1
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 44511, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Biswas R, Mondal S, Ansari MA, Sarkar T, Condiuc IP, Trifas G, Atanase LI. Chitosan and Its Derivatives as Nanocarriers for Drug Delivery. Molecules 2025; 30:1297. [PMID: 40142072 PMCID: PMC11946192 DOI: 10.3390/molecules30061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Chitosan (CS) occurs naturally as an alkaline polysaccharide and has been demonstrated to have several activities of a biological nature. Additionally, as CS chains have functional hydroxyl and amino groups that are active, their applications can be expanded by chemically or molecularly altering the molecules to incorporate new functional groups. Due to its outstanding qualities, including biodegradability, biocompatibility, non-toxicity, and accessibility, it has received significant interest in all areas of biomedicine and nanomaterials being extremely promising as drug nanocarrier. The last decades have produced a lot of interest in CS-based nanoparticles (CSNPs), with an increasing number of research papers from around 1500 in 2015 to almost 5000 in 2024. The degree of crosslinking, the particulate system's shape, size, and density, in addition to the drug's physical and chemical properties, all have a role in how the drug is transported and released from CSNPs. When creating potential drug delivery systems based on CSNPs, all these factors must be considered. In earlier, CSNPs were employed to enhance the pharmacotherapeutics, pharmacokinetics, and solubility properties of drugs. By investigating its positively charged characteristics and changeable functional groups, CS has evolved into a versatile drug delivery system. The drug release from CSNPs will definitely be influenced by various changes to the functional groups, charges, and polymer backbone. This review mainly discusses the most important results published in the last decade. Despite the promising advantages of CSNPs, challenges related to the translation into clinical stages remain and further in vitro and in vivo studies are mandatory.
Collapse
Affiliation(s)
- Ranu Biswas
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Sourav Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Md Ahesan Ansari
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Tanima Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Iustina Petra Condiuc
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Gisela Trifas
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Leonard Ionut Atanase
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Faculty of Medicine, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
3
|
Yang H, Whitby CP, Travas-Sejdic J. Dual-network hydrogel capsules for controlled molecular transport via pH and temperature responsiveness. J Colloid Interface Sci 2025; 677:942-951. [PMID: 39178673 DOI: 10.1016/j.jcis.2024.08.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
We have developed innovative core-shell hydrogel capsules with a dual-network shell structure designed for precise control of molecular transport in response to external stimuli such as pH and temperature. The capsules were fabricated using a combination of microfluidic electrospray techniques and water-in-water (w/w) core-shell droplets templating. The primary network of the shell, calcium alginate (Ca-Alg), with a pKa around 3.4, exhibits sensitivity to pH. The secondary network of the shell, poly(ethylene glycol) methyl ether methacrylate (PEGMA), undergoes a volume phase transition near 60 °C. These properties enable precise molecular transport control in/out of the capsules by modulating the surface charges through varying pH and modifying pore size through temperature changes. Moreover, the dual-network shell structure not only significantly enhances the mechanical strength of the capsules but also improves their stability under external stimulus, ensuring structural integrity during the transport of molecules. This research lays the groundwork for further investigations into the multimodal stimuli-responsive hydrogel systems to control molecular transport, important in applications such as sensors and reactors for chemical cascade reactions.
Collapse
Affiliation(s)
- Hui Yang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Catherine P Whitby
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
4
|
Chen X, Jing S, Xue C, Guan X. Progress in the Application of Hydrogels in Intervertebral Disc Repair: A Comprehensive Review. Curr Pain Headache Rep 2024; 28:1333-1348. [PMID: 38985414 PMCID: PMC11666692 DOI: 10.1007/s11916-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration (IVDD) is a common orthopaedic disease and an important cause of lower back pain, which seriously affects the work and life of patients and causes a large economic burden to society. The traditional treatment of IVDD mainly involves early pain relief and late surgical intervention, but it cannot reverse the pathological course of IVDD. Current studies suggest that IVDD is related to the imbalance between the anabolic and catabolic functions of the extracellular matrix (ECM). Anti-inflammatory drugs, bioactive substances, and stem cells have all been shown to improve ECM, but traditional injection methods face short half-life and leakage problems. RECENT FINDINGS The good biocompatibility and slow-release function of polymer hydrogels are being noticed and explored to combine with drugs or bioactive substances to treat IVDD. This paper introduces the pathophysiological mechanism of IVDD, and discusses the advantages, disadvantages and development prospects of hydrogels for the treatment of IVDD, so as to provide guidance for future breakthroughs in the treatment of IVDD.
Collapse
Affiliation(s)
- Xin Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaoze Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Chenhui Xue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaoming Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
5
|
Yang S, Fang M, Jin L, Shao Z, Zhang X, Han Y, Du B, Yang D, Gu AZ, Chen Y, Li D, Chen J. In Situ and Rapid Toxicity Assessment of Air Pollution by Self-Assembly Passive Colonization Hydrogel. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18109-18121. [PMID: 39248495 DOI: 10.1021/acs.est.4c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Air pollution is a leading environmental health risk factor, and in situ toxicity assessment is urgently needed. Bacteria-based bioassays offer cost-effective and rapid toxicity assessments. However, the application of these bioassays for air toxicity assessment has been challenging, due to the instability of bacterial survival and functionality when directly exposed to air pollutants. Here, we developed an approach employing self-assembly passive colonization hydrogel (SAPCH) for in situ air toxicity assessment. The SAPCH features a core-shell structure, enabling the quantitatively immobilization of bacteria on its shell while continuously provides nutrients from its core. An antimicrobial polyelectrolyte layer between the core and shell confines bacteria to the air-liquid interface, synchronizing bacterial survival with exposure to air pollutants. The SAPCH immobilized a battery of natural and recombinant luminescent bacteria, enabling simultaneous detection of various toxicological endpoints (cytotoxicity, genotoxicity and oxidative stress) of air pollutants within 2 h. Its sensitivity was 3-5 orders of magnitude greater than that of traditional liquid-phase toxicity testing, and successfully evaluating the toxicity of volatile organic compounds and combustion smoke. This study presents a method for in situ, rapid, and economical toxicity assessment of air pollution, making a significant contribution to future air quality monitoring and control.
Collapse
Affiliation(s)
- Shuo Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Mingliang Fang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077 Kowloon, Hong Kong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 99907 Kowloon, Hong Kong
| | - Zhiwei Shao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Han
- Department of Civil and Environmental Engineering, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077 Kowloon, Hong Kong
| | - Banghao Du
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, 271018 Tai'an, China
| | - Dayong Yang
- Department of Chemistry, Fudan University, 200438 Shanghai, China
| | - April Z Gu
- Atkinson Center for a Sustainable Future Faculty Fellow Civil and Environmental Engineering, Cornell University, Ithaca, New York State 14853, United States
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Yao T, Feng C, Yan H. Current developments and applications of smart polymers based aqueous two-phase systems. Microchem J 2024; 204:111170. [DOI: 10.1016/j.microc.2024.111170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
7
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
8
|
Kruczkowska W, Gałęziewska J, Grabowska K, Liese G, Buczek P, Kłosiński KK, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż, Kołat D. Biomedical Trends in Stimuli-Responsive Hydrogels with Emphasis on Chitosan-Based Formulations. Gels 2024; 10:295. [PMID: 38786212 PMCID: PMC11121652 DOI: 10.3390/gels10050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Biomedicine is constantly evolving to ensure a significant and positive impact on healthcare, which has resulted in innovative and distinct requisites such as hydrogels. Chitosan-based formulations stand out for their versatile utilization in drug encapsulation, transport, and controlled release, which is complemented by their biocompatibility, biodegradability, and non-immunogenic nature. Stimuli-responsive hydrogels, also known as smart hydrogels, have strictly regulated release patterns since they respond and adapt based on various external stimuli. Moreover, they can imitate the intrinsic tissues' mechanical, biological, and physicochemical properties. These characteristics allow stimuli-responsive hydrogels to provide cutting-edge, effective, and safe treatment. Constant progress in the field necessitates an up-to-date summary of current trends and breakthroughs in the biomedical application of stimuli-responsive chitosan-based hydrogels, which was the aim of this review. General data about hydrogels sensitive to ions, pH, redox potential, light, electric field, temperature, and magnetic field are recapitulated. Additionally, formulations responsive to multiple stimuli are mentioned. Focusing on chitosan-based smart hydrogels, their multifaceted utilization was thoroughly described. The vast application spectrum encompasses neurological disorders, tumors, wound healing, and dermal infections. Available data on smart chitosan hydrogels strongly support the idea that current approaches and developing novel solutions are worth improving. The present paper constitutes a valuable resource for researchers and practitioners in the currently evolving field.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Katarzyna Grabowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Gabriela Liese
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Paulina Buczek
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
9
|
Hao M, Wang D, Duan M, Kan S, Li S, Wu H, Xiang J, Liu W. Functional drug-delivery hydrogels for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2023; 11:1241660. [PMID: 37600316 PMCID: PMC10434880 DOI: 10.3389/fbioe.2023.1241660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The repair process for oral and maxillofacial injuries involves hemostasis, inflammation, proliferation, and remodeling. Injury repair involves a variety of cells, including platelets, immune cells, fibroblasts, and various cytokines. Rapid and adequate healing of oral and maxillofacial trauma is a major concern to patients. Functional drug-delivery hydrogels play an active role in promoting wound healing and have shown unique advantages in wound dressings. Functional hydrogels promote wound healing through their adhesive, anti-inflammatory, antioxidant, antibacterial, hemostatic, angiogenic, and re-epithelialization-promoting properties, effectively sealing wounds and reducing inflammation. In addition, functional hydrogels can respond to changes in temperature, light, magnetic fields, pH, and reactive oxygen species to release drugs, enabling precise treatment. Furthermore, hydrogels can deliver various cargos that promote healing, including nucleic acids, cytokines, small-molecule drugs, stem cells, exosomes, and nanomaterials. Therefore, functional drug-delivery hydrogels have a positive impact on the healing of oral and maxillofacial injuries. This review describes the oral mucosal structure and healing process and summarizes the currently available responsive hydrogels used to promote wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Mengna Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
10
|
Shokrani H, Shokrani A, Seidi F, Mashayekhi M, Kar S, Nedeljkovic D, Kuang T, Saeb MR, Mozafari M. Polysaccharide-based biomaterials in a journey from 3D to 4D printing. Bioeng Transl Med 2023; 8:e10503. [PMID: 37476065 PMCID: PMC10354780 DOI: 10.1002/btm2.10503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 02/18/2023] [Indexed: 07/22/2023] Open
Abstract
3D printing is a state-of-the-art technology for the fabrication of biomaterials with myriad applications in translational medicine. After stimuli-responsive properties were introduced to 3D printing (known as 4D printing), intelligent biomaterials with shape configuration time-dependent character have been developed. Polysaccharides are biodegradable polymers sensitive to several physical, chemical, and biological stimuli, suited for 3D and 4D printing. On the other hand, engineering of mechanical strength and printability of polysaccharide-based scaffolds along with their aneural, avascular, and poor metabolic characteristics need to be optimized varying printing parameters. Multiple disciplines such as biomedicine, chemistry, materials, and computer sciences should be integrated to achieve multipurpose printable biomaterials. In this work, 3D and 4D printing technologies are briefly compared, summarizing the literature on biomaterials engineering though printing techniques, and highlighting different challenges associated with 3D/4D printing, as well as the role of polysaccharides in the technological shift from 3D to 4D printing for translational medicine.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co‐Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
- Department of Chemical EngineeringSharif University of TechnologyTehranIran
| | | | - Farzad Seidi
- Jiangsu Co‐Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | | | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle EastKuwait
| | - Dragutin Nedeljkovic
- College of Engineering and Technology, American University of the Middle EastKuwait
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of TechnologyHangzhouChina
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Tian B, Liu J. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review. Int J Biol Macromol 2023; 235:123902. [PMID: 36871689 DOI: 10.1016/j.ijbiomac.2023.123902] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Smart stimuli-responsive materials can respond to different signals (pH, temperature, light, electricity, etc.), and they have become a hot research topic for drug delivery. As a polysaccharide polymer with excellent biocompatibility, chitosan can be obtained from diverse natural sources. Chitosan hydrogels with different stimuli-response capabilities are widely applied in the drug delivery field. This review highlights and discusses the research progress on chitosan hydrogels concerning their stimuli-responsive capabilities. The feature of various stimuli-responsive kinds of hydrogels is outlined, and their potential use of drug delivery is summarized. Furthermore, the questions and future development chances of stimuli-responsive chitosan hydrogels are analyzed by comparing the current published literature, and the directions for the intelligent development of chitosan hydrogels are discussed.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China; Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, Macau SAR, China.
| |
Collapse
|
12
|
|
13
|
Shokrani H, Shokrani A, Sajadi SM, Khodadadi Yazdi M, Seidi F, Jouyandeh M, Zarrintaj P, Kar S, Kim SJ, Kuang T, Rabiee N, Hejna A, Saeb MR, Ramakrishna S. Polysaccharide-based nanocomposites for biomedical applications: a critical review. NANOSCALE HORIZONS 2022; 7:1136-1160. [PMID: 35881463 DOI: 10.1039/d2nh00214k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polysaccharides (PSA) have taken specific position among biomaterials for advanced applications in medicine. Nevertheless, poor mechanical properties are known as the main drawback of PSA, which highlights the need for PSA modification. Nanocomposites PSA (NPSA) are a class of biomaterials widely used as biomedical platforms, but despite their importance and worldwide use, they have not been reviewed. Herein, we critically reviewed the application of NPSA by categorizing them into generic and advanced application realms. First, the application of NPSA as drug and gene delivery systems, along with their role in the field as an antibacterial platform and hemostasis agent is discussed. Then, applications of NPSA for skin, bone, nerve, and cartilage tissue engineering are highlighted, followed by cell encapsulation and more critically cancer diagnosis and treatment potentials. In particular, three features of investigations are devoted to cancer therapy, i.e., radiotherapy, immunotherapy, and photothermal therapy, are comprehensively reviewed and discussed. Since this field is at an early stage of maturity, some other aspects such as bioimaging and biosensing are reviewed in order to give an idea of potential applications of NPSA for future developments, providing support for clinical applications. It is well-documented that using nanoparticles/nanomaterials above a critical concentration brings about concerns of toxicity; thus, their effect on cellular interactions would become critical. We compared nanoparticles used in the fabrication of NPSA in terms of toxicity mechanism to shed more light on future challenging aspects of NPSA development. Indeed, the neutralization mechanisms underlying the cytotoxicity of nanomaterials, which are expected to be induced by PSA introduction, should be taken into account for future investigations.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alexander Hejna
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University Singapore, 10 Kent Ridge, Crescent 119260, Singapore.
| |
Collapse
|
14
|
|
15
|
Chen S, Qiu Q, Wang D, She D, Yin B, Gu G, Chai M, Heo DN, He H, Wang J. Dual-sensitive drug-loaded hydrogel system for local inhibition of post-surgical glioma recurrence. J Control Release 2022; 349:565-579. [PMID: 35835399 DOI: 10.1016/j.jconrel.2022.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Local treatment after resection to inhibit glioma recurrence is thought to able to meet the real medical needs. However, the only clinically approved local glioma treatment-wafer containing bis(2-chloroethyl) nitrosourea (BCNU) showed very limited effects. Herein, in order to inhibit tumor recurrence with prolonged and synergistic therapeutic effect of drugs after tumor resection, an in situ dual-sensitive hydrogel drug delivery system loaded with two synergistic chemo-drugs BCNU and temozolomide (TMZ) was developed. The thermosensitive hydrogel was loaded with reactive oxygen species (ROS)-sensitive poly (lactic-co-glycolic) acid nanoparticles (NPs) encapsulating both BCNU and TMZ and also free BCNU and TMZ. The in vitro synergistic effect of BCNU and TMZ and in vivo presence of ROS at the residual tumor site were confirmed. The prepared ROS-sensitive NPs and thermosensitive hydrogel, as well as the long-term release behavior of drugs and NPs, were fully characterized both in vitro and in vivo. After >90% glioblastoma resection, the dual-sensitive hydrogel drug delivery system was injected into the resection cavity. The median survival time of the experimental group reached 65 days which was twice as long as the Resection only group, implying that this in situ drug delivery system effectively inhibited tumor recurrence. Overall, this study provides new ideas and strategies for the inhibition of postoperative glioma recurrence.
Collapse
Affiliation(s)
- Sunhui Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China; Department of Pharmacy, Fujian Provincial Hospital & Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, People's Republic of China
| | - Qiujun Qiu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China
| | - Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Dejun She
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Guolong Gu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China
| | - Meihong Chai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, People's Republic of China.
| |
Collapse
|
16
|
Naseri E, Ahmadi A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Xin W, Gao Y, Yue B. Recent Advances in Multifunctional Hydrogels for the Treatment of Osteomyelitis. Front Bioeng Biotechnol 2022; 10:865250. [PMID: 35547176 PMCID: PMC9081433 DOI: 10.3389/fbioe.2022.865250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Osteomyelitis (OM), a devastating disease caused by microbial infection of bones, remains a major challenge for orthopedic surgeons. Conventional approaches for prevention and treatment of OM are unsatisfactory. Various alternative strategies have been proposed, among which, hydrogel-based strategies have demonstrated potential due to their unique properties, including loadable, implantable, injectable, printable, degradable, and responsive to stimuli. Several protocols, including different hydrogel designs, selection of antimicrobial agent, co-administration of bone morphogenetic protein 2 (BMP 2), and nanoparticles, have been shown to improve the biological properties, including antimicrobial effects, osteo-induction, and controlled drug delivery. In this review, we describe the current and future directions for designing hydrogels and their applications to improve the biological response to OM in vivo.
Collapse
|
18
|
Improving Polysaccharide-Based Chitin/Chitosan-Aerogel Materials by Learning from Genetics and Molecular Biology. MATERIALS 2022; 15:ma15031041. [PMID: 35160985 PMCID: PMC8839503 DOI: 10.3390/ma15031041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022]
Abstract
Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.
Collapse
|
19
|
Mehra A, Tharmatt A, Saini N, Singh G, Kaur K, Singh G, Bedi N. In Situ Hydrogels for Effective Treatment of Cancer: Strategies and Polymers Used. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:287-308. [PMID: 36200152 DOI: 10.2174/2667387816666221005102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a worldwide health ailment with no known boundaries in terms of mortality and occurrence rates, thus is one of the biggest threats to humankind. Hence, there is an absolute need to develop novel therapeutics to bridge the infirmities associated with chemotherapy and conventional surgical methodologies, including impairment of normal tissue, compromised drug efficiency and an escalation in side effects. In lieu of this, there has been a surge in curiosity towards the development of injectable hydrogels for cancer therapy because local administration of the active pharmaceutical agent offers encouraging advantages such as providing a higher effective dose at the target site, a prolonged retention time of drug, ease of administration, mitigation of dose in vivo, and improved patient compliance. Furthermore, due to their biocompatible nature, such systems can significantly reduce the side effects that occur on long-term exposure to chemotherapy. The present review details the most recent advancements in the in-situ gel forming polymers (natural and synthetic), polymeric cross-linking methodologies and in-situ gelling mechanisms, focusing on their clinical benefits in cancer therapy.
Collapse
Affiliation(s)
- Anshula Mehra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Abhay Tharmatt
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan-333031, India
| | - Navdeep Saini
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Gurpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| |
Collapse
|
20
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
21
|
Recent Advancement in Chitosan-Based Nanoparticles for Improved Oral Bioavailability and Bioactivity of Phytochemicals: Challenges and Perspectives. Polymers (Basel) 2021; 13:polym13224036. [PMID: 34833334 PMCID: PMC8617804 DOI: 10.3390/polym13224036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
The excellent therapeutic potential of a variety of phytochemicals in different diseases has been proven by extensive studies throughout history. However, most phytochemicals are characterized by a high molecular weight, poor aqueous solubility, limited gastrointestinal permeability, extensive pre-systemic metabolism, and poor stability in the harsh gastrointestinal milieu. Therefore, loading of these phytochemicals in biodegradable and biocompatible nanoparticles (NPs) might be an effective approach to improve their bioactivity. Different nanocarrier systems have been developed in recent decades to deliver phytochemicals. Among them, NPs based on chitosan (CS) (CS-NPs), a mucoadhesive, non-toxic, and biodegradable polysaccharide, are considered the best nanoplatform for the oral delivery of phytochemicals. This review highlights the oral delivery of natural products, i.e., phytochemicals, encapsulated in NPs prepared from a natural polymer, i.e., CS, for improved bioavailability and bioactivity. The unique properties of CS for oral delivery such as its mucoadhesiveness, non-toxicity, excellent stability in the harsh environment of the GIT, good solubility in slightly acidic and alkaline conditions, and ability to enhance intestinal permeability are discussed first, and then the outcomes of various phytochemical-loaded CS-NPs after oral administration are discussed in detail. Furthermore, different challenges associated with the oral delivery of phytochemicals with CS-NPs and future directions are also discussed.
Collapse
|
22
|
López-Lugo JD, Pimentel-Domínguez R, Benítez-Martínez JA, Hernández-Cordero J, Vélez-Cordero JR, Sánchez-Arévalo FM. Photomechanical Polymer Nanocomposites for Drug Delivery Devices. Molecules 2021; 26:molecules26175376. [PMID: 34500809 PMCID: PMC8433747 DOI: 10.3390/molecules26175376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
We demonstrate a novel structure based on smart carbon nanocomposites intended for fabricating laser-triggered drug delivery devices (DDDs). The performance of the devices relies on nanocomposites' photothermal effects that are based on polydimethylsiloxane (PDMS) with carbon nanoparticles (CNPs). Upon evaluating the main features of the nanocomposites through physicochemical and photomechanical characterizations, we identified the main photomechanical features to be considered for selecting a nanocomposite for the DDDs. The capabilities of the PDMS/CNPs prototypes for drug delivery were tested using rhodamine-B (Rh-B) as a marker solution, allowing for visualizing and quantifying the release of the marker contained within the device. Our results showed that the DDDs readily expel the Rh-B from the reservoir upon laser irradiation and the amount of released Rh-B depends on the exposure time. Additionally, we identified two main Rh-B release mechanisms, the first one is based on the device elastic deformation and the second one is based on bubble generation and its expansion into the device. Both mechanisms were further elucidated through numerical simulations and compared with the experimental results. These promising results demonstrate that an inexpensive nanocomposite such as PDMS/CNPs can serve as a foundation for novel DDDs with spatial and temporal release control through laser irradiation.
Collapse
Affiliation(s)
- Jonathan David López-Lugo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Reinher Pimentel-Domínguez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Jorge Alejandro Benítez-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Juan Hernández-Cordero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Juan Rodrigo Vélez-Cordero
- Cátedras CONACyT-Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Francisco Manuel Sánchez-Arévalo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
- Correspondence:
| |
Collapse
|