1
|
Zhu Y, Huang F, Liu X, Hou Y, Huang Y. Phillyrin regulates the JAK2/STAT3 signaling pathway by inhibiting TOP2A expression to accelerate ferroptosis in hepatocellular carcinoma. Oncol Rep 2025; 53:43. [PMID: 39950325 PMCID: PMC11843411 DOI: 10.3892/or.2025.8876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/23/2025] Open
Abstract
Despite advancements and refinements in the therapeutic approaches for hepatic malignancies, liver cancer remains a prevalent and deadly form of cancer, with its grim outlook posing as a significant clinical challenge. Phillyrin (PHN) has been reported to have anticancer effects, but the anticancer mechanism in liver cancer is ominous. By searching the potential target of PHN in the online database and liver cancer disease database, it was found that there is only one overlap gene, and DNA topoisomerase II alpha (TOP2A) is abnormally expressed in liver cancer tissues. TOP2A overexpression and downregulated hepatocellular carcinoma cell lines were then constructed in vitro, and it was examined whether PHN treatment induced ferroptosis in hepatocellular carcinoma by regulating TOP2A's inhibition of Janus kinase 2/Signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway through phenotypic assay, western blot assay, reverse transcription‑quantitative PCR assay and electron microscopy. The results showed that PHN could inhibit the expression of TOP2A protein and JAK2/STAT3 signaling pathway in hepatoma cells. PHN could also downregulate glutathione peroxidase 4 by suppressing the expression of TOP2A protein. PHN impeded the activity of factor inhibiting hypoxia‑inducible factor 1 alpha, thereby augmenting the synthesis of iron‑dependent apoptosis‑related proteins including cytochrome c oxidase subunit II, long‑chain acyl‑CoA synthetase family member 4 and NADPH oxidase 1, thus facilitating an increase in Fe2+ concentration and accelerating oxidative harm within hepatocellular carcinoma cells, culminating in the induction of ferroptotic cell death in these liver malignancy cells.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fenghe Huang
- Hebei Yiling Medical Research Institute Co., LTDS, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yunlong Hou
- Hebei Yiling Medical Research Institute Co., LTDS, Shijiazhuang, Hebei 050000, P.R. China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
2
|
Wei JX, Li YZ, Fu X, Yu CY, Liao YH. Pulmonary delivery of forsythin-phospholipid complexes improves the lung anti-inflammatory efficacy in mice by enhancing dissolution and lung tissue affinity. Colloids Surf B Biointerfaces 2024; 245:114305. [PMID: 39383581 DOI: 10.1016/j.colsurfb.2024.114305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Forsythin, currently in phase II clinical trials in China for the treatment of the common cold and influenza, faces challenges in achieving adequate lung drug exposure due to its limited dissolution and permeability, thereby restricting its therapeutic efficacy. The objective of this work was to formulate a forsythin-phospholipid complex (FPC) to enhance its dissolution properties and lung affinity with a particular view to improving pulmonary drug exposure and anti-inflammatory response. The results revealed that forsythin reacted with dipalmitoyl-phosphatidylcholine to form a stable, nanosized FPC suspension. This formulation significantly improved the in vitro drug's dissolution, cellular uptake, and lung affinity compared to its uncomplexed form. Intratracheal administration of FPC in a mouse model of acute lung injury induced by lipopolysaccharide (LPS) resulted in a substantial increase in drug exposure to lung tissues (39.6-fold) and immune cells in the epithelial lining fluid (198-fold) compared to intraperitoneal injection. In addition, FPC instillation exhibited superior local anti-inflammatory effects, leading to improved survival rates among mice with LPS-induced acute respiratory distress syndrome, outperforming both instilled forsythin and injected FPC. Overall, this work demonstrated the potential of phospholipid complexes as a viable option for developing inhalation products for drugs with limited solubility and permeability properties.
Collapse
Affiliation(s)
- Jia-Xing Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yu-Zhuo Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiang Fu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Chen-Yang Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yong-Hong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
3
|
Laveriano-Santos EP, Luque-Corredera C, Trius-Soler M, Lozano-Castellón J, Dominguez-López I, Castro-Barquero S, Vallverdú-Queralt A, Lamuela-Raventós RM, Pérez M. Enterolignans: from natural origins to cardiometabolic significance, including chemistry, dietary sources, bioavailability, and activity. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38952149 DOI: 10.1080/10408398.2024.2371939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The enterolignans, enterolactone and enterodiol, the main metabolites produced from plant lignans by the gut microbiota, have enhanced bioavailability and activity compared to their precursors, with beneficial effects on metabolic and cardiovascular health. Although extensively studied, the biosynthesis, cardiometabolic effects, and other therapeutic implications of mammalian lignans are still incompletely understood. The aim of this review is to provide a comprehensive overview of these phytoestrogen metabolites based on up-to-date information reported in studies from a wide range of disciplines. Established and novel synthetic strategies are described, as are the various lignan precursors, their dietary sources, and a proposed metabolic pathway for their conversion to enterolignans. The methodologies used for enterolignan analysis and the available data on pharmacokinetics and bioavailability are summarized and their cardiometabolic bioactivity is explored in detail. The special focus given to research on the health benefits of microbial-derived lignan metabolites underscores the critical role of lignan-rich diets in promoting cardiovascular health.
Collapse
Affiliation(s)
- Emily P Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | | | - Marta Trius-Soler
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Julian Lozano-Castellón
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Inés Dominguez-López
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Sara Castro-Barquero
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- BCNatal|Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Du B, Luo M, Ren C, Zhang J. PDE4 inhibitors for disease therapy: advances and future perspective. Future Med Chem 2023; 15:1185-1207. [PMID: 37470147 DOI: 10.4155/fmc-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The PDE4 enzyme family is specifically responsible for hydrolyzing cAMP and plays a vital role in regulating the balance of second messengers. As a crucial regulator in signal transduction, PDE4 has displayed promising pharmacological targets in a variety of diseases, for which its inhibitors have been used as a therapeutic strategy. This review provides a comprehensive summary of the development of PDE4 inhibitors in the past few years, along with the structure, clinical and research progress of multiple inhibitors of PDE4, focusing on the research and development strategies of PDE4 inhibitors. We hope our analysis will provide a significant reference for the future development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Chen G, Mao Y, Wang J, Zhou J, Diao L, Wang S, Zhao W, Zhu X, Yu X, Zhao F, Liu X, Liu M. Phillyrin ameliorated collagen-induced arthritis through inhibition of NF-κB and MAPKs pathways in fibroblast-like synoviocytes. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
6
|
Nishibe S, Oikawa H, Mitsui-Saitoh K, Sakai J, Zhang W, Fujikawa T. The Differences of Mechanisms in Antihypertensive and Anti-Obesity Effects of Eucommia Leaf Extract between Rodents and Humans. Molecules 2023; 28:molecules28041964. [PMID: 36838952 PMCID: PMC9965471 DOI: 10.3390/molecules28041964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
In the 1970s, Eucommia leaf tea, known as Tochu-cha in Japanese, was developed from roasted Eucommia leaves in Japan and is considered as a healthy tea. The antihypertensive, diuretic, anti-stress, insulin resistance improving, and anti-obesity effects of Eucommia leaf extract have been reported. However, the identification and properties of the active components as well as the underlying mechanism of action are largely unknown. In this review, we summarize studies involving the oral administration of geniposidic acid, a major iridoid component of Eucommia leaf extract which increases plasma atrial natriuretic peptide (ANP) on the atria of spontaneously hypertensive rats (SHR) by activating the glucagon-like peptide-1 receptor (GLP-1R). To achieve the antihypertensive effects of the Eucommia leaf extract through ANP secretion in humans, combining a potent cyclic adenosine monophosphate phosphodiesterase (cAMP-PDE) inhibitor, such as pinoresinol di-β-d-glucoside, with geniposidic acid may be necessary. Changes in the gut microbiota are an important aspect involved in the efficacy of asperuloside, another component of the Eucommia leaf extract, which improves obesity and related sequelae, such as insulin resistance and glucose intolerance. There are species differences of mechanisms associated with the antihypertensive and anti-obesity effects between rodents and humans, and not all animal test results are consistent with that of human studies. This review is focused on the mechanisms in antihypertensive and anti-obesity effects of the Eucommia leaf extract and summarizes the differences of mechanisms in their effects on rodents and humans based on our studies and those of others.
Collapse
Affiliation(s)
- Sansei Nishibe
- Faculy of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari 061-0293, Hokkaido, Japan
- Correspondence: ; Fax: +81-11-812-5460
| | - Hirotaka Oikawa
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka 513-8670, Mie, Japan
| | - Kumiko Mitsui-Saitoh
- Faculty of Health and Sports, Nagoya Gakuin Unversity, 1350 Kamishinano, Seto 480-1298, Aichi, Japan
| | - Junichi Sakai
- Faculty of Health and Sports, Nagoya Gakuin Unversity, 1350 Kamishinano, Seto 480-1298, Aichi, Japan
| | - Wenping Zhang
- Faculty of Acupuncture & Moxibustion, Suzuka University of Medical Science, 1001-1 Kishioka-cho, Suzuka 510-0293, Mie, Japan
| | - Takahiko Fujikawa
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka 513-8670, Mie, Japan
| |
Collapse
|
7
|
A Themed Issue in Honor of Professor K. Hüsnü Can Baser-Outstanding Contributions in the Fields of Pharmacognosy, Phytochemistry, Botany and Ethnopharmacology. Molecules 2021; 26:molecules26185507. [PMID: 34576976 PMCID: PMC8467153 DOI: 10.3390/molecules26185507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Dear Colleagues, [...].
Collapse
|