1
|
Liu J, Li Y, Wang S, Jia B, Li J, Qian J, Li J, Ma C, Zhang H, Liu K, Wang F. Modular Engineering of Lysostaphin with Significantly Improved Stability and Bioavailability for Treating MRSA Infections. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6703-6715. [PMID: 39812685 DOI: 10.1021/acsami.4c18004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a refractory pneumonia-causing pathogen due to the antibiotic resistance and the characteristics of persisting inside its host cell. Lysostaphin is a typical bacteriolytic enzyme for degrading bacterial cell walls via hydrolysis of pentaglycine cross-links, showing potential to combat multidrug-resistant bacteria. However, there are still grand challenges for native lysostaphin because of its poor shelf stability and limited bioavailability. To tackle these limitations, a modular assembly strategy is proposed to actively engineer the native lysostaphin, involving nanoassembly preparation via fusing with lysine-rich polypeptide. The engineered lysine component significantly improves the membrane-penetration capability of lysostaphin, greatly increasing its intracellular antibacterial activity by 12-fold compared to wild-type lysostaphin. Notably, the half-life of the nanoassembled lysostaphin is approximately 13 times longer than that of its native counterpart, greatly outperforming other studies. Most importantly, the shelf stability of our engineered lysostaphin is significantly improved, retaining over 99.9% of antibacterial activity after 12 weeks at room temperature. This modular assembly strategy successfully enhances the overall performance of lysostaphin, offering great promise for a platform technique to refine enzymatic material for widespread clinical demands.
Collapse
Affiliation(s)
- Jingwei Liu
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun 130021, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yumei Li
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiaxin Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiangchao Qian
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
2
|
Abdalla M, Abdelkhalig SM, Edet UO, Zothantluanga JH, Umoh EA, Moglad E, Nkang NA, Hader MM, Alanazi TMR, AlShouli S, Al-Shouli S. Molecular dynamics-based computational investigations on the influence of tumor suppressor p53 binding protein against other proteins/peptides. Sci Rep 2024; 14:29871. [PMID: 39622863 PMCID: PMC11612205 DOI: 10.1038/s41598-024-81499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
The tumor-suppressing p-53 binding protein is a crucial protein that is involved in the prevention of cancer via its regulatory effect on a number of cellular processes. Recent evidence indicates that it interacts with a number of other proteins involved in cancer in ways that are not fully understood. An understanding of such interactions could provide insights into novel ways p53 further exerts its tumour prevention role via its interactions with diverse proteins. Thus, this study aimed to examine the interactions of the p53 protein with other proteins (peptides and histones) using molecular simulation dynamics. We opted for a total of seven proteins, namely 2LVM, 2MWO, 2MWP, 4CRI, 4 × 34, 5Z78, and 6MYO (control), and had their PBD files retrieved from the protein database. These proteins were then docked against the p-53 protein and the resulting interactions were examined using molecular docking simulations run at 500 ns. The result of the interactions revealed the utilisation of various amino acids in the process. The peptide that interacted with the highest number of amino acids was 5Z78 and these were Lys10, Gly21, Trp24, Pro105, His106, and Arg107, indicating a stronger interaction. The RMSD and RMSF values indicate that the complexes formed were stable, with 4CRI, 6MYO, and 2G3R giving the most stable values (less than 2.5 Å). Other parameters, including the SASA, Rg, and number of hydrogen bonds, all indicated the formation of fairly stable complexes. Our study indicates that overall, the interactions of 53BP1 with p53K370me2, p53K382me2, methylated K810 Rb, p53K381acK382me2, and tudor-interacting repair regulator protein indicated interactions that were not as strong as those with the histone protein. Thus, it could be that P53 may mediate its tumour suppressing effect via interactions with amino acids and histone.
Collapse
Affiliation(s)
- Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China.
| | - Sozan M Abdelkhalig
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia
| | - Uwem O Edet
- Department of Biological (Microbiology), Faculty of Natural and Applied Sciences, Arthur Jarvis University, Akpabuyo, Cross River State, Nigeria.
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Ekementeabasi Aniebo Umoh
- Department of Human Physiology, Faculty of Basic Medical Sciences, Arthur Jarvis University, Akpabuyo, Cross River State, Nigeria
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Alkharj, 11942, Saudi Arabia
| | - Nkoyo Ani Nkang
- Science Laboratory Department, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Meshari M Hader
- Dietary Department, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
| | | | - Sawsan AlShouli
- Pharmacy Department, Security Forces Hospital, Riyadh, 11481, Saudi Arabia
| | - Samia Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
3
|
Say S, Suzuki M, Hashimoto Y, Kimura T, Kishida A. Effect of multi arm-PEG-NHS (polyethylene glycol n-hydroxysuccinimide) branching on cell adhesion to modified decellularized bovine and porcine pericardium. J Mater Chem B 2024; 12:1244-1256. [PMID: 38168715 DOI: 10.1039/d3tb01661g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Implanting physical barrier materials to separate wounds from their surroundings is a promising strategy for preventing postoperative adhesions. Herein, we develop a material that switches from an anti-adhesive surface to an adhesive surface, preventing adhesion in the early stage of transplantation and then promoting recellularization. In this study, 2-arm, 4-arm, and 8-arm poly(ethylene glycol) succinimidyl glutarate (2-, 4-, 8-arm PEG-NHS) were used to modify the surface of decellularized porcine and bovine pericardium. The number of free amines on the surface of each material significantly decreased following modification regardless of the reaction molar ratio of NH2 and NHS, the number of PEG molecule branches, and the animal species of the decellularized tissue. The structure and mechanical properties of the pericardium were maintained after modification with PEG molecules. The time taken for the PEG molecules to detach through hydrolysis of the ester bonds differed between the samples, which resulted in different cell repulsion periods. By adjusting the reaction molar ratio, the number of PEG molecule branches, and the animal species of the decellularized pericardium, the duration of cell repulsion can be controlled and is expected to provide an anti-adhesion material for a variety of surgical procedures.
Collapse
Affiliation(s)
- Sreypich Say
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Mika Suzuki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan.
| |
Collapse
|
4
|
Satvati S, Ghasemi Y, Najafipour S, Eskandari S, Mahmoodi S, Nezafat N, Hashemzaei M. Finding and engineering the newly found bacterial superoxide dismutase enzyme to increase its thermostability and decrease the immunogenicity: a computational and experimental research. Arch Microbiol 2023; 205:260. [PMID: 37291420 DOI: 10.1007/s00203-023-03601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Superoxide dismutase (SOD) is one of the most important antioxidant enzymes that can reduce oxidative stress in the cell environment. Nowadays, bacterial sources of enzyme are commercially applicable in the cosmetics and pharmaceutical industries, but the allergenic effect of proteins from non-human sources has been mentioned as disadvantage of these kinds of enzymes. In this study, to find the suitable bacterial SOD candidate for decreasing immunogenicity, the sequences of five thermophilic bacteria were selected as reference species. Then, linear and conformational B-cell epitopes of the SOD were analyzed by different servers. The stability and immunogenicity of mutant positions were also evaluated. The mutant gene was inserted into the pET-23a expression vector and transformed into E. Coli BL21 (DE3) for expression of the recombinant enzyme. Afterward, the expression of the mutant enzyme was evaluated by SDS-PAGE analysis and the recombinant enzyme activity was assessed. Anoxybacillus gonensis was selected as a reasonable SOD source according to BLAST search, physicochemical properties analysis, and prediction of allergenic features. Regarding our results, five residues including E84, E142, K144, G147, and M148 were predicted as candidates for mutagenesis. Finally, the K144A was chosen as the final modification due to the increase in the stability of the enzyme and decreased immunogenicity of the enzyme as well. The enzyme activity was 240 U/ml at room temperature. Alternation in K144 to alanine caused increased stability of the enzyme. In silico studies confirmed non-antigenic protein after mutation.
Collapse
Affiliation(s)
- Saha Satvati
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sohrab Najafipour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sedigheh Eskandari
- Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Masoud Hashemzaei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Role of Nitric Oxide-Derived Metabolites in Reactions of Methylglyoxal with Lysine and Lysine-Rich Protein Leghemoglobin. Int J Mol Sci 2022; 24:ijms24010168. [PMID: 36613614 PMCID: PMC9820652 DOI: 10.3390/ijms24010168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Carbonyl stress occurs when reactive carbonyl compounds (RCC), such as reducing sugars, dicarbonyls etc., accumulate in the organism. The interaction of RCC carbonyl groups with amino groups of molecules is called the Maillard reaction. One of the most active RCCs is α-dicarbonyl methylglyoxal (MG) that modifies biomolecules forming non-enzymatic glycation products. Organic free radicals are formed in the reaction between MG and lysine or Nα-acetyllysine. S-nitrosothiols and nitric oxide (•NO) donor PAPA NONOate increased the yield of organic free radical intermediates, while other •NO-derived metabolites, namely, nitroxyl anion and dinitrosyl iron complexes (DNICs) decreased it. At the late stages of the Maillard reaction, S-nitrosoglutathione (GSNO) also inhibited the formation of glycation end products (AGEs). The formation of a new type of DNICs, bound with Maillard reaction products, was found. The results obtained were used to explain the glycation features of legume hemoglobin-leghemoglobin (Lb), which is a lysine-rich protein. In Lb, lysine residues can form fluorescent cross-linked AGEs, and •NO-derived metabolites slow down their formation. The knowledge of these processes can be used to increase the stability of Lb. It can help in better understanding the impact of stress factors on legume plants and contribute to the production of recombinant Lb for biotechnology.
Collapse
|
6
|
Nishanth MAD, Bhoomika S, Gourkhede D, Dadimi B, Vergis J, Malik SVS, Barbuddhe SB, Rawool DB. Antibacterial efficacy of in-house designed cell-penetrating peptide against multi-drug resistant strains of Salmonella Enteritidis and Salmonella Typhimurium. Environ Microbiol 2021; 24:2747-2758. [PMID: 34528343 DOI: 10.1111/1462-2920.15778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
The in vitro antibacterial efficacy of an in-house designed cell-penetrating peptide (CPP) variant of Cecropin A (1-7)-Melittin (CAMA) (CAMA-CPP) against the characterized multi-drug resistant (MDR) field strains of Salmonella Enteritidis and Salmonella Typhimurium were evaluated and compared with two identified CPPs namely, P7 and APP, keeping CAMA as control. Initially, the minimum inhibitory concentration (MIC) (μg ml-1 ) of in-house designed CAMA-CPP, APP and CAMA was determined to be 3.91, whereas that of P7 was 7.81; however, the minimum bactericidal concentration (MBC) of all the peptides were twice the MIC. CAMA-CPP and CAMA were found to be stable under different conditions (high-end temperatures, proteinase-K, cationic salts, pH and serum) when compared to the other CPPs. Moreover, CAMA-CPP exhibited negligible cytotoxicity in HEp-2 and RAW 264.7 cell lines as well as haemolysis in the sheep and human erythrocytes with no adverse effects against the commensal gut lactobacilli. In vitro time-kill assay revealed that the MBC levels of CAMA-CPP and APP could eliminate the intracellular MDR-Salmonella infections from mammalian cell lines; however, CAMA and P7 peptides were ineffective. CAMA-CPP appears to be a promising antimicrobial candidate and opens up further avenues for its in vivo clinical translation.
Collapse
Affiliation(s)
- Maria Anto Dani Nishanth
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India
| | - Sirsant Bhoomika
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India.,Department of Veterinary Public Health, Bihar Veterinary College, Bihar Animal Sciences University, Patna, Bihar, 800 014, India
| | - Diksha Gourkhede
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India
| | - Bhargavi Dadimi
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India
| | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, Kerala, 673 576, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India
| | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India.,ICAR-National Research Centre on Meat, Hyderabad, Telangana, 500 092, India
| |
Collapse
|