1
|
Bartman M, Hołysz L, Balicki SJ, Szczęsna-Górniak W, Wilk KA. Wettability of Graffiti Coatings by Green Nanostructured Fluids. Chemphyschem 2024; 25:e202300771. [PMID: 38009755 DOI: 10.1002/cphc.202300771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Green nanostructured fluids (GNFs), specifically water-in-oil nanoemulsions (w/o NEs), were investigated as professional "brush on, wipe off" nanodetergents for the effective removal of various challenging graffiti coatings. The efficacy of the advanced nanodetergents in eradicating resilient graffiti coatings was evaluated using various methods to assess the surface properties of forming graffiti coatings. The surface properties of these coatings were examined by assessing their wettability by water, surface free energy, and topography to obtain information on the intermolecular interactions with the nanodetergent during the wetting and graffiti removal process. Our findings revealed significant variations in the coating removal rate and efficacy of green nanostructured fluids, which are stabilized using surfactants derived from saccharides or amino acids. A water-in-oil nanoemulsion, stabilized by caprylyl/capryl glucoside, demonstrated exceptional efficiency at cleaning graffiti paints based on alkyd resin and containing various additives such as nitrocellulose or bitumen, from any hard surface within a short time period. However, a w/o NE, stabilized by sodium cocoyl glycinate, also showed effective removal of graffiti paints containing durable bitumen, albeit at a slower rate on. These green nanostructured fluids can be used as specific nanodetergents for the comprehensive removal of various graffiti coatings, but require a specified action time to prevent damage to the original substrate beneath the paint coating.
Collapse
Affiliation(s)
- Marcin Bartman
- Department of Engineering and Technology of Chemical Processes. Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Lucyna Hołysz
- Institute of Chemical Science. Faculty of Chemistry., Maria Curie-Skłodowska University, Plac M. Curie-Skłodowska 3, 20-031, Lublin, Poland
| | - Sebastian J Balicki
- Department of Engineering and Technology of Chemical Processes. Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Weronika Szczęsna-Górniak
- Department of Engineering and Technology of Chemical Processes. Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes. Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
2
|
Ślosarczyk A, Klapiszewska I, Parus A, Balicki S, Kornaus K, Gapiński B, Wieczorowski M, Wilk KA, Jesionowski T, Klapiszewski Ł. Antimicrobial action and chemical and physical properties of CuO-doped engineered cementitious composites. Sci Rep 2023; 13:10404. [PMID: 37369694 DOI: 10.1038/s41598-023-37673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/26/2023] [Indexed: 06/29/2023] Open
Abstract
CuO nanoparticles (NPs) were added to cement matrices in quantities of 0.25, 0.50 and 1.00 wt% to inhibit the growth of Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. It was shown that CuO NPs, in all tested concentrations, improved the antibacterial properties of the cement matrix. Nevertheless, the best mechanical, structural and durability properties were obtained for cement composites doped with CuO NPs at 0.25 wt%. Larger amounts of NPs caused a decrease in all parameters relative to the reference mortar, which may be the result of a slight change in the porosity of the composite microstructure. For 0.50 wt% CuO NPs, a slight increase in the volume of micropores in the cement matrix was observed, and an increased number of larger pores was confirmed by non-invasive computed tomography (CT). The reduction in the mechanical parameters of composites with 0.50 and 1.00 wt% CuO NPs may also be due to the slower hydration of the cement binder, as confirmed by changes in the heat of hydration for these configurations, or agglomeration of NPs, especially for the 1.00 wt% concentration, which was manifested in a decrease in the plasticity of the mortars.
Collapse
Affiliation(s)
- Agnieszka Ślosarczyk
- Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, 60965, Poznan, Poland.
| | - Izabela Klapiszewska
- Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, 60965, Poznan, Poland
| | - Anna Parus
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965, Poznan, Poland
| | - Sebastian Balicki
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, 50370, Wrocław, Poland
| | - Kamil Kornaus
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30059, Kraków, Poland
| | - Bartosz Gapiński
- Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60965, Poznan, Poland
| | - Michał Wieczorowski
- Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60965, Poznan, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, 50370, Wrocław, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965, Poznan, Poland
| | - Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965, Poznan, Poland.
| |
Collapse
|
3
|
Surface Properties of Graffiti Coatings on Sensitive Surfaces Concerning Their Removal with Formulations Based on the Amino-Acid-Type Surfactants. Molecules 2023; 28:molecules28041986. [PMID: 36838974 PMCID: PMC9958821 DOI: 10.3390/molecules28041986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Water-in-oil (w/o) nanoemulsions stabilized with amino acid surfactants (AAS) are one example of nanotechnology detergents of the "brush on, wipe off"-type for removing graffiti coatings from different sensitive surfaces. The high-pressure homogenization (HPH) process was used to obtain the nanostructured fluids (NSFs), including the non-toxic and eco-friendly components such as AAS, esterified vegetable oils, and ethyl lactate. The most effective NSF detergent was determined by response surface methodology (RSM) optimization. Afterwards, several surface properties, i.e., topography, wettability, surface free energy, and the work of water adhesion to surfaces before and after their coverage with the black graffiti paint, as well as after the removal of the paint layers by the eco-remover, were determined. It was found that the removal of graffiti with the use of the NSF detergent is more dependent on the energetic properties and microporous structure of the paint coatings than on the properties of the substrates on which the layers were deposited. The use of NSFs and knowledge of the surface properties could enable the development of versatile detergents that would remove unwanted contamination from various surfaces easily and in a controlled way.
Collapse
|