1
|
Grzywaczyk A, Rojewska M, Smułek W, McNaughton DA, Prochaska K, Gale PA, Kaczorek E. Glycyrrhiza glabra L. Saponins Modulate the Biophysical Properties of Bacterial Model Membranes and Affect Their Interactions with Tobramycin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11701-11710. [PMID: 40302382 DOI: 10.1021/acs.langmuir.5c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The global challenge of antibiotic resistance necessitates innovative approaches to improving the efficacy of existing therapeutics while mitigating their environmental impact. This study investigates the role of saponins derived from Glycyrrhiza glabra root extract in modulating interactions of tobramycin, a broad-spectrum aminoglycoside antibiotic, with model bacterial membranes composed of phosphatidylglycerol. Using Langmuir monolayers and vesicle models, we demonstrated that GgC saponins disrupt lipid packing, increasing membrane fluidity and altering biophysical properties. The addition of saponins at concentrations between 1.25 and 10 mg/L reduces the compressibility modulus of the lipid monolayer, with a decrease ranging from 25 to over 50%. ζ potential and dynamic light scattering analyses indicated that GgC-tobramycin interactions modify the surface charge without causing membrane lysis. These membrane changes could potentially facilitate enhanced interactions of antibiotics with bacterial cells. Importantly, these findings suggest the potential of natural surfactants such as saponins to improve antibiotic efficacy, possibly enabling reduced antibiotic dosages. This study provides insights into using saponins alongside antibiotics as a sustainable approach to addressing antibiotic resistance.
Collapse
Affiliation(s)
- Adam Grzywaczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Monika Rojewska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Daniel A McNaughton
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Philip A Gale
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
2
|
Dargel C, Moleiro LH, Radulescu A, Stank TJ, Hellweg T. Decomposition of mixed DMPC-aescin vesicles to bicelles is linked to the lipid's main phase transition: A direct evidence by using chain-deuterated lipid. J Colloid Interface Sci 2025; 679:209-220. [PMID: 39447464 DOI: 10.1016/j.jcis.2024.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
This work investigates the conversion of bicelles into larger sheets or closed vesicles upon dilution and temperature increase for a system composed of the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the saponin aescin. Due to its peculiar amphiphilic character, aescin is able to decompose DMPC bilayers into smaller, rim-stabilized bicelles. Aspects of the transition process are analyzed in an aescin content- and temperature-dependent manner by photon correlation spectroscopy (PCS), turbidimetry and small-angle neutron scattering (SANS). Both the conversion of bicelles into vesicles induced by temperature increase and the decomposition process upon cooling are presumably related to the main phase transition temperature Tm of DMPC. Therefore, not only conventional DMPC, but also chain-deuterated d54-DMPC was used due to its significantly lower Tm-value compared to the conventional DMPC. It will be demonstrated that the reconversion of vesicle structures (present at low aescin content) into bicelles shows a strong hysteresis effect whereas this is not observed for the reconversion at high aescin amounts, at which for high temperature still bicelle structures are present. The results indicate formation of a trapped state, correlated with the lipid's Tm and the decomposition of vesicles into bicelles is only possible if the lipid membrane entirely adopts the rigid phase state.
Collapse
Affiliation(s)
- Carina Dargel
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, Münster, 48149, Germany; Physical and Biophysical Chemistry, Bielefeld University, Universitätstraße 25, Bielefeld, 33615, Germany
| | - Lara H Moleiro
- Physical and Biophysical Chemistry, Bielefeld University, Universitätstraße 25, Bielefeld, 33615, Germany; Department of Physical Chemistry, Complutense University, Avda. Complutense s/n, Madrid, 28040, Spain
| | - Aurel Radulescu
- Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, Garching, 85747, Germany
| | - Tim Julian Stank
- Physical and Biophysical Chemistry, Bielefeld University, Universitätstraße 25, Bielefeld, 33615, Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, Universitätstraße 25, Bielefeld, 33615, Germany.
| |
Collapse
|
3
|
Heller WT. Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes. Biomolecules 2022; 12:1591. [PMID: 36358941 PMCID: PMC9687511 DOI: 10.3390/biom12111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
4
|
Fernandes MJG, Pereira RB, Rodrigues ARO, Vieira TF, Fortes AG, Pereira DM, Sousa SF, Gonçalves MST, Castanheira EMS. Liposomal Formulations Loaded with a Eugenol Derivative for Application as Insecticides: Encapsulation Studies and In Silico Identification of Protein Targets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3583. [PMID: 36296773 PMCID: PMC9611868 DOI: 10.3390/nano12203583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
A recently synthesized new eugenol derivative, ethyl 4-(2-methoxy-4-(oxiran-2-ylmethyl)phenoxy)butanoate, with a high insecticidal activity against Sf9 (Spodoptera frugiperda) insect cells, was encapsulated in the liposomal formulations of egg-phosphatidylcholine/cholesterol (Egg-PC:Ch) 70:30 and 100% dioleoylphosphatidylglycerol (DOPG), aiming at the future application as insecticides. Compound-loaded DOPG liposomes have sizes of 274 ± 12 nm, while Egg-PC:Ch liposomes exhibit smaller hydrodynamic diameters (69.5 ± 7 nm), high encapsulation efficiency (88.8 ± 2.7%), higher stability, and a more efficient compound release, thus, they were chosen for assays in Sf9 insect cells. The compound elicited a loss of cell viability up to 80% after 72 h of incubation. Relevantly, nanoencapsulation maintained the toxicity of the compound toward insect cells while lowering the toxicity toward human cells, thus showing the selectivity of the system. Structure-based inverted virtual screening was used to predict the most likely targets and molecular dynamics simulations and free energy calculations were used to demonstrate that this molecule can form a stable complex with insect odorant binding proteins and/or acetylcholinesterase. The results are promising for the future application of compound-loaded nanoliposome formulations as crop insecticides.
Collapse
Affiliation(s)
- Maria José G. Fernandes
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Renato B. Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tatiana F. Vieira
- UCIBIO/REQUIMTE, BioSIM—Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - A. Gil Fortes
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM—Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Bakr AF, Shao P, Farag MA. Recent advances in glycyrrhizin metabolism, health benefits, clinical effects and drug delivery systems for efficacy improvement; a comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153999. [PMID: 35220130 DOI: 10.1016/j.phymed.2022.153999] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Glycyrrhizin (GL) is a major active constituent of licorice root (Glycyrrhiza glabra) that is considered one of the oldest and most frequently employed botanicals in Chinese medicine and worldwide, with most effects attributed to its rich GL content. Structurally, GL a triterpene saponin that is widely used as a flavoring agent in foodstuffs and cosmetics, and also proposed for various clinical applications with a myriad of health benefits. Pharmacological and biological activities of GL include antiviral, anti-inflammatory, antioxidant, and anticancer activities (in vitro and in vivo). Currently, there is no comprehensive review on GL biological effects and its action mechanisms. PURPOSE This review summarizes GL pharmacological actions from a molecular biology perception, presented on its metabolism and side effects based on in vitro, in vitro and clinical studies. Moreover, the potential of GL as a nanomedicine delivery system is also summarized. The progress in drug delivery research using GL presented herein is expected to provide a theoretical basis for developing other novel drugs formulations. METHODS A systematic review was carried out in several electronic databases (Science Direct, SpringerLink, CNKI, PubMed, Web of Science, Elsevier, and Scopus), using the following key words: glycyrrhizin "AND" bioactivity "OR" clinic "OR" therapeutic "OR" drug delivery. This search included manuscripts published between 1989 and 2021. RESULTS 126 researches were selected and summarized in this review. The analysis of these studies indicated that GL has antiviral activity against different viruses. Further, GL efficiently suppressed the respiratory manifestations associated with COVID-19 by reducing the expression of angiotensin converting enzyme 2 (ACE2) that employed by the virus as an entry point. Otherwise, GL was found to induce antioxidant, anti-inflammatory, immune-modulatory, and anticancer activity. Besides, diminution the particle size of GL to nanometer size significantly augments their action and biodistribution. CONCLUSION This article summarizes the pharmacological actions of GL. The potential of GL as a nanomedicine delivery system is also presented. Nevertheless, most studies reported provide no deep insight of GL health effects warranting for more future studies to elucidate its action mechanism and potential therapeutic benefits through preclinical and clinical trials.
Collapse
Affiliation(s)
- Alaa F Bakr
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Gamaa St., Giza 12211, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|