1
|
Almeida ZL, Vaz DC, Brito RMM. Transthyretin mutagenesis: impact on amyloidogenesis and disease. Crit Rev Clin Lab Sci 2024; 61:616-640. [PMID: 38850014 DOI: 10.1080/10408363.2024.2350379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Transthyretin (TTR), a homotetrameric protein found in plasma, cerebrospinal fluid, and the eye, plays a pivotal role in the onset of several amyloid diseases with high morbidity and mortality. Protein aggregation and fibril formation by wild-type TTR and its natural more amyloidogenic variants are hallmarks of ATTRwt and ATTRv amyloidosis, respectively. The formation of soluble amyloid aggregates and the accumulation of insoluble amyloid fibrils and deposits in multiple tissues can lead to organ dysfunction and cell death. The most frequent manifestations of ATTR are polyneuropathies and cardiomyopathies. However, clinical manifestations such as carpal tunnel syndrome, leptomeningeal, and ocular amyloidosis, among several others may also occur. This review provides an up-to-date listing of all single amino-acid mutations in TTR known to date. Of approximately 220 single-point mutations, 93% are considered pathogenic. Aspartic acid is the residue mutated with the highest frequency, whereas tryptophan is highly conserved. "Hot spot" mutation regions are mainly assigned to β-strands B, C, and D. This manuscript also reviews the protein aggregation models that have been proposed for TTR amyloid fibril formation and the transient conformational states that convert native TTR into aggregation-prone molecular species. Finally, it compiles the various in vitro TTR aggregation protocols currently in use for research and drug development purposes. In short, this article reviews and discusses TTR mutagenesis and amyloidogenesis, and their implications in disease onset.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
- School of Health Sciences, Polytechnic Institute of Leiria, Leiria, Portugal
- LSRE-LCM - Leiria, Portugal & ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Pilotte J, Huang AS, Khoury S, Zhang X, Tafreshi A, Vanderklish P, Sarraf ST, Pulido JS, Milman T. Detection of TTR Amyloid in the Conjunctiva Using a Novel Fluorescent Ocular Tracer. Transl Vis Sci Technol 2024; 13:11. [PMID: 38359019 PMCID: PMC10876017 DOI: 10.1167/tvst.13.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024] Open
Abstract
Background Transthyretin amyloidosis (ATTR) is a significant cause of cardiomyopathy and other morbidities in the elderly and Black Americans. ATTR can be treated with new disease-modifying therapies, but large shortfalls exist in its diagnosis. The objective of this study was to test whether TTR amyloid can be detected and imaged in the conjunctiva using a novel small-molecule fluorescent ocular tracer, with the implication that ATTR might be diagnosable by a simple eye examination. Methods Three approaches were used in this study. First, AMDX-9101 was incubated with in vitro aggregated TTR protein, and changes in its excitation and emission spectra were quantified. Second, a cadaver eye from a patient with familial amyloid polyneuropathy type II TTR mutation and a vitrectomy sample from an hATTR patient were incubated with AMDX-9101 and counterstained with Congo Red and antibodies to TTR to determine whether AMDX-9101 labels disease-related TTR amyloid deposits in human conjunctiva and eye. Last, imaging of in vitro aggregated TTR amyloid labeled with AMDX-9101 was tested in a porcine ex vivo model, using a widely available clinical ophthalmic imaging device. Results AMDX-9101 hyper-fluoresced in the presence of TTR amyloid in vitro, labeled TTR amyloid deposits in postmortem human conjunctiva and other ocular tissues and could be detected under the conjunctiva of a porcine eye using commercially available ophthalmic imaging equipment. Conclusions AMDX-9101 enabled detection of TTR amyloid in the conjunctiva, and the fluorescent binding signal can be visualized using commercially available ophthalmic imaging equipment. Translational Relevance AMDX-9101 detection of TTR amyloid may provide a potential new and noninvasive test for ATTR that could lead to earlier ATTR diagnosis, as well as facilitate development of new therapeutics.
Collapse
Affiliation(s)
| | - Alex S. Huang
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | | | - Xiaowei Zhang
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Jose S. Pulido
- Vickie and Jack Farber Vision Research Center and MidAtlantic Retina Service, Wills Eye Hospital, Philadelphia, PA, USA
| | - Tatyana Milman
- Vickie and Jack Farber Vision Research Center and MidAtlantic Retina Service, Wills Eye Hospital, Philadelphia, PA, USA
- Pathology Department, Wills Eye Hospital, Philadelphia, PA, USA
| |
Collapse
|
3
|
Ortigosa-Pascual L, Leiding T, Linse S, Pálmadóttir T. Photo-Induced Cross-Linking of Unmodified α-Synuclein Oligomers. ACS Chem Neurosci 2023; 14:3192-3205. [PMID: 37621159 PMCID: PMC10485903 DOI: 10.1021/acschemneuro.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Photo-induced cross-linking of unmodified proteins (PICUP) has been used in the past to study size distributions of protein assemblies. PICUP may, for example, overcome the significant experimental challenges related to the transient nature, heterogeneity, and low concentration of amyloid protein oligomers relative to monomeric and fibrillar species. In the current study, a reaction chamber was designed, produced, and used for PICUP reaction optimization in terms of reaction conditions and lighting time from ms to s. These efforts make the method more reproducible and accessible and enable the use of shorter reaction times compared to previous studies. We applied the optimized method to an α-synuclein aggregation time course to monitor the relative concentration and size distribution of oligomers over time. The data are compared to the time evolution of the fibril mass concentration, as monitored by thioflavin T fluorescence. At all time points, the smaller the oligomer, the higher its concentration observed after PICUP. Moreover, the total oligomer concentration is highest at short aggregation times, and the decline over time follows the disappearance of monomers. We can therefore conclude that these oligomers form from monomers.
Collapse
Affiliation(s)
- Lei Ortigosa-Pascual
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Thom Leiding
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Sara Linse
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Tinna Pálmadóttir
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
4
|
Chumakova OS, Nasonova SN, Frolova YV, Stepanova EA, Mershina EA, Sinitsyn VE, Zateyshchikov DA, Zhirov IV. [A rare variant in the TTR gene (p.E112K) is associated with systemic amyloidosis and a new symptom - skin hyperemia in response to ethanol intake: family segregation analysis, literature review, and a clinical case. Case report]. TERAPEVT ARKH 2023; 95:335-340. [PMID: 38158982 DOI: 10.26442/00403660.2023.04.202160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 01/03/2024]
Abstract
Transthyretin amyloidosis (ATTR-amyloidosis) is a systemic disorder associated with extracellular deposition in the tissues and organs of amyloid fibrils, transthyretin-containing insoluble protein-polysaccharide complexes. The change in transthyretin conformation, leading to its destabilization and amyloidogenicity, can be acquired (wild type, ATTRwt) and hereditary due to mutations in the TTR gene (variant, ATTRv) [1, 2]. Hereditary ATTR-amyloidosis has an earlier onset and greater phenotypic diversity. The age of the manifestation, the predominant phenotype, and the prognosis are often determined by the genetic variant. To date, more than 140 variants in the TTR gene have been identified; however, most of them are described in single patients and do not have clear evidence of pathogenicity. The prospects of a new pathogenetic treatment of ATTR-amyloidosis [3], especially effective in the early stages of the disease, increases the relevance of timely diagnosis, which is challenging due to physicians' lack of awareness. This article presents a clinical case of ATTRv-amyloidosis associated with a rare pathogenic variant in the TTR gene and a newly described skin symptom. This article is a literature review.
Collapse
Affiliation(s)
- O S Chumakova
- Central State Medical Academy of the President of the Russian Federation
- City Clinical Hospital №17
| | - S N Nasonova
- Chazov National Medical Research Center of Cardiology
| | - Y V Frolova
- Petrovsky National Research Centre of Surgery
| | - E A Stepanova
- Buyanov City Clinical Hospital
- Russian Medical Academy of Continuous Professional Education
| | | | | | - D A Zateyshchikov
- Central State Medical Academy of the President of the Russian Federation
| | - I V Zhirov
- Chazov National Medical Research Center of Cardiology
- Russian Medical Academy of Continuous Professional Education
| |
Collapse
|
5
|
Almeida ZL, Brito RMM. Amyloid Disassembly: What Can We Learn from Chaperones? Biomedicines 2022; 10:3276. [PMID: 36552032 PMCID: PMC9776232 DOI: 10.3390/biomedicines10123276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Protein aggregation and subsequent accumulation of insoluble amyloid fibrils with cross-β structure is an intrinsic characteristic of amyloid diseases, i.e., amyloidoses. Amyloid formation involves a series of on-pathway and off-pathway protein aggregation events, leading to mature insoluble fibrils that eventually accumulate in multiple tissues. In this cascade of events, soluble oligomeric species are formed, which are among the most cytotoxic molecular entities along the amyloid cascade. The direct or indirect action of these amyloid soluble oligomers and amyloid protofibrils and fibrils in several tissues and organs lead to cell death in some cases and organ disfunction in general. There are dozens of different proteins and peptides causing multiple amyloid pathologies, chief among them Alzheimer's, Parkinson's, Huntington's, and several other neurodegenerative diseases. Amyloid fibril disassembly is among the disease-modifying therapeutic strategies being pursued to overcome amyloid pathologies. The clearance of preformed amyloids and consequently the arresting of the progression of organ deterioration may increase patient survival and quality of life. In this review, we compiled from the literature many examples of chemical and biochemical agents able to disaggregate preformed amyloids, which have been classified as molecular chaperones, chemical chaperones, and pharmacological chaperones. We focused on their mode of action, chemical structure, interactions with the fibrillar structures, morphology and toxicity of the disaggregation products, and the potential use of disaggregation agents as a treatment option in amyloidosis.
Collapse
Affiliation(s)
| | - Rui M. M. Brito
- Chemistry Department and Coimbra Chemistry Centre—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
6
|
Dasari AKR, Yi S, Coats MF, Wi S, Lim KH. Toxic Misfolded Transthyretin Oligomers with Different Molecular Conformations Formed through Distinct Oligomerization Pathways. Biochemistry 2022; 61:2358-2365. [PMID: 36219173 PMCID: PMC9665167 DOI: 10.1021/acs.biochem.2c00390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein aggregation is initiated by structural changes from native polypeptides to cytotoxic oligomers, which form cross-β structured amyloid. Identification and characterization of oligomeric intermediates are critically important for understanding not only the molecular mechanism of aggregation but also the cytotoxic nature of amyloid oligomers. Preparation of misfolded oligomers for structural characterization is, however, challenging because of their transient, heterogeneous nature. Here, we report two distinct misfolded transthyretin (TTR) oligomers formed through different oligomerization pathways. A pathogenic TTR variant with a strong aggregation propensity (L55P) was used to prepare misfolded oligomers at physiological pH. Our mechanistic studies showed that the full-length TTR initially forms small oligomers, which self-assemble into short protofibrils at later stages. Enzymatic cleavage of the CD loop was also used to induce the formation of N-terminally truncated oligomers, which was detected in ex vivo cardiac TTR aggregates extracted from the tissues of patients. Structural characterization of the oligomers using solid-state nuclear magnetic resonance and circular dichroism revealed that the two TTR misfolded oligomers have distinct molecular conformations. In addition, the proteolytically cleaved TTR oligomers exhibit a higher surface hydrophobicity, suggesting the presence of distinct oligomerization pathways for TTR oligomer formation. Cytotoxicity assays also revealed that the cytotoxicity of cleaved oligomers is stronger than that of the full-length TTR oligomers, indicating that hydrophobicity might be an important property of toxic oligomers. These comparative biophysical analyses suggest that the toxic cleaved TTR oligomers formed through a different misfoling pathway may adopt distinct structural features that produce higher surface hydrophobicity, leading to the stronger cytotoxic activities.
Collapse
Affiliation(s)
- Anvesh K. R. Dasari
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Sujung Yi
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Matthew F. Coats
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Sungsool Wi
- Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), 1800 East, Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Kwang Hun Lim
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
7
|
Inoue M, Higashi T, Hayashi Y, Onodera R, Fujisawa K, Taharabaru T, Yokoyama R, Ouchi K, Misumi Y, Ueda M, Inoue Y, Mizuguchi M, Saito T, Saido TC, Ando Y, Arima H, Motoyama K, Jono H. Multifunctional Therapeutic Cyclodextrin-Appended Dendrimer Complex for Treatment of Systemic and Localized Amyloidosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40599-40611. [PMID: 36052562 DOI: 10.1021/acsami.2c09913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amyloidosis pathologically proceeds via production of amyloidogenic proteins by organs, formation of protein aggregates through structural changes, and their deposition on tissues. A growing body of evidence demonstrates that amyloidosis generally develops through three critical pathological steps: (1) production of amyloid precursor proteins, (2) amyloid formation, and (3) amyloid deposition. However, no clinically effective therapy that is capable of targeting each pathological step of amyloidosis independently is currently available. Here, we combined therapeutic effects and developed a short hairpin RNA expression vector (shRNA) complex with a cyclodextrin-appended cationic dendrimer (CDE) as a novel multitarget therapeutic drug that is capable of simultaneously suppressing these three steps. We evaluated its therapeutic effects on systemic transthyretin (ATTR) amyloidosis and Alzheimer's disease (AD) as localized amyloidosis, by targeting TTR and amyloid β, respectively. CDE/shRNA exhibited RNAi effects to suppress amyloid protein production and also achieved both inhibition of amyloid formation and disruption of existing amyloid fibrils. The multitarget therapeutic effects of CDE/shRNA were confirmed by evaluating TTR deposition reduction in early- and late-onset human ATTR amyloidosis model rats and amyloid β deposition reduction in AppNL-G-F/NL-G-F AD model mice. Thus, the CDE/shRNA complex exhibits multifunctional therapeutic efficacy and may reveal novel strategies for establishing curative treatments for both systemic and localized amyloidosis.
Collapse
Affiliation(s)
- Masamichi Inoue
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program for Leading Graduate Schools "Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program", Kumamoto University, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuya Hayashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Risako Onodera
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kazuya Fujisawa
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Taharabaru
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryoma Yokoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kenta Ouchi
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
- Department of Amyloidosis Research, Nagasaki International University, 2825-7 Huis Ten Bosch-machi, Sasebo-shi, Nagasaki 859-3298, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511 Japan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
8
|
Gao L, Xie X, Liu P, Jin J. High-avidity binding drives nucleation of amyloidogenic transthyretin monomer. JCI Insight 2022; 7:150131. [PMID: 35393947 PMCID: PMC9057628 DOI: 10.1172/jci.insight.150131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloidosis involves stepwise growth of fibrils assembled from soluble precursors. Transthyretin (TTR) naturally folds into a stable tetramer, whereas conditions and mutations that foster aberrant monomer formations facilitate TTR oligomeric aggregation and subsequent fibril extension. We investigated the early assembly of oligomers by WT TTR compared with its V30M and V122I variants. We monitored time-dependent redistribution among monomer, dimer, tetramer, and oligomer contents in the presence and absence of multimeric TTR seeds. The seeds were artificially constructed recombinant multimers that contained 20–40 TTR subunits via engineered biotin-streptavidin (SA) interactions. As expected, these multimer seeds rapidly nucleated TTR monomers into larger complexes, while having less effect on dimers and tetramers. In vivo, SA-induced multimers formed TTR-like deposits in the heart and the kidney following i.v. injection in mice. While all 3 variants prominently deposited glomerulus in the kidney, only V30M resulted in extensive deposition in the heart. The cardiac TTR deposits varied in size and shape and were localized in the intermyofibrillar space along the capillaries. These results are consistent with the notion of monomeric TTR engaging in high-avidity interactions with tissue amyloids. Our multimeric induction approach provides a model for studying the initiation of TTR deposition in the heart.
Collapse
Affiliation(s)
- Li Gao
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Cardiology, and
| | - Xinfang Xie
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pan Liu
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jing Jin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
9
|
Searching for the Best Transthyretin Aggregation Protocol to Study Amyloid Fibril Disruption. Int J Mol Sci 2021; 23:ijms23010391. [PMID: 35008816 PMCID: PMC8745744 DOI: 10.3390/ijms23010391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Several degenerative amyloid diseases, with no fully effective treatment, affect millions of people worldwide. These pathologies—amyloidoses—are known to be associated with the formation of ordered protein aggregates and highly stable and insoluble amyloid fibrils, which are deposited in multiple tissues and organs. The disruption of preformed amyloid aggregates and fibrils is one possible therapeutic strategy against amyloidosis; however, only a few compounds have been identified as possible fibril disruptors in vivo to date. To properly identify chemical compounds as potential fibril disruptors, a reliable, fast, and economic screening protocol must be developed. For this purpose, three amyloid fibril formation protocols using transthyretin (TTR), a plasma protein involved in several amyloidoses, were studied using thioflavin-T fluorescence assays, circular dichroism (CD), turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM), in order to characterize and select the most appropriate fibril formation protocol. Saturation transfer difference nuclear magnetic resonance spectroscopy (STD NMR) was successfully used to study the interaction of doxycycline, a known amyloid fibril disruptor, with preformed wild-type TTR (TTRwt) aggregates and fibrils. DLS and TEM were also used to characterize the effect of doxycycline on TTRwt amyloid species disaggregation. A comparison of the TTR amyloid morphology formed in different experimental conditions is also presented.
Collapse
|
10
|
Molecular Mechanisms of Cardiac Amyloidosis. Int J Mol Sci 2021; 23:ijms23010025. [PMID: 35008444 PMCID: PMC8744761 DOI: 10.3390/ijms23010025] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiac involvement has a profound effect on the prognosis of patients with systemic amyloidosis. Therapeutic methods for suppressing the production of causative proteins have been developed for ATTR amyloidosis and AL amyloidosis, which show cardiac involvement, and the prognosis has been improved. However, a method for removing deposited amyloid has not been established. Methods for reducing cytotoxicity caused by amyloid deposition and amyloid precursor protein to protect cardiovascular cells are also needed. In this review, we outline the molecular mechanisms and treatments of cardiac amyloidosis.
Collapse
|
11
|
Vrancx C, Vadukul DM, Suelves N, Contino S, D'Auria L, Perrin F, van Pesch V, Hanseeuw B, Quinton L, Kienlen-Campard P. Mechanism of Cellular Formation and In Vivo Seeding Effects of Hexameric β-Amyloid Assemblies. Mol Neurobiol 2021; 58:6647-6669. [PMID: 34608607 PMCID: PMC8639606 DOI: 10.1007/s12035-021-02567-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022]
Abstract
The β-amyloid peptide (Aβ) is found as amyloid fibrils in senile plaques, a typical hallmark of Alzheimer's disease (AD). However, intermediate soluble oligomers of Aβ are now recognized as initiators of the pathogenic cascade leading to AD. Studies using recombinant Aβ have shown that hexameric Aβ in particular acts as a critical nucleus for Aβ self-assembly. We recently isolated hexameric Aβ assemblies from a cellular model, and demonstrated their ability to enhance Aβ aggregation in vitro. Here, we report the presence of similar hexameric-like Aβ assemblies across several cellular models, including neuronal-like cell lines. In order to better understand how they are produced in a cellular context, we investigated the role of presenilin-1 (PS1) and presenilin-2 (PS2) in their formation. PS1 and PS2 are the catalytic subunits of the γ-secretase complex that generates Aβ. Using CRISPR-Cas9 to knockdown each of the two presenilins in neuronal-like cell lines, we observed a direct link between the PS2-dependent processing pathway and the release of hexameric-like Aβ assemblies in extracellular vesicles. Further, we assessed the contribution of hexameric Aβ to the development of amyloid pathology. We report the early presence of hexameric-like Aβ assemblies in both transgenic mice brains exhibiting human Aβ pathology and in the cerebrospinal fluid of AD patients, suggesting hexameric Aβ as a potential early AD biomarker. Finally, cell-derived hexameric Aβ was found to seed other human Aβ forms, resulting in the aggravation of amyloid deposition in vivo and neuronal toxicity in vitro.
Collapse
Affiliation(s)
- Céline Vrancx
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Devkee M Vadukul
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Nuria Suelves
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Sabrina Contino
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Ludovic D'Auria
- Neurochemistry Unit, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Florian Perrin
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Vincent van Pesch
- Neurochemistry Unit, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Bernard Hanseeuw
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, Department of Chemistry, Université de Liège, 4000, Liège, Belgium
| | - Pascal Kienlen-Campard
- Alzheimer Research Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
12
|
Transthyretin Misfolding, A Fatal Structural Pathogenesis Mechanism. Int J Mol Sci 2021; 22:ijms22094429. [PMID: 33922648 PMCID: PMC8122960 DOI: 10.3390/ijms22094429] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Transthyretin (TTR) is an essential transporter of a thyroid hormone and a holo-retinol binding protein, found abundantly in human plasma and cerebrospinal fluid. In addition, this protein is infamous for its amyloidogenic propensity, causing various amyloidoses in humans, such as senile systemic amyloidosis, familial amyloid polyneuropathy, and familial amyloid cardiomyopathy. It has been known for over two decades that decreased stability of the native tetrameric conformation of TTR is the main cause of these diseases. Yet, mechanistic details on the amyloidogenic transformation of TTR were not clear until recent multidisciplinary investigations on various structural states of TTR. In this review, we discuss recent advancements in the structural understanding of TTR misfolding and amyloidosis processes. Special emphasis has been laid on the observations of novel structural features in various amyloidogenic species of TTR. In addition, proteolysis-induced fragmentation of TTR, a recently proposed mechanism facilitating TTR amyloidosis, has been discussed in light of its structural consequences and relevance to acknowledge the amyloidogenicity of TTR.
Collapse
|