1
|
Alatzoglou C, Patila M, Giannakopoulou A, Spyrou K, Yan F, Li W, Chalmpes N, Polydera AC, Rudolf P, Gournis D, Stamatis H. Development of a Multi-Enzymatic Biocatalytic System through Immobilization on High Quality Few-Layer bio-Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010127. [PMID: 36616038 PMCID: PMC9824680 DOI: 10.3390/nano13010127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/02/2023]
Abstract
In this work, we report the green production of few-layer bio-Graphene (bG) through liquid exfoliation of graphite in the presence of bovine serum albumin. Microscopic characterization evaluated the quality of the produced nanomaterial, showing the presence of 3-4-layer graphene. Moreover, spectroscopic techniques also confirmed the quality of the resulted bG, as well as the presence of bovine serum albumin on the graphene sheets. Next, for the first time, bG was used as support for the simultaneous covalent co-immobilization of three enzymes, namely β-glucosidase, glucose oxidase, and horseradish peroxidase. The three enzymes were efficiently co-immobilized on bG, demonstrating high immobilization yields and activity recoveries (up to 98.5 and 90%, respectively). Co-immobilization on bG led to an increase of apparent KM values and a decrease of apparent Vmax values, while the stability of the nanobiocatalysts prevailed compared to the free forms of the enzymes. Co-immobilized enzymes exhibited high reusability, preserving a significant part of their activity (up to 72%) after four successive catalytic cycles at 30 °C. Finally, the tri-enzymatic nanobiocatalytic system was applied in three-step cascade reactions, involving, as the first step, the hydrolysis of p-Nitrophenyl-β-D-Glucopyranoside and cellobiose.
Collapse
Affiliation(s)
- Christina Alatzoglou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Michaela Patila
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Archontoula Giannakopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Feng Yan
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wenjian Li
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nikolaos Chalmpes
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki C. Polydera
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dimitrios Gournis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Microwave Synthesis, Characterization and Perspectives of Wood Pencil-Derived Carbon. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
More than 14 billion pencils are manufactured and used globally every year. On average, a pencil is discarded after 60% of its original length has been depleted. In the present work we propose a simple and affordable way of converting this non-neglectable amount of waste into added value carbon product. In particular, we demonstrate the microwave synthesis of carbon from the wood pencil with and without chemical activation. This could be a process stage before the final recycling of the expensive graphite core. In the latter case, irradiation of the wood pencil in a domestic microwave oven heats up the pencil’s graphite core, thus inducing carbonization of its wood casing. The carbonized product consists of amorphous carbon nanosheets having relatively low surface area. However, if the wood pencil is soaked in 50% KOH aqueous solution prior to microwave irradiation, a significantly higher surface area of carbon is obtained, consisting of irregular-shaped porous particles. Consequently, the obtained carbon can easily decolorize a methylene blue aqueous solution, can be used to make pocket warmers or gunpowder, and lastly, serves as an excellent adsorbent towards Cr(VI) removal from water, showing a maximum adsorption capacity of 70–75 mg/g within 24 h at 23 °C, pH = 3.
Collapse
|
3
|
Hypergolic Synthesis of Inorganic Materials by the Reaction of Metallocene Dichlorides with Fuming Nitric Acid at Ambient Conditions: The Case of Photocatalytic Titania. SCI 2021. [DOI: 10.3390/sci3040046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypergolic materials synthesis is a new preparative technique in materials science that allows a wide range of carbon or inorganic solids with useful properties to be obtained. Previously we have demonstrated that metallocenes are versatile reagents in the hypergolic synthesis of inorganic materials, such as γ-Fe2O3, Cr2O3, Co, Ni and alloy CoNi. Here, we go one step further by using metallocene dichlorides as precursors for the hypergolic synthesis of additional inorganic phases, such as photocatalytic titania. Metallocene dichlorides are closely related to metallocenes, thus expanding the arsenal of organometallic compounds that can be used in hypergolic materials synthesis. In the present case, we show that hypergolic ignition of the titanocene dichloride–fuming nitric acid pair results in the fast and spontaneous formation of titania nanoparticles at ambient conditions in the form of anatase–rutile mixed phases. The obtained titania shows good photocatalytic activity towards Cr(VI) removal (100% within 9 h), with the latter being dramatically enhanced after calcination of the powder at 500 °C (100% within 3 h). Notably, this performance was found to be comparable to that of commercially available P25 TiO2 under identical conditions. The cases of zirconocene, hafnocene and molybdocene dichlorides are discussed in this work, which aims to show the wider applicability of metallocene dichlorides in the hypergolic synthesis of inorganic materials (ZrO2, HfO2, MoO2).
Collapse
|
4
|
Structure/Properties Relationship of Anionically Synthesized Diblock Copolymers " Grafted to" Chemically Modified Graphene. Polymers (Basel) 2021; 13:polym13142308. [PMID: 34301065 PMCID: PMC8309249 DOI: 10.3390/polym13142308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
A novel approach to obtaining nanocomposite materials using anionic sequential polymerization and post-synthetic esterification reactions with chemically modified graphene sheets (CMGs) is reported. The anionically synthesized diblock copolymer precursors of the PS-b-PI-OH type were grafted to the chemically modified –COOH groups of the CMGs, giving rise to the final composite materials, namely polystyrene-b-poly(isoprene)-g-CMGs, which exhibited enhanced physicochemical properties. The successful synthesis was determined through multiple molecular characterization techniques together with thermogravimetric analysis for the verification of increased thermal stability, and the structure/properties relationship was justified through transmission electron microscopy. Furthermore, the arrangement of CMGs utilizing lamellar and cylindrical morphologies was studied in order to determine the effect of the loaded CMGs in the adopted topologies.
Collapse
|