1
|
Musa AA, Bello A, Adams SM, Onwualu AP, Anye VC, Bello KA, Obianyo II. Nano-Enhanced Polymer Composite Materials: A Review of Current Advancements and Challenges. Polymers (Basel) 2025; 17:893. [PMID: 40219283 PMCID: PMC11991163 DOI: 10.3390/polym17070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 04/14/2025] Open
Abstract
Nanomaterials have demonstrated significant potential in enhancing the performance and functionality of composite materials across various industrial applications. This review delves into the unique properties of nanomaterials, with a particular focus on carbon-based nanomaterials, and presents key findings on their effectiveness in improving composite performance. The study emphasizes specific nano-based composite materials, highlighting their substantial promise in advancing the field of nanocomposites. Additionally, it addresses the challenges associated with the production and utilization of nanocomposite materials and discusses potential solutions to overcome these obstacles. The review concludes with recommendations for further research and innovation in nanocomposites to fully harness the advantages of these advanced materials for broader future applications.
Collapse
Affiliation(s)
- Abdulrahman Adeiza Musa
- Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria 810107, Nigeria
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Abdulhakeem Bello
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Sani Mohammed Adams
- Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka 410105, Nigeria
| | - Azikiwe Peter Onwualu
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Vitalis Chioh Anye
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Kamilu Adeyemi Bello
- Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria 810107, Nigeria
| | | |
Collapse
|
2
|
Yosri N, Khalifa SAM, Attia NF, Du M, Yin L, Abolibda TZ, Zhai K, Guo Z, El-Seedi HR. Sustainability in the green engineering of nanocomposites based on marine-derived polysaccharides and collagens: A review. Int J Biol Macromol 2024; 274:133249. [PMID: 38906361 DOI: 10.1016/j.ijbiomac.2024.133249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Nanocomposites are sophisticated materials that incorporate nanostructures into matrix materials, such as polymers, ceramics and metals. Generally, the marine ecosystem exhibits severe variability in terms of light, temperature, pressure, and nutrient status, forcing the marine organisms to develop variable, complex and unique chemical structures to boost their competitiveness and chances of survival. Polymers sourced from marine creatures, such as chitin, chitosan, alginate, sugars, proteins, and collagen play a crucial role in the bioengineering field, contributing significantly to the development of nanostructures like nanoparticles, nanocomposites, nanotubes, quantum dots, etc. These nanostructures offer a wide array of features involving mechanical strength, thermal stability, electrical conductivity, barrier and optical characteristics compared to traditional composites. Notably, marine nanocomposites have distinctive roles in a wide spectrum of applications, among them anti-cancer, anti-microbial, antioxidant, cytotoxic, food packing, tissue engineering and catalytic actions. Sol-gel, hot pressing, chemical vapor deposition, catalytic decomposition, dispersion, melt intercalation, in situ intercalative polymerization, high-energy ball milling and template synthesis are common processes utilized in engineering nanocomposites. According to our literature survey and the Web of Science, chitosan, followed by cellulose, chitin and MAPs emerge as the most significant marine polymers utilized in the construction of nanocomposites. Taken together, the current manuscript underscores the biogenesis of nanocomposites, employing marine polymers using eco-friendly processes. Furthermore, significant emphasis in this area is needed to fully explore their capabilities and potential benefits. To the best of our knowledge, this manuscript stands as the first comprehensive review that discusses the role of marine-derived polymers in engineering nanocomposites for various applications.
Collapse
Affiliation(s)
- Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Shaden A M Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden.
| | - Nour F Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211, Egypt
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Limei Yin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tariq Z Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Soni H, Bhattu M, Sd P, Kaur M, Verma M, Singh J. Recent advances in waste-derived carbon dots and their nanocomposites for environmental remediation and biological applications. ENVIRONMENTAL RESEARCH 2024; 251:118560. [PMID: 38447603 DOI: 10.1016/j.envres.2024.118560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024]
Abstract
The surging demand for eco-friendly nanomaterial synthesis has spurred the emergence of green approaches for synthesizing carbon dots (CDs). These methods utilized natural carbon sources, such as different kind of waste for CDs synthesis, underscoring their significance in waste management and circular economy initiatives. Furthermore, the properties of CDs can be tailored by their functionalization with different materials, enabling their versatile utilization in diverse scientific domains. In this regard, the current study delves into an in-depth review of recent advances in the green/sustainable fabrication of carbon dots nanocomposites (CDNCs) with metal/metal oxides and polymers within the timeframe of 2019-2023. It begins by categorizing different types of CDs, analyzing their associated nanocomposites with mechanistic insights. The primary focus is on green synthesis methods, particularly those that employ waste materials. Furthermore, we also discussed the applications of these CDs in both environmental and biological fields by covering areas such as catalysis, photocatalysis, heavy metal ion sensing, antimicrobial, and bioimaging with in-depth underlying mechanisms. At last, the review highlights the significant challenges with future directions. These include the pursuit of cost-effective green precursors, the advancement of streamlined one-step synthesis techniques, and their efficient utilization for diverse applications. Therefore, this review provides valuable insights for researchers seeking to enhance the functionality and sustainability of CDNCs by highlighting their potential to address environmental and biological challenges.
Collapse
Affiliation(s)
- Himanshi Soni
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India
| | - Monika Bhattu
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India
| | - Priya Sd
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| | - Manvinder Kaur
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India.
| | - Jagpreet Singh
- Department of Chemistry, Chandigarh University, Mohali-140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India.
| |
Collapse
|
4
|
Bauri S, Tripathi S, Choudhury AM, Mandal SS, Raj H, Maiti P. Nanomaterials as Theranostic Agents for Cancer Therapy. ACS APPLIED NANO MATERIALS 2023; 6:21462-21495. [DOI: 10.1021/acsanm.3c04235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Sudepta Bauri
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Swikriti Tripathi
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Avishek Mallick Choudhury
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Subham Sekhar Mandal
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hans Raj
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
5
|
Bora P, Bhuyan C, Borah AR, Hazarika S. Carbon nanomaterials for designing next-generation membranes and their emerging applications. Chem Commun (Camb) 2023; 59:11320-11336. [PMID: 37671435 DOI: 10.1039/d3cc03490a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Carbon nanomaterials have enormous applications in various fields, such as adsorption, membrane separation, catalysis, electronics, capacitors, batteries, and medical sciences. Owing to their exceptional properties, such as large specific surface area, carrier mobility, flexibility, electrical conductivity, and optical pellucidity, the family of carbon nanomaterials is considered as one of the most studied group of materials to date. They are abundantly used in membrane science for multiple applications, such as the separation of organics, enantiomeric separation, gas separation, biomolecule separation, heavy metal separation, and wastewater treatment. This study provides an overview of the significant studies on carbon nanomaterial-based membranes and their emerging applications in our membrane research journey. The types of carbon nanomaterials, their utilization in membrane-based separations, and the mechanism involved are summarized in this study. Techniques for the fabrication of different nanocomposite membranes are also highlighted. Lastly, we have provided an overview of the existing issues and future scopes of carbon nanomaterial-based membranes for technological perspectives.
Collapse
Affiliation(s)
- Prarthana Bora
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chinmoy Bhuyan
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akhil Ranjan Borah
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Swapnali Hazarika
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Mehmandoust M, Li G, Erk N. Biomass-Derived Carbon Materials as an Emerging Platform for Advanced Electrochemical Sensors: Recent Advances and Future Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mohammad Mehmandoust
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, 06560 Ankara, Turkey
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Nevin Erk
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, 06560 Ankara, Turkey
| |
Collapse
|
7
|
Kausar A, Ahmad I, Maaza M, Eisa MH. State-of-the-Art of Polymer/Fullerene C 60 Nanocomposite Membranes for Water Treatment: Conceptions, Structural Diversity and Topographies. MEMBRANES 2022; 13:27. [PMID: 36676834 PMCID: PMC9864887 DOI: 10.3390/membranes13010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
To secure existing water resources is one of the imposing challenges to attain sustainability and ecofriendly world. Subsequently, several advanced technologies have been developed for water treatment. The most successful methodology considered so far is the development of water filtration membranes for desalination, ion permeation, and microbes handling. Various types of membranes have been industrialized including nanofiltration, microfiltration, reverse osmosis, and ultrafiltration membranes. Among polymeric nanocomposites, nanocarbon (fullerene, graphene, and carbon nanotubes)-reinforced nanomaterials have gained research attention owing to notable properties/applications. Here, fullerene has gained important stance amid carbonaceous nanofillers due to zero dimensionality, high surface areas, and exceptional physical properties such as optical, electrical, thermal, mechanical, and other characteristics. Accordingly, a very important application of polymer/fullerene C60 nanocomposites has been observed in the membrane sector. This review is basically focused on talented applications of polymer/fullerene nanocomposite membranes in water treatment. The polymer/fullerene nanostructures bring about numerous revolutions in the field of high-performance membranes because of better permeation, water flux, selectivity, and separation performance. The purpose of this pioneering review is to highlight and summarize current advances in the field of water purification/treatment using polymer and fullerene-based nanocomposite membranes. Particular emphasis is placed on the development of fullerene embedded into a variety of polymer membranes (Nafion, polysulfone, polyamide, polystyrene, etc.) and effects on the enhanced properties and performance of the resulting water treatment membranes. Polymer/fullerene nanocomposite membranes have been developed using solution casting, phase inversion, electrospinning, solid phase synthesis, and other facile methods. The structural diversity of polymer/fullerene nanocomposites facilitates membrane separation processes, especially for valuable or toxic metal ions, salts, and microorganisms. Current challenges and opportunities for future research have also been discussed. Future research on these innovative membrane materials may overwhelm design and performance-related challenging factors.
Collapse
Affiliation(s)
- Ayesha Kausar
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Ishaq Ahmad
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
- NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, National Centre for Physics, Islamabad 44000, Pakistan
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, iThemba LABS, Somerset West 7129, South Africa
| | - M. H. Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| |
Collapse
|
8
|
Goh PS, Kang HS, Ismail AF, Khor WH, Quen LK, Higgins D. Nanomaterials for microplastic remediation from aquatic environment: Why nano matters? CHEMOSPHERE 2022; 299:134418. [PMID: 35351478 DOI: 10.1016/j.chemosphere.2022.134418] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The contamination of microplastics in aquatic environment is regarded as a serious threat to ecosystem especially to aquatic environment. Microplastic pollution associated problems including their bioaccumulation and ecological risks have become a major concern of the public and scientific community. The removal of microplastics from their discharge points is an effective way to mitigate the adverse effects of microplastic pollution, hence has been the central of the research in this realm. Presently, most of the commonly used water or wastewater treatment technologies are capable of removing microplastic to certain extent, although they are not intentionally installed for this reason. Nevertheless, recognizing the adverse effects posed by microplastic pollution, more efforts are still desired to enhance the current microplastic removal technologies. With their structural multifunctionalities and flexibility, nanomaterials have been increasingly used for water and wastewater treatment to improve the treatment efficiency. Particularly, the unique features of nanomaterials have been harnessed in synthesizing high performance adsorbent and photocatalyst for microplastic removal from aqueous environment. This review looks into the potentials of nanomaterials in offering constructive solutions to resolve the bottlenecks and enhance the efficiencies of the existing materials used for microplastic removal. The current efforts and research direction of which studies can dedicate to improve microplastic removal from water environment with the augmentation of nanomaterial-enabled strategies are discussed. The progresses made to date have witnessed the benefits of harnessing the structural and dimensional advantages of nanomaterials to enhance the efficiency of existing microplastic treatment processes to achieve a more sustainable microplastic cleanup.
Collapse
Affiliation(s)
- P S Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - H S Kang
- Marine Technology Centre, Institute for Vehicle System & Engineering, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - A F Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - W H Khor
- Marine Technology Centre, Institute for Vehicle System & Engineering, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - L K Quen
- Mechanical Precision Engineering Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
| | - D Higgins
- The Ocean Cleanup Interception B.V., 3014, JH Rotterdam, the Netherlands
| |
Collapse
|
9
|
Xiao G, Lin H, Lin Y, Chen L, Jiang X, Cao X, Afewerki S, Zhang Y, Zhang W. Self-assembled hierarchical metal–polyphenol-coordinated hybrid 2D Co–C TA@g-C 3N 4 heterostructured nanosheets for efficient electrocatalytic oxygen reduction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We exquisitely designed the in situ growth of Co nanoparticles coated with tannin-carbon embedded on the hierarchical ultrathin g-C3N4 nanosheets for boosting electrocatalytic oxygen reduction through the MPNs strategy.
Collapse
Affiliation(s)
- Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, P. R. China
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Huiying Lin
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
| | - Yiting Lin
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
| | - Liyin Chen
- John A. Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Xiancai Jiang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362114, P. R. China
| | - Xia Cao
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhejiang 212013, P. R. China
| | - Samson Afewerki
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yujuan Zhang
- Institute of Immunotherapy and College of Basic Medicine, Nanchang University, Nanchang 212013, P. R. China
| | - Weixia Zhang
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
10
|
Carbon Dot/Polymer Composites with Various Precursors and Their Sensing Applications: A Review. COATINGS 2021. [DOI: 10.3390/coatings11091100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) have generated much interest because of their significant fluorescence (FL) properties, extraordinary photophysical attributes, and long-term colloidal stability. CDs have been regarded as a prospective carbon nanomaterial for various sensing applications because of their low toxicity, strong and broad optical absorption, high chemical stability, rapid transfer properties, and easy modification. To improve their functionality, CD/polymer composites have been developed by integrating polymers into CDs. CD/polymer composites have diversified because of their easy preparation and applications in sensing, optoelectronics, semiconductors, molecular delivery, and various commercial fields. Many review articles are available regarding the preparation and applications of CDs. Some review articles describing the production and multiple applications of the composites are available. However, no such article has focused on the types of precursors, optical properties, coating characteristics, and specific sensing applications of CD/polymer composites. This review aimed to highlight and summarize the current progress of CD/polymer composites in the last five years (2017–2021). First, we overview the precursors used for deriving CDs and CD/polymer composites, synthesis methods for preparing CDs and CD/polymer composites, and the optical properties (absorbance, FL, emission color, and quantum yield) and coating characteristics of the composites. Most carbon and polymer precursors were dominated by synthetic precursors, with citric acid and polyvinyl alcohol widely utilized as carbon and polymer precursors, respectively. Hydrothermal treatment for CDs and interfacial polymerization for CDs/polymers were frequently performed. The optical properties of CDs and CD/polymer composites were almost identical, denoting that the optical characters of CDs were well-maintained in the composites. Then, the chemical, biological, and physical sensing applications of CD/polymer composites are categorized and discussed. The CD/polymer composites showed good performance as chemical, biological, and physical sensors for numerous targets based on FL quenching efficiency. Finally, remaining challenges and future perspectives for CD/polymer composites are provided.
Collapse
|
11
|
Ghirardello M, Ramos-Soriano J, Galan MC. Carbon Dots as an Emergent Class of Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1877. [PMID: 34443713 PMCID: PMC8400628 DOI: 10.3390/nano11081877] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Antimicrobial resistance is a recognized global challenge. Tools for bacterial detection can combat antimicrobial resistance by facilitating evidence-based antibiotic prescribing, thus avoiding their overprescription, which contributes to the spread of resistance. Unfortunately, traditional culture-based identification methods take at least a day, while emerging alternatives are limited by high cost and a requirement for skilled operators. Moreover, photodynamic inactivation of bacteria promoted by photosensitisers could be considered as one of the most promising strategies in the fight against multidrug resistance pathogens. In this context, carbon dots (CDs) have been identified as a promising class of photosensitiser nanomaterials for the specific detection and inactivation of different bacterial species. CDs possess exceptional and tuneable chemical and photoelectric properties that make them excellent candidates for antibacterial theranostic applications, such as great chemical stability, high water solubility, low toxicity and excellent biocompatibility. In this review, we will summarize the most recent advances on the use of CDs as antimicrobial agents, including the most commonly used methodologies for CD and CD/composites syntheses and their antibacterial properties in both in vitro and in vivo models developed in the last 3 years.
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Javier Ramos-Soriano
- Centro de Investigaciones Científicas Isla de La Cartuja, Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
12
|
Abbo HS, Gupta KC, Khaligh NG, Titinchi SJJ. Carbon Nanomaterials for Wastewater Treatment. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hanna S. Abbo
- University of the Western Cape Department of Chemistry Cape Town South Africa
- University of Basrah Department of Chemistry Basrah Iraq
| | - K. C. Gupta
- Indian Institute of Technology Polymer Research Laboratory Department of Chemistry 247 667 Roorkee India
| | - Nader G. Khaligh
- University of Malaya Nanotechnology and Catalysis Research Center Institute of Postgraduate Studies Kuala Lumpur Malaysia
| | | |
Collapse
|
13
|
Stylianakis MM. Distinguished Contributions in the Fields of Biomedical and Environmental Applications Incorporating Nanostructured Materials and Composites in Journal Molecules. Molecules 2021; 26:2112. [PMID: 33917012 PMCID: PMC8067710 DOI: 10.3390/molecules26082112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
During the last two years, over 10,000 papers (articles, reviews, communications etc.) were published in Molecules [...].
Collapse
Affiliation(s)
- Minas M Stylianakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Crete, Greece
| |
Collapse
|