1
|
Pereira JC, de Sousa RWR, Conceição MLP, do Nascimento MLLB, de Almeida ATA, Dos Reis AC, de Sousa Cavalcante ML, Dos Reis Oliveira C, Martins IRR, Torres-Leal FL, Dittz D, de Castro E Sousa JM, Ferreira PMP, Carneiro da Silva FC. Buthionine sulfoximine acts synergistically with doxorubicin as a sensitizer molecule on different tumor cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:409-431. [PMID: 39815616 DOI: 10.1080/15287394.2024.2448663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The chemotherapeutic drug doxorubicin (DOX) has been widely used for treating solid tumors attributed to its antiproliferative effectiveness; however, its clinical use is limited due to side effects, including cardiotoxicity, myelosuppression, and drug resistance. Combining DOX with buthionine sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, showed promising results in overcoming these adverse effects, potentially reducing the required DOX dose while maintaining efficacy. The aim of the present study was to examine the effects of different concentrations of BSO and DOX, both individually and in combination, utilizing B16/F10 (murine melanoma), SNB-19 (human glioblastoma), S180 (murine sarcoma), and SVEC4-10 (murine endothelial) cell lines. Cell viability, migration, and clonogenicity were assessed using the following assays MTT, scratch, and colony formation. Antioxidant levels of GSH, as well as activities catalase (CAT), and superoxide dismutase (SOD) were measured. BSO alone exhibited minimal cytotoxic effects, while DOX alone reduced cell viability significantly. The combination of BSO+DOX decreased IC50 values for most cell lines, demonstrating a synergistic effect, especially in B16/F10, S180, and SVEC4-10 cells. BSO+DOX combination significantly inhibited cell migration and clonogenicity compared to DOX alone. While GSH levels were decreased with BSO+DOX treatment activities of CAT and SOD increased following DOX administration but remained unchanged by BSO. These results suggest that BSO may be considered a valuable tool to improve DOX therapeutic efficacy, particularly in cases of chemotherapy-resistant tumors, as BSO enhances DOX activity while potentially reducing systemic chemotherapeutic drug toxicity.
Collapse
Affiliation(s)
- Joedna Cavalcante Pereira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Micaely Lorrana Pereira Conceição
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | | | - Ana Tárcila Alves de Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Antonielly Campinho Dos Reis
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - Mickael Laudrup de Sousa Cavalcante
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Camila Dos Reis Oliveira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Italo Rossi Roseno Martins
- Academic Unit of Life Sciences, Teachers' Forming Center, Federal University of Campina Grande, Cajazeiras-PB, Brazil
| | - Francisco Leonardo Torres-Leal
- Metabolic Diseases, Exercise and Nutrition Research Group (Domen), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Federal University of Piaui, Teresina-PI, Brazil
| | - Dalton Dittz
- Laboratory of Antineoplastic Pharmacology (Lafan), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - João Marcelo de Castro E Sousa
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Felipe Cavalcanti Carneiro da Silva
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| |
Collapse
|
2
|
Chang Y, Fu Q, Lu Z, Jin Q, Jin T, Zhang M. Ginsenoside Rg3 combined with near-infrared photothermal reversal of multidrug resistance in breast cancer MCF-7/ADR cells. Food Sci Nutr 2024; 12:5750-5761. [PMID: 39139957 PMCID: PMC11317707 DOI: 10.1002/fsn3.4205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 08/15/2024] Open
Abstract
Adriamycin (ADR) is a frequently employed chemotherapeutic agent for the management of breast cancer. Nevertheless, multidrug resistance (MDR) can impair its therapeutic efficacy in breast cancer. MDR is characterized by increased expression of the P-glycoprotein (P-gp) efflux pump, up-regulation of anti-apoptotic proteins, and downregulation of pro-apoptotic proteins. Consequently, inhibition of ATP-binding cassette (ABC) transporter proteins has been deemed the most efficacious approach to overcome MDR. In this study, we used MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), Western blots, flow cytometry, immunofluorescence, and constructed xenograft tumors to investigate whether ginsenoside Rg3-near-infrared photothermal (Rg3-NIR) combination reversed multidrug resistance in MCF-7/ADR breast cancer. In vivo and in vitro experiments, the results showed that Rg3-NIR co-treatment was effective in inducing the apoptosis of MCF-7/ADR breast cancer cells. This was achieved by reversing the expression of drug resistance-associated proteins, while also inhibiting cell proliferation, migration, and epithelial-mesenchymal transition (EMT) processes via attenuation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway transduction. Ginsenoside Rg3 combined with near-infrared photothermal therapy (NIR) effectively reverses multidrug resistance in breast cancer MCF-7/ADR cells, providing a new therapeutic strategy for breast cancer drug resistance.
Collapse
Affiliation(s)
- Ying Chang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Qiang Fu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Zhongqi Lu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Quanxin Jin
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| | - Tiefeng Jin
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Meihua Zhang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| |
Collapse
|
3
|
Hu C, Liu Y, Cao W, Li N, Gao S, Wang Z, Gu F. Efficacy and Mechanism of a Biomimetic Nanosystem Carrying Doxorubicin and an IDO Inhibitor for Treatment of Advanced Triple-Negative Breast Cancer. Int J Nanomedicine 2024; 19:507-526. [PMID: 38260240 PMCID: PMC10800289 DOI: 10.2147/ijn.s440332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Introduction Chemotherapy is still the treatment of choice for advanced triple-negative breast cancer. Chemotherapy combined with immunotherapy is being tried in patients with triple-negative breast cancer. As a kind of "cold tumor", triple-negative breast cancer has a bottleneck in immunotherapy. Indoleamine 2, 3-dioxygenase-1 inhibitors can reverse the immunosuppressive state and enhance the immune response. Methods In this study, mesoporous silica nanoparticles were coated with the chemotherapeutic drug doxorubicin and indoleamine 2, 3-dioxygenase 1 inhibitor 1-Methyl-DL-tryptophan (1-MT), and then encapsulate the surfaces of a triple-negative breast cancer cell membrane to construct the tumor dual-targeted delivery system CDIMSN for chemotherapy and immunotherapy, and to investigate the immunogenic death effect of CDIMSN. Results and discussion The CDIMSN could target the tumor microenvironment. Doxorubicin induced tumor immunogenic death, while 1-MT reversed immunosuppression. In vivo findings showed that the tumor size in the CDIMSN group was 2.66-fold and 1.56-fold smaller than that in DOX and DIMSN groups, respectively. CDIMSN group was better than naked DIMSN in stimulating CD8+T cells, CD4+T cells and promoting Dendritic Cells(DC) maturation. In addition, blood analysis, biochemical analysis and Hematoxylin staining analysis of mice showed that the bionic nanoparticles had good biological safety.
Collapse
Affiliation(s)
- Chuling Hu
- Department of Pharmacy, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children’s Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Wei Cao
- Department of Neurovascular Disease, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Na Li
- Department of Pathology, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children’s Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Shen Gao
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Zhuo Wang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Fenfen Gu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Wen T, Gao Y, Zheng Y, Shan B, Song C, An Y, Cui J. Evaluation of New Folate Receptor-mediated Mitoxantrone Targeting Liposomes In Vitro. Curr Pharm Biotechnol 2024; 25:510-519. [PMID: 37957921 DOI: 10.2174/0113892010258845231101091359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Background: Ligand-mediated liposomes targeting folate receptors (FRs) that are overexpressed on the surface of tumor cells may improve drug delivery. However, the properties of liposomes also affect cellular uptake and drug release. Objective: Mitoxantrone folate targeted liposomes were prepared to increase the enrichment of drugs in tumor cells and improve the therapeutic index of drugs by changing the route of drug administration. Methods: Liposomes were prepared with optimized formulation, including mitoxantrone folatetargeted small unilamellar liposome (MIT-FSL), mitoxantrone folate-free small unilamellar liposome (MIT-SL), mitoxantrone folate-targeted large unilamellar liposome (MIT-FLL), mitoxantrone folate-free large unilamellar liposomes (MIT-LL). Cells with different levels of folate alpha receptor (FRα) expression were used to study the differences in the enrichment of liposomes, the killing effect on tumor cells, and their ability to overcome multidrug resistance. The results of the drug release experiment showed that the particle size of liposomes affected their release behavior. Large single-compartment liposomes could hardly be effectively released, while small single-compartment liposomes could be effectively released, MIT-FSL vs MIT-FLL and MIT-SL vs MIT-LL had significant differences in the drug release rate (P<0.0005). Cell uptake experiments results indicated that the ability of liposomes to enter folic acid receptor-expressing tumor cells could be improved after modification of folic acid ligands on the surface of liposomes and it was related to the expression of folate receptors on the cell surface. There were significant differences in cell uptake rates (p<0.0005) for cells with high FRα expression (SPC-A-1 cells), when MIT-FSL vs MIT-SL and MIT-FLL vs MIT-LL. For cells with low FRα expression (MCF-7 cells), their cell uptake rates were still different (p<0.05), but less pronounced than in SPC-A-1 cells. The results of the cell inhibition experiment suggest that MIT-FLL and MIT-LL had no inhibitory effect on cells, MIT-FSL had a significant inhibitory effect on cells and its IC50 value was calculated to be 4502.4 ng/mL, MIT-SL also had an inhibitory effect, and its IC50 value was 25092.1 ng/mL, there was a statistical difference (p<0.05), MIT-FSL had a higher inhibitory rate than MIT-SL at the same drug concentration. Afterward, we did an inhibitory experiment of different MIT-loaded nanoparticles on MCF-7 cells compared to the drug-resistant cells (ADR), Observing the cell growth inhibition curve, both MIT-FSL and MIT-SL can inhibit the growth of MCF-7 and MCF-7/ADR cells. For MCF- 7 cells, at the same concentration, there is little difference between the inhibition rate of MITFSL and MIT-SL, but for MCF-7/ADR, the inhibition rate of MIT-FSL was significantly higher than that of MIT-SL at the same concentration (P<0.05). Conclusion: By modifying folic acid on the surface of liposomes, tumor cells with high expression of folic acid receptors can be effectively targeted, thereby increasing the enrichment of intracellular drugs and improving efficacy. It can also change the delivery pathway, increase the amount of drug entering resistant tumor cells, and overcome resistance. .
Collapse
Affiliation(s)
- Tianjiao Wen
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yuan Gao
- Department of Pharmacy, the Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Ying Zheng
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Bin Shan
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Cong Song
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yahui An
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jingxia Cui
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
5
|
An D, He P, Liu H, Wang R, Yu X, Chen N, Guo X, Li X, Feng M. Enhanced chemoimmunotherapy of breast cancer in mice by apolipoprotein A1-modified doxorubicin liposomes combined with interleukin-21. J Drug Target 2023; 31:1098-1110. [PMID: 37909691 DOI: 10.1080/1061186x.2023.2276664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Backgroud: Breast cancer is a prevalent malignancy among women, with triple-negative breast cancer (TNBC) comprising approximately 15-20% of all cases, possessing high invasiveness, drug resistance and poor prognosis. Chemotherapy, the main treatment for TNBC, is limited by toxicity and drug resistance. Apolipoprotein A1 modified doxorubicin liposome (ApoA1-lip/Dox) was constructed in our previous study, with promising anti-tumour effect and improved safety been proved. However, during long-term administration, the problem of cumulative toxicity and insufficient tumour inhibition is still inevitable. Interleukin-21 is a small molecule protein secreted by T cells with various immune regulatory functions. IL-21 has significantly curative effects in numerous solid tumours, but it has the disadvantages of low response rate and short half-life. The combination of chemotherapy and immunotherapy has received increasing attention.Purpose: In this study, ApoA1 drug loading system and long-acting IL-21 are innovatively combined for tumour treatment.Methods: We combined ApoA1-lip/Dox and IL-21 for treatment and evaluated their impact on tumor-infiltrating lymphocytes and CD8+ T and NK cell cytotoxicity.Results: Combined administration significantly improved the tumour-infiltrating lymphocytes and enhanced the cytotoxicity of CD8+ T and NK cells. The combination of ApoA1-lip/Dox and IL-21 exhibits significantly enhanced anti-tumour efficacy with lower toxicity of ApoA1-lip/Dox, providing a new strategy for TNBC treatment with enhanced anti-tumour response and reduced toxicity.
Collapse
Affiliation(s)
- Duopeng An
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Peng He
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Hongchuan Liu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Rui Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaochen Yu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Nanye Chen
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaohan Guo
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiang Li
- Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
6
|
Lee J, Choi MK, Song IS. Recent Advances in Doxorubicin Formulation to Enhance Pharmacokinetics and Tumor Targeting. Pharmaceuticals (Basel) 2023; 16:802. [PMID: 37375753 PMCID: PMC10301446 DOI: 10.3390/ph16060802] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Doxorubicin (DOX), a widely used drug in cancer chemotherapy, induces cell death via multiple intracellular interactions, generating reactive oxygen species and DNA-adducted configurations that induce apoptosis, topoisomerase II inhibition, and histone eviction. Despite its wide therapeutic efficacy in solid tumors, DOX often induces drug resistance and cardiotoxicity. It shows limited intestinal absorption because of low paracellular permeability and P-glycoprotein (P-gp)-mediated efflux. We reviewed various parenteral DOX formulations, such as liposomes, polymeric micelles, polymeric nanoparticles, and polymer-drug conjugates, under clinical use or trials to increase its therapeutic efficacy. To improve the bioavailability of DOX in intravenous and oral cancer treatment, studies have proposed a pH- or redox-sensitive and receptor-targeted system for overcoming DOX resistance and increasing therapeutic efficacy without causing DOX-induced toxicity. Multifunctional formulations of DOX with mucoadhesiveness and increased intestinal permeability through tight-junction modulation and P-gp inhibition have also been used as orally bioavailable DOX in the preclinical stage. The increasing trends of developing oral formulations from intravenous formulations, the application of mucoadhesive technology, permeation-enhancing technology, and pharmacokinetic modulation with functional excipients might facilitate the further development of oral DOX.
Collapse
Affiliation(s)
- Jihoon Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea;
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
7
|
Meng J, Wang YY, Hao YP. Application of two glycosylated Lactobacillus surface layer proteins in coating cationic liposomes. World J Microbiol Biotechnol 2023; 39:108. [PMID: 36856865 DOI: 10.1007/s11274-023-03549-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
The ability of isolated surface layer proteins (SLPs) to reassemble on suitable surfaces enables the application of SLPs in various fields of nanotechnology. In this work, SLPs from Lactobacillus buchneri BNCC 187,964 and L. kefir BNCC 190,565 were extracted and verified as glycosylated proteins. They were applied to coat on the surface of cationic liposomes. The absorption of the two SLPs on liposomes induced the zeta potential reduction and particle size increase. The two kinds of SLP-coated liposomes demonstrated better thermal, light and pH stability than the control liposomes. And the L. kefir SLP showed better protective effects than the L. buchneri SLP. Moreover, both of the SLPs could endow liposomes with the function of binding ferritin as observed by transmission electron microscope. Fourier transform infrared spectroscopy illustrated that the interaction between the two SLPs and liposomes was similar. The recrystallization of the two SLPs on the liposomes might drive the lipid into a higher order state and hydrogen bonds were formed between the two SLPs and the liposomes. All the findings demonstrated that L. kefir SLP and L. buchneri SLP had great potential to be explored as effective coating agents to improve the stability and function of cationic liposomes.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.Yes, all have been checked.
Collapse
Affiliation(s)
- Jun Meng
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Road, 450001, Zhengzhou, Henan Province, China.
| | - Yan-Yang Wang
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Road, 450001, Zhengzhou, Henan Province, China
| | - Yun-Peng Hao
- College of Food Science and Technology, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, Henan Province, China
| |
Collapse
|
8
|
Masimov R, Büyükköroğlu G. HDL-Chitosan Nanoparticles for siRNA Delivery as an SR-B1 Receptor Targeted System. Comb Chem High Throughput Screen 2023; 26:2541-2553. [PMID: 37038689 PMCID: PMC10556401 DOI: 10.2174/1386207326666230406124524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
AIMS High-Density Lipoprotein (HDL) is a complex structure unique to the human body. ApoA-1 protein is a significant structural/functional protein of HDL and provides a natural interaction with the SR-B1 receptors on the cell membrane. The overexpression of the SR-B1 receptor in the membrane of malignant cells suggests that targeting cancer cells can be possible using HDL. The objective of this study was to prepare HDL-conjugated chitosan nanoparticles containing a genetic material that can be used for liver cancer. METHODS HDL used in the preparation of the formulations have been obtained by isolating from blood samples taken from healthy volunteers. Bcl-2 siRNA inhibiting BCL-2 oncogene was selected as the genetic material. Chitosan nanoparticles were prepared using the ionic gelation method utilizing low molecular weight chitosan. Physicochemical properties of formulations, transfection efficacy, and cytotoxicity of them on 3T3 and HepG2 cell lines were examined. RESULTS The average diameters of the selected formulations were below 250 nm with a positive zeta potential value between +36 ± 0.1 and +34 ± 0.5 mV. All formulations protected Bcl-2 siRNA from enzymatic degradation in the presence of serum. Cellular uptake ratios of particles by HepG2 cells were found to be between 76% and 98%. HDL/chitosan nanoparticles/Bcl-2 siRNA complex was found to be more toxic when compared to chitosan nanoparticles/Bcl-2 siRNA complex and naked Bcl-2 siRNA. CONCLUSION According to attained results, the HDL-conjugated chitosan nanoparticles can bring advantages for targeted siRNA delivery to malignant cells that overexpress SR-B1 receptors, such as HepG2.
Collapse
Affiliation(s)
- Rasim Masimov
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatchewan, Canada
| | - Gülay Büyükköroğlu
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkiye
| |
Collapse
|
9
|
He Y, Chen J, Ma Y, Chen H. Apolipoproteins: New players in cancers. Front Pharmacol 2022; 13:1051280. [PMID: 36506554 PMCID: PMC9732396 DOI: 10.3389/fphar.2022.1051280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoproteins (APOs), the primary protein moiety of lipoproteins, are known for their crucial role in lipid traffic and metabolism. Despite extensive exploration of APOs in cardiovascular diseases, their roles in cancers did not attract enough attention. Recently, research focusing on the roles of APOs in cancers has flourished. Multiple studies demonstrate the interaction of APOs with classical pathways of tumorigenesis. Besides, the dysregulation of APOs may indicate cancer occurrence and progression, thus serving as potential biomarkers for cancer patients. Herein, we summarize the mechanisms of APOs involved in the development of various cancers, their applications as cancer biomarkers and their genetic polymorphism associated with cancer risk. Additionally, we also discuss the potential anti-cancer therapies by virtue of APOs. The comprehensive review of APOs in cancers may advance the understanding of the roles of APOs in cancers and their potential mechanisms. We hope that it will provide novel clues and new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yingcheng He
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianrui Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yanbing Ma
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Hongping Chen,
| |
Collapse
|
10
|
Pedersen RN, Mellemkjær L, Ejlertsen B, Nørgaard M, Cronin-Fenton DP. Mortality After Late Breast Cancer Recurrence in Denmark. J Clin Oncol 2022; 40:1450-1463. [PMID: 35171656 DOI: 10.1200/jco.21.02062] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Late breast cancer (BC) recurrence (ie, ≥ 10 years after primary diagnosis) may have a more favorable prognosis than earlier recurrence. We investigated the risk of BC death after late recurrence, identified prognostic factors, and compared survival after early and late recurrence. METHODS Using the Danish Breast Cancer Group and other nationwide databases, we identified women with early or late BC recurrence during 2004-2018, who were alive 6 months after recurrence. We followed them until BC death, death from other causes, emigration, 10 years, or December 31, 2018, whichever came first. We calculated mortality rates (MRs) per 1,000 person-years (PY) and cumulative BC mortality, for early versus late recurrence, and by characteristics of the primary tumor and the late recurrence. Using Cox regression, we calculated adjusted hazard ratios (HRs) for BC death, accounting for death from other causes as competing risks. RESULTS Among 2,004 patients with late recurrence, 721 died of BC with a median survival time of 10 years (MR = 84.8 per 1,000 PY; 10-year cumulative mortality = 50%). Among 1,528 patients with early recurrence, 1,092 BC deaths occurred with a median survival time of 4 years (MR = 173.9 per 1,000 PY; 10-year cumulative mortality = 72%). We observed a lower hazard of BC-specific death among patients who developed late compared with early recurrence (hazard ratio = 0.72; 95% CI, 0.62 to 0.85). Advanced stage at primary diagnosis, distant metastases, adjuvant treatment for locoregional recurrence, and systemic treatment for distant recurrence were associated with increased mortality after late recurrence. Breast-conserving surgery at primary diagnosis, locoregional recurrence, and surgery for recurrence were associated with lower mortality after late recurrence. CONCLUSION Patients with late recurrence had more favorable prognosis than patients with early recurrence. The localization of recurrent disease was the main prognostic factor for BC death.
Collapse
Affiliation(s)
- Rikke Nørgaard Pedersen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | | | - Bent Ejlertsen
- Danish Breast Cancer Group, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Nørgaard
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Deirdre P Cronin-Fenton
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Chiangjong W, Netsirisawan P, Hongeng S, Chutipongtanate S. Red Blood Cell Extracellular Vesicle-Based Drug Delivery: Challenges and Opportunities. Front Med (Lausanne) 2021; 8:761362. [PMID: 35004730 PMCID: PMC8739511 DOI: 10.3389/fmed.2021.761362] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Recently, red blood cell-derived extracellular vesicles (RBCEVs) have attracted attention for clinical applications because of their safety and biocompatibility. RBCEVs can escape macrophages through the binding of CD47 to inhibitory receptor signal regulatory protein α. Furthermore, genetic materials such as siRNA, miRNA, mRNA, or single-stranded RNA can be encapsulated within RBCEVs and then released into target cells for precise treatment. However, their side effects, half-lives, target cell specificity, and limited large-scale production under good manufacturing practice remain challenging. In this review, we summarized the biogenesis and composition of RBCEVs, discussed the advantages and disadvantages of RBCEVs for drug delivery compared with synthetic nanovesicles and non-red blood cell-derived EVs, and provided perspectives for overcoming current limitations to the use of RBCEVs for clinical applications.
Collapse
Affiliation(s)
- Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pukkavadee Netsirisawan
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Zhang N, Xue M, Wang Q, Liang H, Yang J, Pei Z, Qin K. Inhibition of fucoidan on breast cancer cells and potential enhancement of their sensitivity to chemotherapy by regulating autophagy. Phytother Res 2021; 35:6904-6917. [PMID: 34687482 DOI: 10.1002/ptr.7303] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
Fucoidan is a marine-origin sulfated polysaccharide that has gained attention for its anticancer activities. However, the inhibitory effect of fucoidan on breast cancers by regulating autophagy and its mechanism are not clear, and the chemotherapeutic sensitization of fucoidan is largely unknown. In the present study, the anticancer potential of fucoidan was revealed in MCF-7 and MDA-MB-231 cells. Additionally, we also studied the chemotherapeutic sensitization of fucoidan by combining chemotherapeutic drugs doxorubicin (ADM) and cisplatin (DDP) with fucoidan on breast cancer cells. In the two kinds of human breast cancer cells, cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Apoptosis was examined with flow cytometry. Transfection assay was used to examine autophagy flow. Western blot was used to examine the expressions of related proteins. Results suggested that fucoidan could induce autophagy and might enhance the sensitivity of breast cancer cells to chemotherapeutic drugs. Mechanistically, fucoidan induced autophagy in breast cancer cells by down-regulating m-TOR/p70S6K/TFEB pathway. In conclusion, our research revealed that fucoidan could induce autophagy of breast cancer cells by mediating m-TOR/p70S6K/TFEB pathway, thus inhibiting tumor development. Furthermore, fucoidan might enhance the sensitivity of breast cancer cells to ADM and DDP, and this enhancement was related to autophagy.
Collapse
Affiliation(s)
- Nan Zhang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Qing Wang
- Department of Ophthalmology, Affiliated Hospital of Qingdao, Qingdao, China
| | - Hui Liang
- The Institute of Human Nutrition, Qingdao University of Medicine, Qingdao, China
| | - Jia Yang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Zhongqian Pei
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Kunpeng Qin
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| |
Collapse
|
13
|
Jin Y, Chifodya K, Han G, Jiang W, Chen Y, Shi Y, Xu Q, Xi Y, Wang J, Zhou J, Zhang H, Ding Y. High-density lipoprotein in Alzheimer's disease: From potential biomarkers to therapeutics. J Control Release 2021; 338:56-70. [PMID: 34391838 DOI: 10.1016/j.jconrel.2021.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The inverse correlation between high-density lipoprotein (HDL) levels in vivo and the risk of Alzheimer's disease (AD) has become an inspiration for HDL-inspired AD therapy, including plain HDL and various intelligent HDL-based drug delivery systems. In this review, we will focus on the two endogenous HDL subtypes in the central nervous system (CNS), apolipoprotein E-based HDL (apoE-HDL) and apolipoprotein A-I-based HDL (apoA-I-HDL), especially their influence on AD pathophysiology to reveal HDL's potential as biomarkers for risk prediction, and summarize the relevant therapeutic mechanisms to propose possible treatment strategies. We will emphasize the latest advances of HDL as therapeutics (plain HDL and HDL-based drug delivery systems) to discuss the potential for AD therapy and review innovative techniques in the preparation of HDL-based nanoplatforms to provide a basis for the rational design and future development of anti-AD drugs.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Kudzai Chifodya
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Wenxin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qiao Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yilong Xi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Wang
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| |
Collapse
|