1
|
Diska L, Bockuviene A, Gruskiene R, Kavleiskaja T, Sereikaite J, Bankovskaite G, Macernis M. Interactions of lycopene with β-cyclodextrins: Raman spectroscopy and theoretical investigation. Phys Chem Chem Phys 2025; 27:7874-7881. [PMID: 40162701 DOI: 10.1039/d5cp00034c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Carotenoids (Cars) are essential molecules with diverse biological roles, and their solubility can be enhanced by forming complexes with cyclodextrins, which incorporate them into their cavities without chemical bonds. In this study, we investigated the interactions of lycopene with β-cyclodextrins using Raman spectroscopy, molecular dynamics and DFT. We simulated models of simplified structures, including various β-cyclodextrins and trans and cis lycopene configurations, to better understand how structural changes influence the v1 band shift observed in Raman spectroscopy. Our focus was on reducing interactions such as van der Waals interactions, hydrogen bonds, and electrostatic effects to isolate the impact of structural alterations on the methyl group in carotenoids. We measured solid lycopene and its complexes with β-cyclodextrins, which exhibited Raman v1 shifts. According to the modelling data, this can be attributed to the monomer band of lycopene.
Collapse
Affiliation(s)
- Laurynas Diska
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio ave. 3, Vilnius, LT-10257, Vilnius, Lithuania.
| | - Alma Bockuviene
- Institute of Chemistry, Faculty of Chemistry, Vilnius University, Sauletekio ave. 3, Vilnius, LT-10257, Vilnius, Lithuania
| | - Rūta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, Vilnius, LT-10257, Vilnius, Lithuania
| | - Tatjana Kavleiskaja
- Institute of Chemistry, Faculty of Chemistry, Vilnius University, Sauletekio ave. 3, Vilnius, LT-10257, Vilnius, Lithuania
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, Vilnius, LT-10257, Vilnius, Lithuania
| | - Goda Bankovskaite
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio ave. 3, Vilnius, LT-10257, Vilnius, Lithuania.
| | - Mindaugas Macernis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio ave. 3, Vilnius, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
2
|
Tibaquira-Pérez L, Filomena-Ambrosio A, Bauer K, Cardoso-Cardenas M, Moreno FM, Quintanilla-Carvajal MX. Validation by in-vitro digestion and sensory analysis of incorporating vegetable oil encapsulates in cottage cheese. Food Chem 2025; 465:142027. [PMID: 39571427 DOI: 10.1016/j.foodchem.2024.142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024]
Abstract
Malnutrition is a global issue linked to energy or nutrient imbalances, often resulting in deficiencies or overweight. Dairy products, rich in macronutrients and micronutrients, are a potential solution. However, processing, storage, and digestion can lead to nutrient loss. To enhance nutritional value, functional ingredients like microencapsulated compounds are used. This study focused on assessing the bioaccessibility of microencapsulated ingredients in cottage cheese, their impact on sensory attributes, and shelf-life. Two microencapsulated ingredients were studied: high oleic palm oil (HOPO), encapsulated using spray drying (SD) and a refractive window (RW) drying technique. The bioaccessibility of these ingredients was evaluated using the INFOGEST in-vitro digestion model. Results showed that HOPO encapsulated via SD in cottage cheese (CSD) preserved oleic and linoleic acids best, and via RW in cottage cheese (CRW) preserve vitamins in 63 % and antioxidants in 96 %. This highlights the effectiveness of microencapsulation techniques in enhancing dairy product functionality and a 72 % of fatty acids release suggesting potential strategies for combating malnutrition through fortified dairy products.
Collapse
Affiliation(s)
- Liceth Tibaquira-Pérez
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - Annamaria Filomena-Ambrosio
- Research group in Alimentación, Gestión de Procesos y Servicio, EICEA, Universidad de La Sabana, Chía, Colombia
| | - Katherine Bauer
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - Mary Cardoso-Cardenas
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - Fabian Moreno Moreno
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - María Ximena Quintanilla-Carvajal
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia.
| |
Collapse
|
3
|
Riós Pérez MF, Quintero Lira A, Piloni Martini J, Ayala Martínez M, Soto Simental S, Alfaro Rodríguez RH, Ocampo López J, Cariño Cortés R, Reyes Munguía A. Physicochemical Characterization of Yogurt Fortified with Microencapsulated Cinnamon ( Cinnamomum zeylanicum) and Its Effects on Metabolic Syndrome Induced in Rabbits ( Oryctolagus cuniculus). J Med Food 2024; 27:758-774. [PMID: 38910556 DOI: 10.1089/jmf.2023.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Chronic noncommunicable diseases are a global health problem causing increased rates of mortality and sick leaves, which can be reduced by controlling dyslipidemia and hyperglycemia. Experimental and clinical studies have demonstrated the antidiabetic, lipid-lowering, antiobesogenic, anti-inflammatory, and antihypertensive properties of cinnamon; therefore, its use in yogurt can help reverse the effects of these diseases. Our study aims to evaluate the effect of a microencapsulated aqueous extract of cinnamon (Cinnamomum zeylanicum) (MCE Cz) incorporated in a yogurt drink on metabolic syndrome (MS) in a rabbit (Oryctolagus cuniculus). Physicochemical, microbiological, and proximal chemical characterization; total phenol, flavonoid, and 2,2-diphenyl-1-picrylhydrazil activity quantification; intestinal bioaccessibility; sensory analysis; MS induction through diet; and treatment with 5, 10, and 20 mg/kg of flavonoids contained in the MCE Cz were performed to help evaluate morphological, biochemical, and lipid peroxidation measurements in the liver and heart. The results show that the addition of MCE Cz in the yogurt modified the yogurt texture, increased its adhesiveness and firmness, and imparted a characteristic cinnamon color and biological value by providing intestinally bioaccessible antioxidants with antioxidant potential by reducing lipoperoxidation in the liver and heart after treatment. MCE Cz reduced the weight of the animals by up to 38.5% and the abdominal circumference by 29%. Biochemically, it decreased glucose levels by 24.38%, total cholesterol levels by 69.2%, triglyceride levels by 72.69%, and low-density lipoprotein levels by 89.25%; it increased high-density lipoprotein levels by 67.08%. Therefore, adding MCE Cz in doses of 5 and 10 mg of flavonoids in drinkable yogurt can be an alternative to preparing functional foods with physicochemical attributes and biological properties that can be consumed at all stages of life without undesirable effects. Moreover, it can act as a potential adjuvant in the treatment of comorbidities related to MS.
Collapse
Affiliation(s)
- María Fernanda Riós Pérez
- School of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Mexico
| | - Aurora Quintero Lira
- School of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Mexico
| | - Javier Piloni Martini
- School of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Mexico
| | - Maricela Ayala Martínez
- School of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Mexico
| | - Sergio Soto Simental
- School of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Mexico
| | | | - Juan Ocampo López
- School of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo, Mexico
| | | | - Abigail Reyes Munguía
- Department of Medicine, School of Health Sciences, Laboratory of Medicinal Chemistry, Pharmacology, Biology of Reproduction Research Center, University of the State of Hidalgo, Pachuca, Mexico
| |
Collapse
|
4
|
El-Saadony MT, Saad AM, Korma SA, Salem HM, Abd El-Mageed TA, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mosa WFA, Ahmed AE, Mathew BT, Albastaki NA, Alkuwaiti AA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA, Ibrahim SA. Garlic bioactive substances and their therapeutic applications for improving human health: a comprehensive review. Front Immunol 2024; 15:1277074. [PMID: 38915405 PMCID: PMC11194342 DOI: 10.3389/fimmu.2024.1277074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Garlic (Allium sativum L.) is a widely abundant spice, known for its aroma and pungent flavor. It contains several bioactive compounds and offers a wide range of health benefits to humans, including those pertaining to nutrition, physiology, and medicine. Therefore, garlic is considered as one of the most effective disease-preventive diets. Many in vitro and in vivo studies have reported the sulfur-containing compounds, allicin and ajoene, for their effective anticancer, anti-diabetic, anti-inflammatory, antioxidant, antimicrobial, immune-boosting, and cardioprotective properties. As a rich natural source of bioactive compounds, including polysaccharides, saponins, tannins, linalool, geraniol, phellandrene, β-phellandrene, ajoene, alliin, S-allyl-mercapto cysteine, and β-phellandrene, garlic has many therapeutic applications and may play a role in drug development against various human diseases. In the current review, garlic and its major bioactive components along with their biological function and mechanisms of action for their role in disease prevention and therapy are discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed I. Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Noor A. Albastaki
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aysha A. Alkuwaiti
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
5
|
Monasterio A, Núñez E, Verdugo V, Osorio FA. Stability and Biaxial Behavior of Fresh Cheese Coated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides Using Immersion and Spray Methods. Polymers (Basel) 2024; 16:1559. [PMID: 38891503 PMCID: PMC11174876 DOI: 10.3390/polym16111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
In the food industry context, where fresh cheese stands out as a highly perishable product with a short shelf life, this study aimed to extend its preservation through multi-layer edible coatings. The overall objective was to analyze the biaxial behavior and texture of fresh cheese coated with nanoliposomes encapsulating grape seed tannins (NTs) and polysaccharides (hydroxypropyl methylcellulose; HPMC and kappa carrageenan; KC) using immersion and spray methods, establishing comparisons with uncoated cheeses and commercial samples, including an accelerated shelf-life study. NT, HPMC, and KC were employed as primary components in the multi-layer edible coatings, which were applied through immersion and spray. The results revealed significant improvements, such as a 20% reduction in weight loss and increased stability against oxidation, evidenced by a 30% lower peroxide index than the uncoated samples. These findings underscore the effectiveness of edible coatings in enhancing the quality and extending the shelf life of fresh cheese, highlighting the innovative application of nanoliposomes and polysaccharide blends and the relevance of applying this strategy in the food industry. In conclusion, this study provides a promising perspective for developing dairy products with improved properties, opening opportunities to meet market demands and enhance consumer acceptance.
Collapse
Affiliation(s)
- Angela Monasterio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| | - Emerson Núñez
- Department of Fruit Production and Enology, School of Agricultural and Natural Systems, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Valeria Verdugo
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| |
Collapse
|
6
|
Misturini Rodrigues L, Gonzales Domiciano M, Araujo de Almeida E, Sereia MJ, Peron AP, da Silva R. Production of bioactive and functional frozen yogurt through easy-to-make microspheres incorporation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:192-200. [PMID: 38192717 PMCID: PMC10771400 DOI: 10.1007/s13197-023-05835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 01/10/2024]
Abstract
In the food industry, the microencapsulation process is important to control the release of active encapsulated ingredients, mask unwanted flavors, colors, and unpleasant smells, increase shelf life, and protect encapsulated components from light, moisture, and nutritional loss. In this process, microspheres are formed using cross-linked polymer, which can incorporate aqueous or oily ingredients, using simple physicochemical methods of phase separation by coacervation, without the need for organic solvents. In this context, this study aimed to develop bioactive, functional frozen yogurt through the incorporation of microspheres loaded with ascorbic acid or omega 3. The process used resulted in small microspheres (15-80 μm), imperceptible to the palate, and capable of swelling about 14 times, being suitable for incorporating omega 3, without altering the swelling, and extending the shelf life of the ascorbic acid for 6 weeks, even in an acid medium. Also, the matrix does not affect the properties of frozen yogurt and acts as a stabilizer, contributing to reduce the melting rate. The sensory analysis proved that encapsulation was promising to mask the taste and odor of omega 3 and to protect the ascorbic acid, without altering the properties and quality of the frozen product.
Collapse
Affiliation(s)
- Letícia Misturini Rodrigues
- Department of Food Engineering (DAAEQ), Federal Technological University of Paraná (UTFPR), Campo Mourão Campus, Campos Mourão, Paraná Brazil
| | - Mateus Gonzales Domiciano
- Department of Food Engineering (DAAEQ), Federal Technological University of Paraná (UTFPR), Campo Mourão Campus, Campos Mourão, Paraná Brazil
| | - Edson Araujo de Almeida
- Chemistry Course, Federal Technological University of Paraná (UTFPR), Campo Mourão Campus, Campo Mourão, Paraná Brazil
- Post-graduation Program of Chemistry, State University of Maringá (UEM), Maringá, Paraná Brazil
| | - Maria Josiane Sereia
- Department of Food Engineering (DAAEQ), Federal Technological University of Paraná (UTFPR), Campo Mourão Campus, Campos Mourão, Paraná Brazil
| | - Ana Paula Peron
- Department of Biodiversity and Nature Conservation (DABIC), Federal Technological University of Paraná (UTFPR), Campo Mourão Campus, Campos Mourão, Paraná Brazil
| | - Regiane da Silva
- Department of Chemistry (DAQUI), Federal Technological University of Paraná (UTFPR), Campo Mourão Campus, Campo Mourão, Paraná Brazil
- Post-Graduation Program of Food Technology (PPGTA), Federal Technological University of Paraná (UTFPR), Campo Mourão Campus, Campo Mourão, Paraná 87301-899 Brazil
| |
Collapse
|
7
|
Fan Q, Zeng X, Wu Z, Guo Y, Du Q, Tu M, Pan D. Nanocoating of lactic acid bacteria: properties, protection mechanisms, and future trends. Crit Rev Food Sci Nutr 2023; 64:10148-10163. [PMID: 37318213 DOI: 10.1080/10408398.2023.2220803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lactic acid bacteria (LAB) is a type of probiotic that may benefit intestinal health. Recent advances in nanoencapsulation provide an effective strategy to protect them from harsh conditions via surface functionalization coating techniques. Herein, the categories and features of applicable encapsulation methods are compared to highlight the significant role of nanoencapsulation. Commonly used food-grade biopolymers (polysaccharides and protein) and nanomaterials (nanocellulose and starch nanoparticles) are summarized along with their characteristics and advances to demonstrate enhanced combination effects in LAB co-encapsulation. Nanocoating for LAB provides an integrity dense or smooth layer attributed to the cross-linking and assembly of the protectant. The synergism of multiple chemical forces allows for the formation of subtle coatings, including electrostatic attractions, hydrophobic interactions, π-π, and metallic bonds. Multilayer shells have stable physical transition properties that could increase the space between the probiotic cells and the outer environment, thus delaying the microcapsules burst time in the gut. Probiotic delivery stability can be promoted by enhancing the thickness of the encapsulated layer and nanoparticle binding. Maintenance of benefits and minimization of nanotoxicity are desirable, and green synthesized nanoparticles are emerging. Future trends include optimized formulation, especially using biocompatible materials, protein or plant-based materials, and material modification.
Collapse
Affiliation(s)
- Qing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Yang J, Meng D, Wu Z, Chen J, Xue L. Modification and Solubility Enhancement of Rice Protein and Its Application in Food Processing: A Review. Molecules 2023; 28:molecules28104078. [PMID: 37241820 DOI: 10.3390/molecules28104078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Rice protein is a high-quality plant-based protein source that is gluten-free, with high biological value and low allergenicity. However, the low solubility of rice protein not only affects its functional properties such as emulsification, gelling, and water-holding capacity but also greatly limits its applications in the food industry. Therefore, it is crucial to modify and improve the solubility of rice protein. In summary, this article discusses the underlying causes of the low solubility of rice protein, including the presence of high contents of hydrophobic amino acid residues, disulfide bonds, and intermolecular hydrogen bonds. Additionally, it covers the shortcomings of traditional modification methods and the latest compound improvement methods, compares various modification methods, and puts forward the best sustainable, economical, and environmentally friendly method. Finally, this article lists the uses of modified rice protein in dairy, meat, and baked goods, providing a reference for the extensive application of rice protein in the food industry.
Collapse
Affiliation(s)
- Jingjing Yang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Dan Meng
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinyu Chen
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Lu Xue
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
9
|
Popescu L, Cojocari D, Ghendov-Mosanu A, Lung I, Soran ML, Opriş O, Kacso I, Ciorîţă A, Balan G, Pintea A, Sturza R. The Effect of Aromatic Plant Extracts Encapsulated in Alginate on the Bioactivity, Textural Characteristics and Shelf Life of Yogurt. Antioxidants (Basel) 2023; 12:antiox12040893. [PMID: 37107268 PMCID: PMC10135706 DOI: 10.3390/antiox12040893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The article investigated the antioxidant and antimicrobial activity of extracts from two aromatic plants—Satureja hortensis L. (SE) and Rosmarinus officinalis L. (RE), encapsulated in alginate, on—yogurt properties. The encapsulation efficiency was controlled by FTIR and SEM analysis. In both extracts, the individual polyphenol content was determined by HPLC–DAD–ESI-MS. The total polyphenol content and the antioxidant activity were spectrophotometrically quantified. The antimicrobial properties of SE and RE against gram-positive bacteria (Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Geobacillus stearothermophilus), gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Salmonella abony) and yeasts (Candida albicans) were analyzed in vitro. The encapsulated extracts were used to prepare the functional concentrated yogurt. It was established that the addition of 0.30–0.45% microencapsulated plant extracts caused the inhibition of the post-fermentation process, the improvement of the textural parameters of the yogurt during storage, thus the shelf life of the yogurt increased by seven days, compared to the yogurt simple. Mutual information analysis was applied to establish the correlation between the concentration of the encapsulated extracts on the sensory, physical-chemical, and textural characteristics of the yogurt.
Collapse
Affiliation(s)
- Liliana Popescu
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova
| | - Daniela Cojocari
- Department of Preventive Medicine, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Stefan cel Mare Bd., MD-2004 Chisinau, Moldova
| | - Aliona Ghendov-Mosanu
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova
| | - Ildiko Lung
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Ocsana Opriş
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Irina Kacso
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Alexandra Ciorîţă
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babes-Bolyai University, 5–7 Clinicilor, 400006 Cluj-Napoca, Romania
| | - Greta Balan
- Department of Preventive Medicine, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Stefan cel Mare Bd., MD-2004 Chisinau, Moldova
| | - Adela Pintea
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3–5 Calea Manastus St., 400374 Cluj-Napoca, Romania
| | - Rodica Sturza
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova
| |
Collapse
|
10
|
Donn P, Barciela P, Perez-Vazquez A, Cassani L, Simal-Gandara J, Prieto MA. Bioactive Compounds of Verbascum sinuatum L.: Health Benefits and Potential as New Ingredients for Industrial Applications. Biomolecules 2023; 13:biom13030427. [PMID: 36979363 PMCID: PMC10046334 DOI: 10.3390/biom13030427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Verbascum sinuatum (V. sinuatum) is a plant belonging to the Scrophulariaceae family that has been used as an ingredient in traditional medicine infusions for the treatment of many diseases. The aerial part of this plant is a source of bioactive compounds, especially polyphenols and iridoids. Moreover, antioxidant activity studies have shown that V. sinuatum phenolic and flavonoid composition is higher than those in other plants of the same genus. V. sinuatum bioactive compound composition could vary according to the harvesting location, growing conditions of the plants, sample preparation methods, type and concentration of the extraction solvent, and the extraction methods. The obtention of these compounds can be achieved by different extraction techniques, most commonly, maceration, heat assisted extraction, and infusion. Nevertheless, since conventional extraction techniques have several drawbacks such as long times of extraction or use of large amounts of solvents, the use of green extraction techniques is suggested, without affecting the efficiency of the extraction. Moreover, V. sinuatum bioactive compounds have several biological activities, such as antioxidant, anticancer, cardiovascular, antimicrobial, antidiabetic, and neuroprotective activities, that may be increased by encapsulation. Since the bioactive compounds extracted from V. sinuatum present good potential as functional food ingredients and in the development of drugs or cosmetics, this review gives an approach of the possible incorporation of these compounds in the food and pharmacological industries.
Collapse
Affiliation(s)
- Pauline Donn
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Paula Barciela
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Ana Perez-Vazquez
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Lucia Cassani
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Miguel A. Prieto
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence:
| |
Collapse
|
11
|
Development of Dairy Products Fortified with Plant Extracts: Antioxidant and Phenolic Content Characterization. Antioxidants (Basel) 2023; 12:antiox12020500. [PMID: 36830058 PMCID: PMC9952465 DOI: 10.3390/antiox12020500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In recent decades, there has been growing interest in the fortification of dairy products with antioxidants and phenolics derived from plant byproducts and herbs. The present study focused on the analysis of dairy products, including kefir, cream cheese, yogurt, and vegan yogurt, enhanced with aqueous extracts of plant byproducts (Citrus aurantium peel, Citrus limon peel and Rosa canina seed) and herbs (Sideritis spp., Hypericum perforatum, Origanum dictamnus, Mentha pulegium L., Melissa oficinallis, Mentha spicata L. and Lavandula angustifolia) to characterize their antioxidant content, phenolic profile, and organoleptic characteristics. Antioxidant and phenolic content were determined by Folin-Ciocalteu and ferric reducing antioxidant power (FRAP) assays and presented values up to 46.61 ± 7.22 mmol Fe2+/L and 82.97 ± 4.29 mg gallic acid (GAE)/g, respectively for the aqueous extracts, as well as up to 0.68 ± 0.06 mmol Fe2+/L and 2.82 ± 0.36 mg GAE/g for the fortified dairy products. The bioavailability of antioxidants and phenolics in fortified foods was determined after in vitro digestion and ranged between 4 and 68%. The phytochemical profile of the aqueous extracts was determined by mass spectrometry, and 162 phytochemicals were determined, from which 128 belong to the polyphenol family including flavonoids and phenolic acids. Furthermore, most of the identified compounds have been recorded to possess enhanced antioxidant capacity in correlation to the in vitro findings. Finally, organoleptic evaluation showed an overall acceptability around 3.0 ± 1.0 on a 5-point scale. In conclusion, the studied plants and herbal extracts can be used for the fortification of a variety of dairy products with potential positive effects on human health.
Collapse
|
12
|
Yang Y, Zhang R, Zhang F, Wang B, Liu Y. Storage stability of texture, organoleptic, and biological properties of goat milk yogurt fermented with probiotic bacteria. Front Nutr 2023; 9:1093654. [PMID: 36698458 PMCID: PMC9868595 DOI: 10.3389/fnut.2022.1093654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Goat milk is an attractive food due to its high nutritional values, easy digestibility and hypoallergenicity, but has an undesirable "goaty" flavor. Methods In this study, goat yogurt was fermented with four probiotics, respectively, including Lactobacillus acidophilus (GYA), Bifidobacterium animalis (GYB), Lactobacillus casei (GYC) and Lactobacillus plantarum (GYP), and tested for texture, organoleptic, and biological properties during a 4-week storage period at the refrigerated temperature. Results All goat yogurt with probiotics showed an increase on titratable acidity and a corresponding downward trend on pH value. Viable counts of L. acidophilus and L. casei were above 6 log cfu/mL at the end of the storage, which met the minimum standards for viable probiotic bacteria in yogurt specified by the Food and Agriculture Organization of United Nation (FAO). The texture and organoleptic characteristics of fermented goat milk depended on the strain and the storage period. DPPH free radical scavenging rate and ferric reducing antioxidant power activity gradually increased in all goat yogurts during the storage and yogurt with probiotic bacteria showed higher values than those of GY0. Discussion Among all probiotic containing goat yogurts, GYC exhibited the desirable characteristics of hardness, adhesiveness, water holding capacity, antioxidant activity during the whole storage. Furthermore, the addition of L. casei effectively weakened the goaty flavor and enhanced the overall acceptability. Thus, fermented goat milk with L. casei is optional for the development of goat milk product with satisfactory texture properties, pleasant sensory quality and high bioactivity.
Collapse
|
13
|
Extraction, Characterization, and Chitosan Microencapsulation of Bioactive Compounds from Cannabis sativa L., Cannabis indica L., and Mitragyna speiosa K. Antioxidants (Basel) 2022; 11:antiox11112103. [PMID: 36358475 PMCID: PMC9686816 DOI: 10.3390/antiox11112103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of the research was to investigate the bioactive compounds of herbal plant leaves by microencapsulation technique for future application as a feed additive. In this experiment, three herbal plant leaves, namely Cannabis sativa L., Cannabis indica L., and Mitragyna speiosa K., were comparatively investigated using different methods to extract their bioactive compounds. Two methods were used to extract the bioactive compounds: microwave extraction (water-heating transferred) and maceration extraction (methanol extracted). The results obtained using microwave extraction revealed that the total polyphenolic and flavonoid contents and antioxidant capacity were significantly higher and stronger, respectively, than those produced by the maceration extraction method (p < 0.05). Furthermore, the spray-drying technique was employed to enhance the extracted compounds by encapsulation with chitosan through ionic gelation properties. The physical characteristics of chitosan-encapsulated substrates were examined under a scanning electron microscope (SEM) and were as microparticle size (1.45 to 11.0 µm). The encapsulation efficiency of the bioactive compounds was found to be 99.7, 82.3, and 54.6% for microencapsulated M. speiosa, C. indica, and C. sativa, respectively. Therefore, microwave treatment prior to chitosan encapsulation of leaf extracts resulted in increased recovery of bioactive compound encroachment.
Collapse
|
14
|
Sbehat M, Mauriello G, Altamimi M. Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews. Microorganisms 2022; 10:microorganisms10101948. [PMID: 36296223 PMCID: PMC9610121 DOI: 10.3390/microorganisms10101948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Functional foods comprise the largest growing food category due to both consumer demands and health claims by manufacturers. Probiotics are considered one of the best choices for meeting these demands. Traditionally, the food vehicle for introducing probiotics to consumers was dairy products, and to expand the benefits of probiotics for a wider range of consumers, the need to use other food items was essential. To achieve this goal while maximising the benefits of probiotics, protection methods used during food processing were tackled. The microencapsulation of probiotics is a promising methodology for achieving this function. This review highlights the use of the microencapsulation of probiotics in order to functionalise food items that initially were not considered suitable for probiotication, such as baked products, or to increase their functionality such as dairy products. The co-microencapsulation of probiotics with other functional ingredients such polyphenol, prebiotics, or omega-3 is also highlighted.
Collapse
Affiliation(s)
- Maram Sbehat
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P.O. Box 7, Palestine
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Correspondence:
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
15
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
16
|
Ozma MA, Abbasi A, Ahangarzadeh Rezaee M, Hosseini H, Hosseinzadeh N, Sabahi S, Noori SMA, Sepordeh S, Khodadadi E, Lahouty M, Kafil HS. A Critical Review on the Nutritional and Medicinal Profiles of Garlic’s ( Allium sativum L.) Bioactive Compounds. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mahdi Asghari Ozma
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Mohammad Ali Noori
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sama Sepordeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas—Fayetteville, Fayetteville, AR, USA
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Neekhra S, Pandith JA, Mir NA, Manzoor A, Ahmad S, Ahmad R, Sheikh RA. Innovative approaches for microencapsulating bioactive compounds and probiotics: An updated review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Somya Neekhra
- Department of Food Engineering and Technology, Institute of Engineering and Technology Bundelkhand University Jhansi India
| | - Junaid Ahmad Pandith
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Nisar A. Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering Chandigarh University Mohali Punjab India
| | - Arshied Manzoor
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Saghir Ahmad
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Rizwan Ahmad
- Department of Post‐Harvest Engineering and Technology, Faculty of Agriculture Aligarh Muslim University Aligarh India
| | - Rayees Ahmad Sheikh
- Department of Chemistry government Degree College Pulwama Jammu and Kashmir India
| |
Collapse
|
18
|
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Encapsulation of Docosahexaenoic Acid Oil Substantially Improves the Oxylipin Profile of Rat Tissues. Front Nutr 2022; 8:812119. [PMID: 35118110 PMCID: PMC8805515 DOI: 10.3389/fnut.2021.812119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a major n-3 polyunsaturated fatty acid (PUFA) particularly involved in cognitive and cardiovascular functions. Due to the high unsaturation index, its dietary intake form has been considered to improve oxidation status and to favor bioaccessibility and bioavailability as well. This study aimed at investigating the effect of DHA encapsulated with natural whey protein. DHA was dietary provided as triacylglycerols to achieve 2.3% over total fatty acids. It was daily supplied to weanling rats for four weeks in omelet as food matrix, consecutively to a 6-hour fasting. First, when DHA oil was encapsulated, consumption of chow diet was enhanced leading to promote animal growth. Second, the brain exhibited a high accretion of 22.8% DHA, which was not improved by dietary supplementation of DHA. Encapsulation of DHA oil did not greatly affect the fatty acid proportions in tissues, but remarkably modified the profile of oxidized metabolites of fatty acids in plasma, heart, and even brain. Specific oxylipins derived from DHA were upgraded, such as Protectin Dx in heart and 14-HDoHE in brain, whereas those generated from n-6 PUFAs were mainly mitigated. This effect did not result from oxylipins measured in DHA oil since DHA and EPA derivatives were undetected after food processing. Collectively, these data suggested that dietary encapsulation of DHA oil triggered a more efficient absorption of DHA, the metabolism of which was enhanced more than its own accretion in our experimental conditions. Incorporating DHA oil in functional food may finally improve the global health status by generating precursors of protectins and maresins.
Collapse
Affiliation(s)
- Jun Wang
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Jordane Ossemond
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yann Le Gouar
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Françoise Boissel
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Didier Dupont
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Frédérique Pédrono
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
- *Correspondence: Frédérique Pédrono
| |
Collapse
|