chandigarh University, Mohali, Punjab 140413, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
13
|
Claude G, Puccio D, Roca Jungfer M, Hagenbach A, Spreckelmeyer S, Abram U. Technetium Complexes with an Isocyano-alkyne Ligand and Its Reaction Products. Inorg Chem 2023. [PMID: 37494664 DOI: 10.1021/acs.inorgchem.3c01638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The attachment of an ethyne substituent in the para position of phenylisocyanide, CNPhpC≡CH, enables the isocyanide to replace carbonyl ligands in the coordination sphere of common technetium(I) starting materials such as (NBu4)[Tc2(μ-Cl)3(CO)6]. The ligand exchange proceeds under thermal conditions and finally forms the corresponding hexakis(isocyanide)technetium(I) complex. The product undergoes a copper-catalyzed cycloaddition ("Click" reaction), e.g., with benzyl azide, which gives the [Tc(CNPhazole)6]+ cation. The free, uncoordinated "Click" product is obtained from a reaction of the corresponding tetrakis(CNPhazole)copper(I) complex and NaCN. It readily reacts with mer-[Tc(CO)3(tht)(PPh3)2](BF4) (tht = tetrahydrothiophene) under exchange of the thioether ligand. Alternatively, [Cu(CNPhazole)4]+ can be used as a transmetalation reagent for the synthesis of the hexakis(isocyanide)technetium(I) complex, which is the preferable approach for the synthesis of the technetium complex with the short-lived nuclear isomer 99mTc, and a corresponding protocol for [99mTc(CNPhazole)6]+ is reported. The 99Tc and copper complexes have been studied by single-crystal X-ray diffraction and/or spectroscopic methods including IR and multinuclear NMR spectroscopy.
Collapse
Affiliation(s)
- Guilhem Claude
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Denis Puccio
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Maximilian Roca Jungfer
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Adelheid Hagenbach
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Sarah Spreckelmeyer
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ulrich Abram
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, 14195 Berlin, Germany
| |
Collapse
|
14
|
Kyzer JL, Noman MAA, Cuellar RAD, Chung SSW, Maitra S, Naqvi T, Hawkinson JE, Wolgemuth DJ, Georg GI. Investigation of selective retinoic acid receptor alpha antagonist ER-50891 and related analogs for male contraception. Arch Pharm (Weinheim) 2023; 356:e2300031. [PMID: 37154197 DOI: 10.1002/ardp.202300031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Retinoic acid receptor alpha (RARα) antagonist ER-50891 and 15 analogs were prepared and tested in vitro for potency and selectivity at RARα, RARβ, and RARγ using transactivation assays. Minor modifications to the parent molecule such as the introduction of a C4 tolyl group in place of the C4 phenyl group on the quinoline moiety slightly increased the RARα selectivity but larger substituents significantly decreased the potency. Replacement of the pyrrole moiety of ER-50891 with triazole, amides, or a double bond produced inactive compounds. ER-50891 was found to be stable in male mouse liver microsomes and was tested in male mice to assess its effects on spermatogenesis. Characteristic, albeit modest and transient, effects on spermatogenesis were observed.
Collapse
Affiliation(s)
- Jillian L Kyzer
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Md Abdullah Al Noman
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rebecca A D Cuellar
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sanny S W Chung
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
| | - Soma Maitra
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tahmina Naqvi
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jon E Hawkinson
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Debra J Wolgemuth
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York, USA
- The Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Taguchi R, Nakahata M, Kamon Y, Hashidzume A. Synthesis of Dense 1,2,3-Triazole Oligomers Consisting Preferentially of 1,5-Disubstituted Units via Ruthenium(II)-Catalyzed Azide-Alkyne Cycloaddition. Polymers (Basel) 2023; 15:polym15092199. [PMID: 37177345 PMCID: PMC10180885 DOI: 10.3390/polym15092199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Ruthenium(II)-catalyzed azide-alkyne cycloaddition (RuAAC) polymerization of t-butyl 4-azido-5-hexynoate (tBuAH), i.e., a heterobifunctional monomer carrying azide and alkyne moieties, was investigated in this study. RuAAC of the monofunctional precursors of tBuAH yielded a dimer possessing a 1,5-disubstituted 1,2,3-triazole moiety. 1H NMR data showed that the dimer was a mixture of diastereomers. Polymerization of tBuAH using ruthenium(II) (Ru(II)) catalysts produced oligomers of Mw ≈ (2.7-3.6) × 103 consisting of 1,5-disubstituted 1,2,3-triazole units (1,5-units) as well as 1,4-disubstituted 1,2,3-triazole units (1,4-units). The fractions of 1,5-unit (f1,5) were roughly estimated to be ca. 0.8 by comparison of signals of the methine and triazole protons in 1H NMR spectra, indicating that RuAAC proceeded preferentially and thermal Huisgen cycloaddition (HC) somehow took place during the polymerization. The oligomer samples obtained were also characterized by solubility test, size exclusion chromatography (SEC), ultraviolet-visible (UV-Vis) absorption spectroscopy, and thermogravimetric analysis (TGA). The UV-Vis and TGA data indicated that the oligomer samples contained a substantial amount of Ru(II) catalysts. To the best of our knowledge, this is the first report on dense 1,2,3-triazole oligomers consisting of 1,5-units linked via a carbon atom.
Collapse
Affiliation(s)
- Ryoichi Taguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Yuri Kamon
- Administrative Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
16
|
Kumar Sharma A, Satpati D, Sharma R, Das A, Dev Sarma H, Mukherjee A. Targeting HER2-Receptors with 177Lu-Labeled Triazole Stapled Cyclic Peptidomimetic. Bioorg Chem 2023; 135:106503. [PMID: 37037128 DOI: 10.1016/j.bioorg.2023.106503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
In this study on-resin Cu(I)-catalyzed click reaction was performed to synthesize triazole-stapled cyclic peptidomimetic, DOTA-c[TZ]A9 targeting HER2 receptor expression in breast cancers. Spectroscopic (circular dichroism) and docking analysis provided evidence of enhanced helicity and secondary structure stabilization along with improved HER2 affinity in comparison to the corresponding linear peptide, DOTA-[Pra1, Aza7]A9. 177Lu-labeled cyclic peptide, 177Lu-DOTA-c[TZ]A9 displayed higher in vitro serum stability and in vivo metabolic stability and better HER2 binding affinity {Kd of 16.93 ± 3.02 nM} than the linear counterpart, [177Lu]DOTA-[Pra1, Aza7]A9 {Kd of 26.28 ± 2.87 nM}. Biodistribution profile in SKBR3 tumor bearing SCID mice demonstrated elevated radioactivity levels and prolonged retention of cyclic peptide in the tumor compared to the linear peptide. Thus, solid phase click cyclization technique can be extended towards preparation of triazole-stapled peptides targeting different receptors with improved stability and efficacy.
Collapse
|
17
|
Click reaction inspired synthesis, antimicrobial evaluation and in silico docking of some pyrrole-chalcone linked 1,2,3-triazole hybrids. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Yadav M, Kumar A, Lal K, Singh MB, Kumari K. Facile synthesis, antimicrobial screening and docking studies of pyrrole-triazole hybrids as potential antimicrobial agents. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-022-04948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
D’Onofrio A, Silva F, Gano L, Raposinho P, Fernandes C, Sikora A, Wyczółkowska M, Mikołajczak R, Garnuszek P, Paulo A. Bioorthogonal Chemistry Approach for the Theranostics of GRPR-Expressing Cancers. Pharmaceutics 2022; 14:pharmaceutics14122569. [PMID: 36559063 PMCID: PMC9785946 DOI: 10.3390/pharmaceutics14122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Several gastrin-releasing peptide receptor (GRPR) antagonists with improved in vivo behavior have been recently developed and tested in the clinic. However, despite the generally mild side effects of peptide receptor radionuclide therapy (PRRT), toxicity has been observed due to high doses delivered to nontarget tissues, especially in the kidneys and pancreas. Previous experiences with radiolabeled peptides opened a unique opportunity to explore GRPR pretargeting using clickable bombesin antagonists. Toward this goal, we used clickable DOTA-like radiocomplexes which have been previously evaluated by our group. We functionalized a potent GRPR antagonist with a clickable TCO moiety using two different linkers. These precursors were then studied to select the compound with the highest GRPR binding affinity and the best pharmacokinetics to finally explore the advantages of the devised pretargeting approach. Our results provided an important proof of concept toward the development of bioorthogonal approaches to GRPR-expressing cancers, which are worth investigating further to improve the in vivo results. Moreover, the use of clickable GRPR antagonists and DOTA/DOTAGA derivatives allows for fine-tuning of their pharmacokinetics and metabolic stability, leading to a versatile synthesis of new libraries of (radio)conjugates useful for the development of theranostic tools toward GRPR-expressing tumors.
Collapse
Affiliation(s)
- Alice D’Onofrio
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Correspondence:
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Paula Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Arkadiusz Sikora
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland
| | - Monika Wyczółkowska
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland
| | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland
| | - Piotr Garnuszek
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
20
|
Synthesis, antimicrobial, and antioxidant activities of disubstituted 1,2,3-triazoles with amide-hydroxyl functionality. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
In Vitro Antioxidant and Pancreatic Anticancer Activity of Novel 5-Fluorouracil-Coumarin Conjugates. Pharmaceutics 2022; 14:pharmaceutics14102152. [DOI: 10.3390/pharmaceutics14102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular hybridization consists of the combination of two or more non-identical pharmacophores in a single molecule. It has emerged as a promising strategy that allows the design of molecular frameworks with enhanced activity and affinity compared to their parent drugs. In this work, two novel hybrids that combine the well-known anticancer chemotherapeutic agent 5-fluorouracil with antioxidant coumarin derivatives have been synthesized and characterized by means of a copper-catalyzed azide-alkyne cycloaddition (CuAAC). The conjugates showed good antioxidant properties and a high tendency to aggregate and form stable nanoparticles in aqueous media, with regular shape and uniform size. These materials have proven to be preferential cytotoxic agents in vitro against human pancreatic cancer cells PANC-1, with an activity superior to free 5-fluorouracil. These results open up the possibility of exploiting the synergistic combination between 5-fluorouracil and coumarin derivatives and warrant further investigation of these hybrids as promising pancreatic anticancer agents.
Collapse
|
22
|
Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol Pharm 2022; 19:3700-3729. [PMID: 36174227 DOI: 10.1021/acs.molpharmaceut.2c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
23
|
Anil DA, Aydin BO, Demir Y, Turkmenoglu B. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Ecker AK, Levorse DA, Victor DA, Mitcheltree MJ. Bioisostere Effects on the EPSA of Common Permeability-Limiting Groups. ACS Med Chem Lett 2022; 13:964-971. [DOI: 10.1021/acsmedchemlett.2c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Andrew K. Ecker
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115-5727, United States
| | - Dorothy A. Levorse
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel A. Victor
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew J. Mitcheltree
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115-5727, United States
| |
Collapse
|
25
|
Wang Z, Zhou X, Gong S, Xie J. MOF-Derived Cu@N-C Catalyst for 1,3-Dipolar Cycloaddition Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1070. [PMID: 35407188 PMCID: PMC9000828 DOI: 10.3390/nano12071070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Cu(im)2-derived Cu@N-C composites were used for the first time as efficient heterogeneous catalysts for one-pot 1,3-dipolar cycloaddition of terminal alkynes, aryl halides, and sodium azide to preparation of 1,4-disubstituted 1,2,3-triazoles with broad substrate scope and high yields. The catalyst can be easily reused without the changes of structure and morphology, and the heterogeneity nature was confirmed from the catalyst recyclability and metal leaching test.
Collapse
Affiliation(s)
- Zhuangzhuang Wang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
| | - Xuehao Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
| | - Shaofeng Gong
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Jianwei Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
| |
Collapse
|
26
|
Pingaew R, Choomuenwai V, Leechaisit R, Prachayasittikul V, Prachayasittikul S, Prachayasittikul V. 1,2,3-Triazole Scaffold in Recent Medicinal Applications: Synthesis and Anticancer Potentials. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Brandt F, Ullrich M, Laube M, Kopka K, Bachmann M, Löser R, Pietzsch J, Pietzsch HJ, van den Hoff J, Wodtke R. "Clickable" Albumin Binders for Modulating the Tumor Uptake of Targeted Radiopharmaceuticals. J Med Chem 2021; 65:710-733. [PMID: 34939412 DOI: 10.1021/acs.jmedchem.1c01791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The intentional binding of radioligands to albumin gains increasing attention in the context of radiopharmaceutical cancer therapy as it can lead to an enhanced radioactivity uptake into the tumor lesions and, thus, to a potentially improved therapeutic outcome. However, the influence of the radioligand's albumin-binding affinity on the time profile of tumor uptake has been only partly addressed so far. Based on the previously identified Nε-4-(4-iodophenyl)butanoyl-lysine scaffold, we designed "clickable" lysine-derived albumin binders (cLABs) and determined their dissociation constants toward albumin by novel assay methods. Structure-activity relationships were derived, and selected cLABs were applied for the modification of the somatostatin receptor subtype 2 ligand (Tyr3)octreotate. These novel conjugates were radiolabeled with copper-64 and subjected to a detailed in vitro and in vivo radiopharmacological characterization. Overall, the results of this study provide an incentive for further investigations of albumin binders for applications in endoradionuclide therapies.
Collapse
Affiliation(s)
- Florian Brandt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Martin Ullrich
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Markus Laube
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Jörg van den Hoff
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Technische Universität Dresden, Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
28
|
Abstract
1,2,3-triazoles represent a functional heterocyclic core that has been at the center of modern organic chemistry since the beginning of click chemistry. Being a versatile framework, such an aromatic ring can be observed in uncountable molecules useful in medicine and photochemistry, just to name a few. This review summarizes the progress achieved in their synthesis from 2015 to today, with particular emphasis on the development of new catalytic and eco-compatible approaches. In doing so, we subdivided the report based on their degree of functionalization and, for each subparagraph, we outlined the role of the catalyst employed.
Collapse
|
29
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
30
|
Agouram N, El Hadrami EM, Bentama A. 1,2,3-Triazoles as Biomimetics in Peptide Science. Molecules 2021; 26:2937. [PMID: 34069302 PMCID: PMC8156386 DOI: 10.3390/molecules26102937] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
Natural peptides are an important class of chemical mediators, essential for most vital processes. What limits the potential of the use of peptides as drugs is their low bioavailability and enzymatic degradation in vivo. To overcome this limitation, the development of new molecules mimicking peptides is of great importance for the development of new biologically active molecules. Therefore, replacing the amide bond in a peptide with a heterocyclic bioisostere, such as the 1,2,3-triazole ring, can be considered an effective solution for the synthesis of biologically relevant peptidomimetics. These 1,2,3-triazoles may have an interesting biological activity, because they behave as rigid link units, which can mimic the electronic properties of amide bonds and show bioisosteric effects. Additionally, triazole can be used as a linker moiety to link peptides to other functional groups.
Collapse
Affiliation(s)
- Naima Agouram
- Laboratory of Applied Organic Chemistry, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, Immouzer Road, Fez 30050, Morocco; (E.M.E.H.); (A.B.)
| | | | | |
Collapse
|
31
|
Grob N, Schibli R, Béhé M, Valverde IE, Mindt TL. 1,5-Disubstituted 1,2,3-Triazoles as Amide Bond Isosteres Yield Novel Tumor-Targeting Minigastrin Analogs. ACS Med Chem Lett 2021; 12:585-592. [PMID: 33859799 PMCID: PMC8040048 DOI: 10.1021/acsmedchemlett.0c00636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
1,5-Disubstituted 1,2,3-triazoles (1,5-Tz) are considered bioisosteres of cis-amide bonds. However, their use for enhancing the pharmacological properties of peptides or proteins is not yet well established. Aiming to illustrate their utility, we chose the peptide conjugate [Nle15]MG11 (DOTA-dGlu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2) as a model compound since it is known that the cholecystokinin-2 receptor (CCK2R) is able to accommodate turn conformations. Analogs of [Nle15]MG11 incorporating 1,5-Tz in the backbone were synthesized and radiolabeled with lutetium-177, and their pharmacological properties (cell internalization, receptor binding affinity and specificity, plasma stability, and biodistribution) were evaluated and compared with [Nle15]MG11 as well as their previously reported analogs bearing 1,4-disubstituted 1,2,3-triazoles. Our investigations led to the discovery of novel triazole-modified analogs of [Nle15]MG11 with nanomolar CCK2R-binding affinity and 2-fold increased tumor uptake. This study illustrates that substitution of amides by 1,5-disubstituted 1,2,3-triazoles is an effective strategy to enhance the pharmacological properties of biologically active peptides.
Collapse
Affiliation(s)
- Nathalie
M. Grob
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, 8093 Zürich, Switzerland
| | - Roger Schibli
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, 8093 Zürich, Switzerland
- Center
for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martin Béhé
- Center
for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Ibai E. Valverde
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Thomas L. Mindt
- Ludwig
Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, 1090 Vienna, Austria
- Department
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department
of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|