1
|
Son SA, Kim Y, Kim E, Lee KH, Kang WS, Kim JS, Hwang K, Kim S. Physicochemical Properties of Low-Molecular-Weight Homogalacturonan Pectin from Enzyme-Hydrolyzed Red Okra. Foods 2024; 13:3353. [PMID: 39517137 PMCID: PMC11545615 DOI: 10.3390/foods13213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, we focused on reducing the molecular weight of purified red okra pectin using various hydrolytic enzymes and evaluating its physicochemical properties or characterization. The enzyme treatments targeted both the main pectin chain and the side-chain sugars, resulting in a reduction in the molecular weight by approximately 10% (from 647 kDa) to 60% (down to 252 kDa). Both the purified red okra pectin and enzyme-treated pectins exhibited a homogalacturonan (HG)-type backbone. Fourier transform infrared (FT-IR) spectroscopy revealed a decrease in the absorbance peak for the pectin backbone (1200-1000 cm-1) in the low-molecular-weight (LMW) pectin. The most significant decrease was observed at 3300 cm-1 in pectin treated with both RGH+RGAE enzymes, indicating reduced sugar bonds. These results demonstrate the physicochemical changes in LMW red okra pectin following enzyme treatment and confirm its potential applications due to its unique characteristics.
Collapse
Affiliation(s)
- Seon ah Son
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Youngbae Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Eun Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Ki Hoon Lee
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Wan Seok Kang
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Jin Seok Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Kwontack Hwang
- Department of Food Science and Nutrition, Nambu University, Gwangju 62271, Republic of Korea;
| | - Sunoh Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| |
Collapse
|
2
|
Liu T, Meng H, Guo X, Liu Y, Zhang J. Influences of different ultrasonic treatment intensities on the molecular chain conformation and interfacial behavior of sugar beet pectin. Int J Biol Macromol 2024; 275:133643. [PMID: 38964680 DOI: 10.1016/j.ijbiomac.2024.133643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
In this study, the effects of different ultrasonic treatment intensities (57, 170, and 283 W/cm2) on the chemical composition, molecular chain characteristics, crystal structure, micromorphology, interfacial adsorption behavior and emulsifying properties of sugar beet pectin (SBP) were investigated. Ultrasonic treatment did not change the types of SBP monosaccharides, but it had impacts on their various monosaccharide contents. Moreover, the feruloylated, acetyl, and methoxy groups of SBP also undergo varying degrees of changes. The increase in ultrasonic treatment intensity led to transition in the molecular chain conformation of SBP from rigid semi-flexible chains to flexible chains, accompanied by modification in its crystal structure. Microstructural analysis of SBP confirmed the significant change in molecular chain conformation. Modified SBP could form an elastic interfacial film with higher deformation resistance on the oil-water interface. The SBP sample modified with 170 W/cm2 exhibited better emulsifying properties owing to its better interfacial adsorption behavior. Moreover, the emulsions prepared with modified SBP exhibited better stability capability under different environmental stresses (pH value, salt ion concentration, heating temperature and freeze-thaw treatment). The results revealed that the ultrasonic technology is useful to improve the emulsifying properties of SBP.
Collapse
Affiliation(s)
- Ting Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
3
|
Cheng B, Lin J, Zou J, Zhuang Y, Zheng L, Zhang G, Huang B, Fei P. Preparation of curcumin-loaded pectin-nisin copolymer emulsion and evaluation of its stability. Int J Biol Macromol 2024; 254:127812. [PMID: 37923038 DOI: 10.1016/j.ijbiomac.2023.127812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
In the paper, Nisin was grafted onto native pectin by the 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) method. Structure characterisation showed that the carboxyl group of pectin interacted with the amino group of Nisin and formed an amide bond. The highest grafting ratio of the modified pectin was up to 24.89 %. The emulsifying property of modified pectin, significantly improved, and emulsification performance improved with increasing grafting ratio. Emulsifying activity, emulsion stability, Zeta potential, and droplet morphology data demonstrate a notable enhancement in pectin's emulsifying properties due to Nisin's introduction, with the degree of grafting showing a direct correlation with the improvement observed. Pectin-based emulsion is utilized to load curcumin, enhancing its stability and bioavailability. Research findings highlight that the incorporation of Nisin-modified pectin significantly elevates curcumin encapsulation efficiency, while decelerating its release rate. Moreover, the stability of curcumin loaded in the modified pectin under light exposure, alkaline conditions, and long-term storage is also significantly improved. Ultimately, the bioavailability of curcumin escalates from 0.368 to 0.785.
Collapse
Affiliation(s)
- Bingqing Cheng
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Jiaofen Lin
- Department of Biotechnology, Xiamen Ocean Vocation College, Xiamen, Fujian 361000, China; Xiamen Key Laboratory of Intelligent Fishery, Fujian, Xiamen 361100, China
| | - Jinmei Zou
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Yuanhong Zhuang
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Linhua Zheng
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Guoguang Zhang
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Bingqing Huang
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| | - Peng Fei
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
4
|
Chen H, Guo X, Li J, Liu Z, Hu Y, Tao X, Song S, Zhu B. Pickering emulsions synergistically stabilized by sugar beet pectin and montmorillonite exhibit enhanced storage stability and viscoelasticity. Int J Biol Macromol 2023; 242:124788. [PMID: 37164140 DOI: 10.1016/j.ijbiomac.2023.124788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Sugar beet pectin (SBP) is a naturally occurring emulsifying type of pectin fabricated into nanocomposites with montmorillonite (MMT) and then introduced as a stabilizer for high internal phase emulsions (HIPEs). SBP-MMT composites performed well in emulsifying medium-chain triglyceride with an oil volume fraction (φ) of 0.1-0.85 and SBP/MMT mass ratios of 1:0.1-1:0.75. The two representative high internal phase emulsions stabilized by SBP-MMT composites at different SBP/MMT mass ratios exhibited good stability against creaming and coalescence. In these emulsion systems, SBP and MMT formed a network in the continuous phase that markedly improved the rheological properties, including the storage modulus (by 3 orders of magnitude). Confocal light scattering microscopy analysis indicated that a fraction of MMT could work synergistically with SBP in adsorbing on oil droplet surfaces, enhancing stability. SBP-MMT composites stabilized high internal phase emulsions destabilized after the freeze-thaw treatment (-40 °C for 20 h and 25 °C for 4 h) but could be facilely re-emulsified via high-speed shearing. The gastrointestinal digestion behaviors were also modified by stabilizing SBP and MMT. Overall, this work reveals a hitherto undocumented strategy for fabricating highly stable emulsions based on SBP-MMT composites which have huge prospects for application in the food and related industries.
Collapse
Affiliation(s)
- Hualei Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaoya Tao
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Shuang Song
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China.
| |
Collapse
|
5
|
Jiao X, Li F, Zhao J, Wei Y, Zhang L, Yu W, Li Q. The Preparation and Potential Bioactivities of Modified Pectins: A Review. Foods 2023; 12:1016. [PMID: 36900531 PMCID: PMC10001417 DOI: 10.3390/foods12051016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Pectins are complex polysaccharides that are widely found in plant cells and have a variety of bioactivities. However, the high molecular weights (Mw) and complex structures of natural pectins mean that they are difficult for organisms to absorb and utilize, limiting their beneficial effects. The modification of pectins is considered to be an effective method for improving the structural characteristics and promoting the bioactivities of pectins, and even adding new bioactivities to natural pectins. This article reviews the modification methods, including chemical, physical, and enzymatic methods, for natural pectins from the perspective of their basic information, influencing factors, and product identification. Furthermore, the changes caused by modifications to the bioactivities of pectins are elucidated, including their anti-coagulant, anti-oxidant, anti-tumor, immunomodulatory, anti-inflammatory, hypoglycemic, and anti-bacterial activities and the ability to regulate the intestinal environment. Finally, suggestions and perspectives regarding the development of pectin modification are provided.
Collapse
Affiliation(s)
- Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Wenjun Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| |
Collapse
|
6
|
Eichhöfer H, Bindereif B, Karbstein HP, Bunzel M, van der Schaaf US, Wefers D. Influence of Arabinan Fine Structure, Galacturonan Backbone Length, and Degree of Esterification on the Emulsifying Properties of Acid-Extracted Sugar Beet Pectins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2105-2112. [PMID: 36668901 DOI: 10.1021/acs.jafc.2c07460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sugar beet pectins (SBPs) are known for their emulsifying properties, but it is yet unknown which structural elements are most important for functionality. Recent results indicated that the arabinose content has a decisive influence, but the approach applied did not allow causality to be established. In this study, a mostly intact SBP was selectively modified and the obtained pectins were analyzed for their molecular structure and their emulsifying properties. De-esterification only resulted in a moderate increase in droplet size. The length of the pectin backbone only influenced the emulsifying properties when the homogalacturonan backbone was cleaved to a higher extent. By using different arabinan-modifying enzymes, it was demonstrated that both higher portions and chain lengths of arabinans positively influence the emulsifying properties of SBPs. Therefore, we were able to refine the structure-function relationships for acid-extracted SBPs, which can be used to optimize extraction conditions.
Collapse
Affiliation(s)
- Hendrik Eichhöfer
- Institute of Applied Biosciences─Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany
| | - Benjamin Bindereif
- Institute of Process Engineering in Life Sciences─Food Process Engineering, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Building 50.31, 76131 Karlsruhe, Germany
| | - Heike Petra Karbstein
- Institute of Process Engineering in Life Sciences─Food Process Engineering, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Building 50.31, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences─Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany
| | - Ulrike Sabine van der Schaaf
- Institute of Process Engineering in Life Sciences─Food Process Engineering, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Building 50.31, 76131 Karlsruhe, Germany
| | - Daniel Wefers
- Institute of Chemistry─Division of Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle/Saale, Germany
| |
Collapse
|
7
|
Du Y, Zhang S, Sun-Waterhouse D, Zhou T, Xu F, Waterhouse GI, Wu P. Physicochemical, structural and emulsifying properties of RG-I enriched pectin extracted from unfermented or fermented cherry pomace. Food Chem 2022; 405:134985. [DOI: 10.1016/j.foodchem.2022.134985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
8
|
Olawuyi IF, Park JJ, Park GD, Lee WY. Enzymatic Hydrolysis Modifies Emulsifying Properties of Okra Pectin. Foods 2022; 11:1497. [PMID: 35627067 PMCID: PMC9140940 DOI: 10.3390/foods11101497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Okra pectins (OKPs) with diverse structures obtained by different extraction protocols have been used to study the relationship between their molecular structure and emulsifying properties. A targeted modification of molecular structure offers a more rigorous method for investigating the emulsifying properties of pectins. In this study, three glycoside hydrolases, polygalacturonase (PG), galactanase (GL), and arabinanase (AR), and their combinations, were used to modify the backbone and side-chains of OKP, and the relationships between the pectin structure and emulsion characteristics were examined by multivariate analysis. Enzymatic treatment significantly changed the molecular structure of OKP, as indicated by monosaccharide composition, molecular weight, and structure analysis. GL- and AR- treatments reduced side-chains, while PG-treatment increased side-chain compositions in pectin structure. We compared the performance of hydrolyzed pectins in stabilizing emulsions containing 50% v/v oil-phase and 0.25% w/v pectin. While the emulsions were stabilized by PG (93.3% stability), the emulsion stability was reduced in GL (62.5%), PG+GL+AR (37.0%), and GL+AR (34.0%) after 15-day storage. Furthermore, microscopic observation of the droplets revealed that emulsion destabilization was caused by flocculation and coalescence. Principal component analysis confirmed that neutral sugar side-chains are key for long-term emulsion stabilization and that their structure explains the emulsifying properties of OKP. Our data provide structure-function information applicable to the tailored extraction of OKP with good emulsification performance, which can be used as a natural emulsifier.
Collapse
Affiliation(s)
| | - Jong Jin Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Coastal Agricultural Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Gwang Deok Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Won Young Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
9
|
Preparation and Characterization of Beads of Sodium Alginate/Carboxymethyl Chitosan/Cellulose Nanofiber Containing Porous Starch Embedded with Gallic Acid: An In Vitro Simulation Delivery Study. Foods 2022; 11:foods11101394. [PMID: 35626964 PMCID: PMC9141807 DOI: 10.3390/foods11101394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, a system was designed that can encapsulate and deliver gallic acid (GA), which was composed of polysaccharide polymers based on sodium alginate (SA), carboxymethyl chitosan (CCT), and cellulose nanofibers (CN) and was assisted by porous starch. The compositions were characterized by rheology and zeta potentials, and the results showed that the materials used in this study could effectively guarantee the stability of the system. The morphology and chemical structure of the beads were characterized by SEM and FT-IR, the results indicated that the addition of CCT could effectively reduce the cracks and pores on the surface of the beads, which was beneficial to the encapsulation and delivery of GA. Moreover, the results of the swelling rate, release tests, and antioxidant tests also proved the effectiveness of the system. The pH response effect of SA/CN/CCT (SCC) beads and the protection of GA were superior, and the release rate of GA in simulated gastric fluid (SGF) was only 6.95%, while SA and SA/CN (SCN) beads reached 57.94% and 78.49%, respectively. In conclusion, the interpenetrating network polymers constructed by SA, CCT, and CN, which, combined with porous starch as a coating layer, can achieve the embedding and the delivery of GA.
Collapse
|
10
|
Confirmation and understanding the potential emulsifying characterization of persimmon pectin: From structural to diverse rheological aspects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|