1
|
Zhang X, Lu Y, Yang L, Sui Y, Zhang C, Zhang W, Guo J, Wang K, Liu X, Lin M. A Dual-Interaction Supramolecular Hydrogel System for siRNA Delivery to Enhance Endometrial Receptivity in Stem Cell Therapy. Biomacromolecules 2025. [PMID: 40279154 DOI: 10.1021/acs.biomac.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Endometrial receptivity is crucial for embryo implantation success. Stem cell therapy shows promise for improving endometrial health. We developed a supramolecular hydrogel scaffold based on stereocomplexed triblock copolymers (MPEG-(sc-PLA)-PEI) and α-cyclodextrin for codelivering menstrual blood-derived endometrial stem cells (MenSCs) and siRNA targeting DNA methyl transferase 1 (DNMT1), enabling RNAi-mediated gene silencing to improve endometrial receptivity. The resulting α-CD/MPEG-(sc-PLA)-PEI hydrogels exhibited high mechanical stability, excellent self-healing capabilities, and sustained siRNA release via a dual-interaction mechanism involving host-guest interaction and stereocomplexation. In vitro studies indicated superior cellular uptake of DNMT1 siRNA encapsulated within MPEG-(sc-PLA)-PEI complexes, resulting in significant upregulation of endometrial receptivity markers, including HOXA10, ITGB3, and E-cadherin. In vivo experiments showed that DNMT1 siRNA-loaded hydrogels facilitated endometrial remodeling through therapeutic transgene expression in MenSCs. These findings suggest that this multifunctional hydrogel system may serve as an effective tool for stem cell-based therapies aimed at enhancing endometrial receptivity.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Shenyang Key Laboratory of Biomedical Polymers, Liaoning Institute of birth health and development, Reproductive Hospital of China Medical University, 10 Puhe street, Huanggu District, Shenyang, Liaoning 110031, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics, China Medical University, 77 Puhe Road, North New Area, Shenyang, Liaoning 110122, China
| | - Yongping Lu
- Shenyang Key Laboratory of Biomedical Polymers, Liaoning Institute of birth health and development, Reproductive Hospital of China Medical University, 10 Puhe street, Huanggu District, Shenyang, Liaoning 110031, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics, China Medical University, 77 Puhe Road, North New Area, Shenyang, Liaoning 110122, China
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Yu Sui
- Shenyang Key Laboratory of Biomedical Polymers, Liaoning Institute of birth health and development, Reproductive Hospital of China Medical University, 10 Puhe street, Huanggu District, Shenyang, Liaoning 110031, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics, China Medical University, 77 Puhe Road, North New Area, Shenyang, Liaoning 110122, China
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, 77 Puhe Road, North New Area, Shenyang, Liaoning 110122, China
| | - Chong Zhang
- Shenyang Key Laboratory of Biomedical Polymers, Liaoning Institute of birth health and development, Reproductive Hospital of China Medical University, 10 Puhe street, Huanggu District, Shenyang, Liaoning 110031, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics, China Medical University, 77 Puhe Road, North New Area, Shenyang, Liaoning 110122, China
| | - Wei Zhang
- Shenyang Key Laboratory of Biomedical Polymers, Liaoning Institute of birth health and development, Reproductive Hospital of China Medical University, 10 Puhe street, Huanggu District, Shenyang, Liaoning 110031, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics, China Medical University, 77 Puhe Road, North New Area, Shenyang, Liaoning 110122, China
| | - Jing Guo
- Shenyang Key Laboratory of Biomedical Polymers, Liaoning Institute of birth health and development, Reproductive Hospital of China Medical University, 10 Puhe street, Huanggu District, Shenyang, Liaoning 110031, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics, China Medical University, 77 Puhe Road, North New Area, Shenyang, Liaoning 110122, China
| | - Keke Wang
- Department of Pharmacy, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, China
| | - Xiaoliang Liu
- Shenyang Key Laboratory of Biomedical Polymers, Liaoning Institute of birth health and development, Reproductive Hospital of China Medical University, 10 Puhe street, Huanggu District, Shenyang, Liaoning 110031, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics, China Medical University, 77 Puhe Road, North New Area, Shenyang, Liaoning 110122, China
| | - Meina Lin
- Shenyang Key Laboratory of Biomedical Polymers, Liaoning Institute of birth health and development, Reproductive Hospital of China Medical University, 10 Puhe street, Huanggu District, Shenyang, Liaoning 110031, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics, China Medical University, 77 Puhe Road, North New Area, Shenyang, Liaoning 110122, China
| |
Collapse
|
2
|
Chouhan A, Tiwari A. Production of polyhydroxyalkanoate (PHA) biopolymer from crop residue using bacteria as an alternative to plastics: a review. RSC Adv 2025; 15:11845-11862. [PMID: 40236575 PMCID: PMC11998090 DOI: 10.1039/d4ra08505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Growing environmental concerns and the pressing need to combat plastic pollution have led to extensive research on sustainable alternatives to traditional plastics. Human blood sample analysis discovered microplastics which has caused health concerns regarding their influence on proper functioning of the human body. The compound polyhydroxyalkanoate (PHA) has gained popularity due to its comparable structure with synthetic polymers like polypropylene because it belongs to the category of biodegradable alternatives. Different PHA molecules have distinct properties because of their composition of monomers and production parameters. The current market offers an array of biopolymers but they do not satisfy industrial requirements regarding thermostability. The industrial heat-stability of materials comes from green biomass-derived polyethylene and extrudable cellulose biopolymers. The research analyses PHAs' suitability as synthetic plastic substitutes and addresses barriers to their industrial production and proposes modifications to improve performance. It underscores the importance of harnessing crop residue streams to produce valuable biopolymers, promoting resource efficiency and mitigating the environmental impact of plastic waste. This work aligns with the UN's sustainability goals, including SDG 3 good health, SDG 11 sustainable cities, SDG 12 responsible consumption, SDG 13 climate action, and SDG 14 sea and ocean protection.
Collapse
Affiliation(s)
- Aakriti Chouhan
- School of Biomolecular Engineering & Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidhyalaya (University of Technology of Madhya Pradesh), Accredited with Grade "A" By NAAC Airport Road Bhopal-462033 India
| | - Archana Tiwari
- School of Biomolecular Engineering & Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidhyalaya (University of Technology of Madhya Pradesh), Accredited with Grade "A" By NAAC Airport Road Bhopal-462033 India
| |
Collapse
|
3
|
Wang YZ, Wang ZX, Jiang HJ, Ni LH, Ju H, Wu YC, Li HJ. Advances in the use of nanotechnology for treating gout. Nanomedicine (Lond) 2025; 20:355-369. [PMID: 39873132 PMCID: PMC11812334 DOI: 10.1080/17435889.2025.2457315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Gout is a commonly occurring form of inflammatory arthritis caused by persistently elevated levels of uric acid. Its incidence rate rises with the increases of living standards and poor dietary habits, which has a considerable impact on the quality of life of the patients. Although there is a wide assortment of drugs available for the management of gout, the effectiveness and security of these drugs are limited by their poor chemical stability and insufficient targeting. Therefore, development of effective nanomedicine systems to overcome these problems and treat gout becomes a high priority. This review provides a detailed introduction research progress on developing advanced nanomedicines using polymers, hydrogel, nanocapsules, lipids, bionic vesicles, inorganic artificial organelles and electronically controlled conveyor systems carriers to improve gout therapy.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Zi-Xuan Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | | | - Li-Hui Ni
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Hao Ju
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| |
Collapse
|
4
|
Sousa AC, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Maurício AC. Three-Dimensional Printing/Bioprinting and Cellular Therapies for Regenerative Medicine: Current Advances. J Funct Biomater 2025; 16:28. [PMID: 39852584 PMCID: PMC11765675 DOI: 10.3390/jfb16010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
The application of three-dimensional (3D) printing/bioprinting technologies and cell therapies has garnered significant attention due to their potential in the field of regenerative medicine. This paper aims to provide a comprehensive overview of 3D printing/bioprinting technology and cell therapies, highlighting their results in diverse medical applications, while also discussing the capabilities and limitations of their combined use. The synergistic combination of 3D printing and cellular therapies has been recognised as a promising and innovative approach, and it is expected that these technologies will progressively assume a crucial role in the treatment of various diseases and conditions in the foreseeable future. This review concludes with a forward-looking perspective on the future impact of these technologies, highlighting their potential to revolutionize regenerative medicine through enhanced tissue repair and organ replacement strategies.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, Gandra, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, UP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, Rua de Portugal—Zona Industrial, 2430-028 Marinha Grande, Portugal;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
5
|
Wan L, Liu F, Wang A, He Y, Pan J, Liu Y, Xu J, Xu C, Wu F, Ye Q. PI3K/Akt pathway-mediated enhancement of bone and vascular regeneration by gelatin/hyaluronic acid/exosome composite scaffold in bone tissue engineering. BIOMATERIALS ADVANCES 2025; 166:214064. [PMID: 39423569 DOI: 10.1016/j.bioadv.2024.214064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Tissue engineering (TE) is commonly suggested as a promising remedy for the worldwide shortage of organ donors required for transplantation. Scholars are investigating organic and biocompatible materials as the principal options for regeneration to replicate the natural extracellular matrix. Hydrogels exhibit swift gel formation and outstanding biocompatibility, thus presenting considerable promise in tissue regeneration. The objective of this study was to investigate the role of a novel biomaterial complex, comprising gelatin (Gel), hyaluronic acid (HA) and exosomes (Exo), in promoting bone regeneration and elucidate its underlying molecular mechanism. The experimental results demonstrated that the Gel/HA/Exo complex could significantly enhance the proliferation and differentiation of osteoblasts, as well as the deposition and mineralization of bone matrix. Further mechanistic studies demonstrated that TGF-β in exosomes enhanced the biological activity of osteoblasts by activating the PI3K/Akt pathway, thus promoting the fracture healing process. The results of in vivo experiments indicated that the application of Gel/HA/Exo complexes significantly accelerated the fracture healing rate and improved the quality of healing, exhibiting good biocompatibility and controlled degradation properties. Consequently, the present study concluded that the Gel/HA/Exo complex not only has potential clinical applications, but also provides an important theoretical and experimental basis for the development of novel bone regeneration therapeutic strategies.
Collapse
Affiliation(s)
- Longbiao Wan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Feng Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ao Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan He
- Institute for Regenerative and Translational Research, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan 430060, China
| | - Jiali Pan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jie Xu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chun Xu
- The University of Queensland, Herston, QLD 4006, Australia; Sydney Dental School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Fei Wu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Sydney Dental School, The University of Sydney, Camperdown, NSW 2050, Australia.
| |
Collapse
|
6
|
González-Belman OF, Jiménez-Halla JOC, González G, Báez JE. Comparison of three elements (In, Sn, and Sb) in the same period as catalysts in the ring-opening polymerization of l-lactide: from amorphous to semicrystalline polyesters. RSC Adv 2024; 14:34733-34745. [PMID: 39483385 PMCID: PMC11526846 DOI: 10.1039/d4ra06783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ring-opening polymerization (ROP) of l-lactide (l-LA) is the main method for synthesizing poly(l-lactide) (PLLA), in which choosing the catalyst is one of the most important parameters. In this work, we focused on the systematic study of catalysts based on p-block elements from period 5, such as indium(iii), tin(ii), tin(iv) and antimony(iii) acetates, which displayed contrasting performances influenced by the oxidation state of the metal center. Analysis of the obtained oligomers by different techniques, including nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), polarized optical microscopy (POM) and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), revealed the selectivity of each catalyst toward the ROP of l-LA. Tin(ii) acetate showed the best performance, making it the best catalyst of this series for synthesizing PLLA. Indium(iii) and tin(ii) acetates induced an amorphous and semicrystalline polyester, respectively. The kinetic study evidenced the excellent performance of tin(ii) acetate in the ROP of l-LA. This catalyst reached high conversions in a quarter of the total reaction time, positioning it as the most catalytically active of the selected p-block acetate catalysts. Finally, the coordination-insertion mechanism by the catalyst in the initiation step was corroborated through the development of a mechanistic study applying the density functional theory (DFT).
Collapse
Affiliation(s)
- Oscar F González-Belman
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| | - J Oscar C Jiménez-Halla
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| | - Gerardo González
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| | - José E Báez
- Department of Chemistry, University of Guanajuato (UG) Noria Alta S/N 36050 Guanajuato Gto Mexico
| |
Collapse
|
7
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
8
|
Tutoni GG, McDonald SM, Zhong R, Lu A, Huang TJ, Becker ML. Microfluidic Assembly of Degradable, Stereocomplexed Hydrogel Microparticles. J Am Chem Soc 2024; 146:14705-14714. [PMID: 38749060 DOI: 10.1021/jacs.4c02317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Hydrogel microparticles (HMPs) have been investigated widely for their use in tissue engineering and drug delivery applications. However, translation of these highly tunable systems has been hindered by covalent cross-linking methods within microparticles. Stereocomplexation, a stereospecific form of physical cross-linking, provides a robust yet degradable alternative for creating translationally relevant HMPs. Herein, 4-arm polyethylene glycol (PEG) stars were used as macromolecular initiators from which oligomeric poly(l-lactic acid) (PLLA) was polymerized with a degree of polymerization (DPn) of 20 on each arm. Similarly, complementary propargyl-containing ABA cross-linkers with enantiomeric poly(d-lactic acid) (PDLA) segments (DPn = 20) on each arm. Droplets of these gel precursors were formed via a microfluidic organic-in-oil-in-water system where microparticles self-assembled via stereocomplexation and were stabilized after precipitation in deionized water. By varying the flow rate of the dispersed phase, well-defined microparticles with diameters of 33.7 ± 0.5, 62.4 ± 0.6, and 105.7 ± 0.8 μm were fabricated. Gelation due to stereocomplexation was confirmed via wide-angle X-ray scattering in which HMPs exhibited the signature diffraction pattern of stereocomplexed PLA at 2θ = 12.2, 21.2, 24.2°. Differential scanning calorimetry also confirmed stereocomplexation by the appearance of a crystallization exotherm (Tc = 37 °C) and a high-temperature endotherm (Tm = 159 °C) that does not appear in the homocrystallization of PLLA or the hydrogel precursors. Additionally, the propargyl handle present on the cross-linker allows for pre- or post-assembly thiol-yne "click" functionalization as demonstrated by the addition of thiol-containing fluorophores to the HMPs.
Collapse
Affiliation(s)
- Gianna G Tutoni
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Samantha M McDonald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Annette Lu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Orthopedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
9
|
Cecen B, Hassan S, Li X, Zhang YS. Smart Biomaterials in Biomedical Applications: Current Advances and Possible Future Directions. Macromol Biosci 2024; 24:e2200550. [PMID: 37728061 DOI: 10.1002/mabi.202200550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/02/2023] [Indexed: 09/21/2023]
Abstract
Smart biomaterials with the capacity to alter their properties in response to an outside stimulus or from within the environment around them have picked up significant attention in the biomedical community. This is primarily due to the interest in their biomedical applications that may be anticipated from them in a considerable number of dynamic structures and devices. Shape-memory materials are some of these materials that have been exclusively used for these applications. They exhibit unique structural reconfiguration features they adapt as per the provided environmental conditions and can be designed for their enhanced biocompatibility. Numerous research initiatives have focused on these smart biocompatible materials over the last few decades to enhance their biomedical applications. Shape-memory materials play a significant role in this regard to meet new surgical and medical devices' requirements for special features and utility cases. Because of the favorable design variety, different biomedical shape-memory materials can be developed by modifying their chemical and physical behaviors to accommodate the desired requirements. In this review, recent advances and characteristics of smart biomaterials for biomedical applications are described. The authors also discuss about their clinical translations in tissue engineering, drug delivery, and medical devices.
Collapse
Affiliation(s)
- Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey, 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, 08028, USA
| | - Shabir Hassan
- Department of Biology, Khalifa University, Main Campus, Abu Dhabi, 127788, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University, SAN Campus, Abu Dhabi, 127788, UAE
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xin Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
10
|
Brugnoli B, Perna G, Alfano S, Piozzi A, Galantini L, Axioti E, Taresco V, Mariano A, Scotto d'Abusco A, Vecchio Ciprioti S, Francolini I. Nanostructured Poly-l-lactide and Polyglycerol Adipate Carriers for the Encapsulation of Usnic Acid: A Promising Approach for Hepatoprotection. Polymers (Basel) 2024; 16:427. [PMID: 38337316 DOI: 10.3390/polym16030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The present study investigates the utilization of nanoparticles based on poly-l-lactide (PLLA) and polyglycerol adipate (PGA), alone and blended, for the encapsulation of usnic acid (UA), a potent natural compound with various therapeutic properties including antimicrobial and anticancer activities. The development of these carriers offers an innovative approach to overcome the challenges associated with usnic acid's limited aqueous solubility, bioavailability, and hepatotoxicity. The nanosystems were characterized according to their physicochemical properties (among others, size, zeta potential, thermal properties), apparent aqueous solubility, and in vitro cytotoxicity. Interestingly, the nanocarrier obtained with the PLLA-PGA 50/50 weight ratio blend showed both the lowest size and the highest UA apparent solubility as well as the ability to decrease UA cytotoxicity towards human hepatocytes (HepG2 cells). This research opens new avenues for the effective utilization of these highly degradable and biocompatible PLLA-PGA blends as nanocarriers for reducing the cytotoxicity of usnic acid.
Collapse
Affiliation(s)
- Benedetta Brugnoli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Greta Perna
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Sara Alfano
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Eleni Axioti
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy
| | - Stefano Vecchio Ciprioti
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| |
Collapse
|
11
|
S S, R G AP, Bajaj G, John AE, Chandran S, Kumar VV, Ramakrishna S. A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:62. [PMID: 37982917 PMCID: PMC10661719 DOI: 10.1007/s10856-023-06765-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023]
Abstract
3D printing technology is an emerging method that gained extensive attention from researchers worldwide, especially in the health and medical fields. Biopolymers are an emerging class of materials offering excellent properties and flexibility for additive manufacturing. Biopolymers are widely used in biomedical applications in biosensing, immunotherapy, drug delivery, tissue engineering and regeneration, implants, and medical devices. Various biodegradable and non-biodegradable polymeric materials are considered as bio-ink for 3d printing. Here, we offer an extensive literature review on the current applications of synthetic biopolymers in the field of 3D printing. A trend in the publication of biopolymers in the last 10 years are focused on the review by analyzing more than 100 publications. Their application and classification based on biodegradability are discussed. The various studies, along with their practical applications, are elaborated in the subsequent sections for polyethylene, polypropylene, polycaprolactone, polylactide, etc. for biomedical applications. The disadvantages of various biopolymers are discussed, and future perspectives like combating biocompatibility problems using 3D printed biomaterials to build compatible prosthetics are also discussed and the potential application of using resin with the combination of biopolymers to build customized implants, personalized drug delivery systems and organ on a chip technologies are expected to open a new set of chances for the development of healthcare and regenerative medicine in the future.
Collapse
Affiliation(s)
- Shiva S
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| | - Asuwin Prabu R G
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gauri Bajaj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Amy Elsa John
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sharan Chandran
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Vishnu Vijay Kumar
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
- Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Mechanical and Industrial Engineering, Gadjah Mada University, Yogyakarta, 55281, Indonesia
- Department of Aerospace Engineering, Jain deemed to be University, Bangalore, India
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
12
|
Wang Z, Xiao M, Guo F, Yan Y, Tian H, Zhang Q, Ren S, Yang L. Biodegradable polyester-based nano drug delivery system in cancer chemotherapy: a review of recent progress (2021-2023). Front Bioeng Biotechnol 2023; 11:1295323. [PMID: 38026861 PMCID: PMC10647934 DOI: 10.3389/fbioe.2023.1295323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer presents a formidable threat to human health, with the majority of cases currently lacking a complete cure. Frequently, chemotherapy drugs are required to impede its progression. However, these drugs frequently suffer from drawbacks such as poor selectivity, limited water solubility, low bioavailability, and a propensity for causing organ toxicity. Consequently, a concerted effort has been made to seek improved drug delivery systems. Nano-drug delivery systems based on biodegradable polyesters have emerged as a subject of widespread interest in this pursuit. Extensive research has demonstrated their potential for offering high bioavailability, effective encapsulation, controlled release, and minimal toxicity. Notably, poly (ε-caprolactone) (PCL), poly (lactic-co-glycolic acid) (PLGA), and polylactic acid (PLA) have gained prominence as the most widely utilized options as carriers of the nano drug delivery system. This paper comprehensively reviews recent research on these materials as nano-carriers for delivering chemotherapeutic drugs, summarizing their latest advancements, acknowledging their limitations, and forecasting future research directions.
Collapse
Affiliation(s)
- Zongheng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Miaomiao Xiao
- Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Fangliang Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Yan
- Department of Emergency, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong Tian
- Department of Oncology, The 4th People’s Hospital of Shenyang, China Medical University, Shenyang, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liqun Yang
- Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- Research Center for Biomedical Materials, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z, He W. Gout therapeutics and drug delivery. J Control Release 2023; 362:728-754. [PMID: 37690697 DOI: 10.1016/j.jconrel.2023.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.
Collapse
Affiliation(s)
- Xiuju Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
14
|
Maduka CV, Alhaj M, Ural E, Kuhnert MM, Habeeb OM, Schilmiller AL, Hankenson KD, Goodman SB, Narayan R, Contag CH. Stereochemistry Determines Immune Cellular Responses to Polylactide Implants. ACS Biomater Sci Eng 2023; 9:932-943. [PMID: 36634351 DOI: 10.1021/acsbiomaterials.2c01279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Repeating l- and d-chiral configurations determine polylactide (PLA) stereochemistry, which affects its thermal and physicochemical properties, including degradation profiles. Clinically, degradation of implanted PLA biomaterials promotes prolonged inflammation and excessive fibrosis, but the role of PLA stereochemistry is unclear. Additionally, although PLA of varied stereochemistries causes differential immune responses in vivo, this observation has yet to be effectively modeled in vitro. A bioenergetic model was applied to study immune cellular responses to PLA containing >99% l-lactide (PLLA), >99% d-lactide (PDLA), and a 50/50 melt-blend of PLLA and PDLA (stereocomplex PLA). Stereocomplex PLA breakdown products increased IL-1β, TNF-α, and IL-6 protein levels but not MCP-1. Expression of these proinflammatory cytokines is mechanistically driven by increases in glycolysis in primary macrophages. In contrast, PLLA and PDLA degradation products selectively increase MCP-1 protein expression. Although both oxidative phosphorylation and glycolysis are increased with PDLA, only oxidative phosphorylation is increased with PLLA. For each biomaterial, glycolytic inhibition reduces proinflammatory cytokines and markedly increases anti-inflammatory (IL-10) protein levels; differential metabolic changes in fibroblasts were observed. These findings provide mechanistic explanations for the diverse immune responses to PLA of different stereochemistries and underscore the pivotal role of immunometabolism in the biocompatibility of biomaterials applied in medicine.
Collapse
Affiliation(s)
- Chima V Maduka
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mohammed Alhaj
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Evran Ural
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Maxwell M Kuhnert
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Oluwatosin M Habeeb
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Anthony L Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kurt D Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University, Stanford, California 94063, United States.,Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Ramani Narayan
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Christopher H Contag
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
15
|
Signori F, Wennink JWH, Bronco S, Feijen J, Karperien M, Bizzarri R, Dijkstra PJ. Aggregation and Gelation Behavior of Stereocomplexed Four-Arm PLA-PEG Copolymers Containing Neutral or Cationic Linkers. Int J Mol Sci 2023; 24:ijms24043327. [PMID: 36834737 PMCID: PMC9962659 DOI: 10.3390/ijms24043327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Poly(lactide) (PLA) and poly(ethylene glycol) (PEG)-based hydrogels were prepared by mixing phosphate buffer saline (PBS, pH 7.4) solutions of four-arm (PEG-PLA)2-R-(PLA-PEG)2 enantiomerically pure copolymers having the opposite chirality of the poly(lactide) blocks. Dynamic Light Scattering, rheology measurements, and fluorescence spectroscopy suggested that, depending on the nature of the linker R, the gelation process followed rather different mechanisms. In all cases, mixing of equimolar amounts of the enantiomeric copolymers led to micellar aggregates with a stereocomplexed PLA core and a hydrophilic PEG corona. Yet, when R was an aliphatic heptamethylene unit, temperature-dependent reversible gelation was mainly induced by entanglements of PEG chains at concentrations higher than 5 wt.%. When R was a linker containing cationic amine groups, thermo-irreversible hydrogels were promptly generated at concentrations higher than 20 wt.%. In the latter case, stereocomplexation of the PLA blocks randomly distributed in micellar aggregates is proposed as the major determinant of the gelation process.
Collapse
Affiliation(s)
- Francesca Signori
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Consiglio Nazionale delle Ricerche—Istituto per i Processi Chimico-Fisici, CNR-IPCF, Area della Ricerca di Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Jos W. H. Wennink
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Simona Bronco
- Consiglio Nazionale delle Ricerche—Istituto per i Processi Chimico-Fisici, CNR-IPCF, Area della Ricerca di Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ranieri Bizzarri
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
- Correspondence: (R.B.); (P.J.D.)
| | - Pieter J. Dijkstra
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Correspondence: (R.B.); (P.J.D.)
| |
Collapse
|
16
|
Polylactide-Based Materials: Synthesis and Biomedical Applications. Molecules 2023; 28:molecules28031386. [PMID: 36771051 PMCID: PMC9920252 DOI: 10.3390/molecules28031386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Polylactide (PLA) is a biocompatible polyester that can be obtained by polycondensation of lactic acid or the ring-opening polymerization (ROP) of lactide [...].
Collapse
|
17
|
Strzelecka K, Piotrowska U, Sobczak M, Oledzka E. The Advancement of Biodegradable Polyesters as Delivery Systems for Camptothecin and Its Analogues-A Status Report. Int J Mol Sci 2023; 24:ijms24021053. [PMID: 36674567 PMCID: PMC9866533 DOI: 10.3390/ijms24021053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Camptothecin (CPT) has demonstrated antitumor activity in lung, ovarian, breast, pancreas, and stomach cancers. However, this drug, like many other potent anticancer agents, is extremely water-insoluble. Furthermore, pharmacology studies have revealed that prolonged schedules must be administered continuously. For these reasons, several of its water-soluble analogues, prodrugs, and macromolecular conjugates have been synthesized, and various formulation approaches have been investigated. Biodegradable polyesters have gained popularity in cancer treatment in recent years. A number of biodegradable polymeric drug delivery systems (DDSs), designed for localized and systemic administration of therapeutic agents, as well as tumor-targeting macromolecules, have entered clinical trials, demonstrating the importance of biodegradable polyesters in cancer therapy. Biodegradable polyester-based DDSs have the potential to deliver the payload to the target while also increasing drug availability at intended site. The systemic toxicity and serious side-effects associated with conventional cancer therapies can be significantly reduced with targeted polymeric systems. This review elaborates on the use of biodegradable polyesters in the delivery of CPT and its analogues. The design of various DDSs based on biodegradable polyesters has been described, with the drug either adsorbed on the polymer's surface or encapsulated within its macrostructure, as well as those in which a hydrolyzed chemical bond is formed between the active substance and the polymer chain. The data related to the type of DDSs, the kind of linkage, and the details of in vitro and in vivo studies are included.
Collapse
Affiliation(s)
- Katarzyna Strzelecka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska Str., 01-163 Warsaw, Poland
| | - Ewa Oledzka
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-572-07-55
| |
Collapse
|
18
|
Isoselective mechanism for asymmetric kinetic resolution polymerization of rac-lactide catalyzed by chiral tridentate bis(oxazolinylphenyl)amido ligand supported zinc complexes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Kaur J, Gulati M, Corrie L, Awasthi A, Jha NK, Chellappan DK, Gupta G, MacLoughlin R, Oliver BG, Dua K, Singh SK. Role of nucleic acid-based polymeric micelles in treating lung diseases. Nanomedicine (Lond) 2022; 17:1951-1960. [PMID: 36606499 DOI: 10.2217/nnm-2022-0260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The prevalence of lung diseases is increasing year by year and existing drug therapies only provide symptomatic relief rather than targeting the actual cause. Nucleic acids can be used as an alternative therapeutic approach owing to their potential to reform a homeostatic balance by upregulating protective genes or downregulating damaging genes. However, their inherent properties, such as poor stability, ineffective cellular uptake, negative charge and so on, hinder their clinical utility. Such limitations can be overcome by exploiting the functional chemistry of polymeric micelles (PMs) for site-specific delivery, transfection efficiency and improved stability. With this objective, the present work describes the advancements made in designing nucleic acid-based PMs for treating lung diseases followed by approaches requiring consideration for clinical applications.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India.,Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ronan MacLoughlin
- Research and Development, Science & Emerging Technologies, Aerogen Limited, Galway Business Park, Galway, H91 HE94, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77, Ireland.,School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40, Ireland
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
20
|
Kumbham S, Ghosh A, Ghosh B, Biswas S. Human serum albumin-poly(Lactide)-conjugated self-assembly NPs for targeted docetaxel delivery and improved therapeutic efficacy in oral cancer. Int J Biol Macromol 2022; 222:1287-1303. [DOI: 10.1016/j.ijbiomac.2022.09.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
|
21
|
Zaky MS, Wirotius AL, Coulembier O, Guichard G, Taton D. Reaching High Stereoselectivity and Activity in Organocatalyzed Ring-Opening Polymerization of Racemic Lactide by the Combined Use of a Chiral (Thio)Urea and a N-Heterocyclic Carbene. ACS Macro Lett 2022; 11:1148-1155. [PMID: 36067070 DOI: 10.1021/acsmacrolett.2c00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereochemical control during polymerization is a key strategy of polymer chemistry to achieve semicrystalline engineered plastics. The stereoselective ring-opening polymerization (ROP) of racemic lactide (rac-LA), which can lead to highly isotactic polylactide (PLA), is one of the emblematic examples in this area. Surprisingly, stereoselective ROP of rac-LA employing chiral organocatalysts has been under-leveraged. Here we show that a commercially available chiral thiourea (TU1), or its urea homologue (U1), can be used in conjunction with an appropriately selected N-heterocyclic carbene (NHC) to trigger the stereoselective ROP of rac-LA at room temperature in toluene. Both a high organic catalysis activity (>90% monomer conversion in 5-9 h) and a high stereoselectivity (probability of formation of meso dyads, Pm, in the range 0.82-0.93) can be achieved by thus pairing a NHC and a chiral amino(thio)urea. The less sterically hindered and the more basic NHC, that is, a NHC bearing tert-butyl substituents (NHCtBu), provides the highest stereoselectivity when employed in conjunction with the chiral TU1 or U1. This asymmetric organic catalysis strategy, as applied here in polymerization chemistry, further expands the field of possibilities to achieve bioplastics with adapted thermomechanical properties.
Collapse
Affiliation(s)
- Mohamed Samir Zaky
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| | - Anne-Laure Wirotius
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| | - Olivier Coulembier
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Mons B-7000, Belgium
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| |
Collapse
|
22
|
Zhen Hua, Cheng J, Shi DJ, Chen JW, Peng HC, Liu MM. Fabrication of Bone Morphogenic Protein-2 and Icariin-Containing Sustained-Release Microcapsule and Evaluation of its Osteogenic Differentiation Capacity in MC3T3-E1 Cells. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Moya-Lopez C, González-Fuentes J, Bravo I, Chapron D, Bourson P, Alonso-Moreno C, Hermida-Merino D. Polylactide Perspectives in Biomedicine: From Novel Synthesis to the Application Performance. Pharmaceutics 2022; 14:1673. [PMID: 36015299 PMCID: PMC9415503 DOI: 10.3390/pharmaceutics14081673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
The incessant developments in the pharmaceutical and biomedical fields, particularly, customised solutions for specific diseases with targeted therapeutic treatments, require the design of multicomponent materials with multifunctional capabilities. Biodegradable polymers offer a variety of tailored physicochemical properties minimising health adverse side effects at a low price and weight, which are ideal to design matrices for hybrid materials. PLAs emerge as an ideal candidate to develop novel materials as are endowed withcombined ambivalent performance parameters. The state-of-the-art of use of PLA-based materials aimed at pharmaceutical and biomedical applications is reviewed, with an emphasis on the correlation between the synthesis and the processing conditions that define the nanostructure generated, with the final performance studies typically conducted with either therapeutic agents by in vitro and/or in vivo experiments or biomedical devices.
Collapse
Affiliation(s)
- Carmen Moya-Lopez
- Laboratoire Matériaux Optiques Photonique et Systèmes (LMOPS), CentraleSupélec, Université de Lorraine, 57000 Metz, France
| | - Joaquín González-Fuentes
- Centro Regional de Investigaciones Biomédicas (CRIB), 02008 Albacete, Spain
- Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Iván Bravo
- Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Unidad NanoCRIB, Centro Regional de Investigaciones Biomédicas, 02008 Albacete, Spain
| | - David Chapron
- Laboratoire Matériaux Optiques Photonique et Systèmes (LMOPS), CentraleSupélec, Université de Lorraine, 57000 Metz, France
| | - Patrice Bourson
- Laboratoire Matériaux Optiques Photonique et Systèmes (LMOPS), CentraleSupélec, Université de Lorraine, 57000 Metz, France
| | - Carlos Alonso-Moreno
- Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Unidad NanoCRIB, Centro Regional de Investigaciones Biomédicas, 02008 Albacete, Spain
| | - Daniel Hermida-Merino
- DUBBLE@ESRF BP CS40220, 38043 Grenoble, France
- Departamento de Física Aplicada, CINBIO, Lagoas-Marcosende Campus, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
24
|
Anti-Inflammatory and Mineralization Effects of an ASP/PLGA-ASP/ACP/PLLA-PLGA Composite Membrane as a Dental Pulp Capping Agent. J Funct Biomater 2022; 13:jfb13030106. [PMID: 35997444 PMCID: PMC9397017 DOI: 10.3390/jfb13030106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Dental pulp is essential for the development and long-term preservation of teeth. Dental trauma and caries often lead to pulp inflammation. Vital pulp therapy using dental pulp-capping materials is an approach to preserving the vitality of injured dental pulp. Most pulp-capping materials used in clinics have good biocompatibility to promote mineralization, but their anti-inflammatory effect is weak. Therefore, the failure rate will increase when dental pulp inflammation is severe. The present study developed an amorphous calcium phosphate/poly (L-lactic acid)-poly (lactic-co-glycolic acid) membrane compounded with aspirin (hereafter known as ASP/PLGA-ASP/ACP/PLLA-PLGA). The composite membrane, used as a pulp-capping material, effectively achieved the rapid release of high concentrations of the anti-inflammatory drug aspirin during the early stages as well as the long-term release of low concentrations of aspirin and calcium/phosphorus ions during the later stages, which could repair inflamed dental pulp and promote mineralization. Meanwhile, the composite membrane promoted the proliferation of inflamed dental pulp stem cells, downregulated the expression of inflammatory markers, upregulated the expression of mineralization-related markers, and induced the formation of stronger reparative dentin in the rat pulpitis model. These findings indicate that this material may be suitable for use as a pulp-capping material in clinical applications.
Collapse
|
25
|
Kost B, Basko M, Bednarek M, Socka M, Kopka B, Łapienis G, Biela T, Kubisa P, Brzeziński M. The influence of the functional end groups on the properties of polylactide-based materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Sherstneva AA, Demina TS, Monteiro APF, Akopova TA, Grandfils C, Ilangala AB. Biodegradable Microparticles for Regenerative Medicine: A State of the Art and Trends to Clinical Application. Polymers (Basel) 2022; 14:1314. [PMID: 35406187 PMCID: PMC9003224 DOI: 10.3390/polym14071314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering and cell therapy are very attractive in terms of potential applications but remain quite challenging regarding the clinical aspects. Amongst the different strategies proposed to facilitate their implementation in clinical practices, biodegradable microparticles have shown promising outcomes with several advantages and potentialities. This critical review aims to establish a survey of the most relevant materials and processing techniques to prepare these micro vehicles. Special attention will be paid to their main potential applications, considering the regulatory constraints and the relative easiness to implement their production at an industrial level to better evaluate their application in clinical practices.
Collapse
Affiliation(s)
- Anastasia A. Sherstneva
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Ana P. F. Monteiro
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Christian Grandfils
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Ange B. Ilangala
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| |
Collapse
|
27
|
Liu KS, Chen WH, Lee CH, Su YF, Liu YW, Liu SJ. Novel Biodegradable 3D-Printed Analgesics-Eluting-Nanofibers Incorporated Nuss Bars for Therapy of Pectus Excavatum. Int J Mol Sci 2022; 23:2265. [PMID: 35216381 PMCID: PMC8878723 DOI: 10.3390/ijms23042265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
A novel hybrid biodegradable Nuss bar model was developed to surgically correct the pectus excavatum and reduce the associated pain during treatment. The scheme consisted of a three-dimensional (3D) printed biodegradable polylactide (PLA) Nuss bar as the surgical implant and electrospun polylactide-polyglycolide (PLGA) nanofibers loaded with lidocaine and ketorolac as the analgesic agents. The degradation rate and mechanical properties of the PLA Nuss bars were characterized after submersion in a buffered mixture for different time periods. In addition, the in vivo biocompatibility of the integrated PLA Nuss bars/analgesic-loaded PLGA nanofibers was assessed using a rabbit chest wall model. The outcomes of this work suggest that integration of PLA Nuss bar and PLGA/analgesic nanofibers could successfully enhance the results of pectus excavatum treatment in the animal model. The histological analysis also demonstrated good biocompatibility of the PLA Nuss bars with animal tissues. Eventually, the 3D printed biodegradable Nuss bars may have a potential role in pectus excavatum treatment in humans.
Collapse
Affiliation(s)
- Kuo-Sheng Liu
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (K.-S.L.); (W.-H.C.)
| | - Wei-Hsun Chen
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (K.-S.L.); (W.-H.C.)
| | - Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Yong-Fong Su
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Yen-Wei Liu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
| |
Collapse
|
28
|
Grafted Lactic Acid Oligomers on Lignocellulosic Filler towards Biocomposites. MATERIALS 2022; 15:ma15010314. [PMID: 35009460 PMCID: PMC8745966 DOI: 10.3390/ma15010314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Lactic acid oligomers (OLAs) were in situ synthesized from lactic acid (LAc) and grafted onto chokeberry pomace (CP) particleboards by direct condensation. Biocomposites of poly (lactic acid) (PLA) and modified/unmodified CP particles containing different size fractions were obtained using a mini-extruder. To confirm the results of the grafting process, the FTIR spectra of filler particles were obtained. Performing 1HNMR spectroscopy allowed us to determine the chemical structure of synthesized OLAs. The thermal degradation of modified CP and biocomposites were studied using TGA, and the thermal characteristics of biocomposites were investigated using DSC. In order to analyse the adhesion between filler particles and PLA in biocomposites, SEM images of brittle fracture surfaces were registered. The mechanical properties of biocomposites were studied using a tensile testing machine. FTIR and 1HNMR analysis confirmed the successful grafting process of OLAs. The modified filler particles exhibited a better connection with hydrophobic PLA matrix alongside improved mechanical properties than the biocomposites with unmodified filler particles. Moreover, a DSC analysis of the biocomposites with modified CP showed a reduction in glass temperature on average by 9 °C compared to neat PLA. It confirms the plasticizing effect of grafted and ungrafted OLAs. The results are promising, and can contribute to increasing the use of agri-food lignocellulosic residue in manufacturing biodegradable packaging.
Collapse
|
29
|
Sinsup P, Teeranachaideekul V, Makarasen A, Chuenchom L, Prajongtat P, Techasakul S, Yingyuad P, Dechtrirat D. Zingiber cassumunar Roxb. Essential Oil-Loaded Electrospun Poly(lactic acid)/Poly(ethylene oxide) Fiber Blend Membrane for Antibacterial Wound Dressing Application. MEMBRANES 2021; 11:648. [PMID: 34564465 PMCID: PMC8470900 DOI: 10.3390/membranes11090648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
The essential oil from Zingiber cassumunar Roxb. (Plai) has long been used in Thai herbal remedies to treat inflammation, pains, sprains, and wounds. It was therefore loaded into an electrospun fibrous membrane for use as an analgesic and antibacterial dressing for wound care. The polymer blend between poly(lactic acid) and poly(ethylene oxide) was selected as the material of choice because its wettability can be easily tuned by changing the blend ratio. Increasing the hydrophilicity and water uptake ability of the material while retaining its structural integrity and porosity provides moisture balance and removes excess exudates, thereby promoting wound healing. The effect of the blend ratio on the fiber morphology and wettability was investigated using scanning electron microscopy (SEM) and contact angle measurement, respectively. The structural determination of the prepared membranes was conducted using Fourier-transform infrared spectroscopy (FTIR). The release behavior of (E)-1-(3,4-dimethoxyphenyl) butadiene (DMPBD), a marker molecule with potent anti-inflammatory activity from the fiber blend, showed a controlled release characteristic. The essential oil-loaded electrospun membrane also showed antibacterial activity against S. aureus and E. coli. It also exhibited no toxicity to both human fibroblast and keratinocyte cells, suggesting that the prepared material is suitable for wound dressing application.
Collapse
Affiliation(s)
- Pattawika Sinsup
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.S.); (P.P.)
| | | | - Arthit Makarasen
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (A.M.); (S.T.)
| | - Laemthong Chuenchom
- Division of Physical Science, Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Pongthep Prajongtat
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.S.); (P.P.)
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (A.M.); (S.T.)
| | - Peerada Yingyuad
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (A.M.); (S.T.)
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Decha Dechtrirat
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.S.); (P.P.)
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; (A.M.); (S.T.)
- Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|