1
|
Haque MZU, Hashmi IA, Qureshi MT, Bari A, Musharraf SG, Ali FI. Mild and Efficient Reductive
N,N‐
Dimethylation of Amines by Using 1,3‐Dimethylimidazole‐2‐ylidene Borane (diMe‐Imd‐BH
3
). ChemistrySelect 2022. [DOI: 10.1002/slct.202203404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
| | - Imran Ali Hashmi
- Department of Chemistry University of Karachi Main University Road Karachi 75270 Sindh Pakistan
| | - Muhammad Taha Qureshi
- Department of Chemistry University of Karachi Main University Road Karachi 75270 Sindh Pakistan
| | - Ahmad Bari
- Department of Pharmaceutical Chemistry College of Pharmacy King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Syed Ghulam Musharraf
- HEJ Research Institute of Chemistry University of Karachi Main University Road Karachi 75270 Sindh Pakistan
| | - Firdous Imran Ali
- Department of Chemistry University of Karachi Main University Road Karachi 75270 Sindh Pakistan
| |
Collapse
|
2
|
Zhai S, Forsyth C, Liu Z, Vidović D. Synthesis of Mono- and Acyclic Bis-aminoboranes via Controlled Hydroboration of Imines. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siyuan Zhai
- School of Chemistry, Faculty of Sciences, Monash University, 3800 Clayton, Australia
| | - Craig Forsyth
- School of Chemistry, Faculty of Sciences, Monash University, 3800 Clayton, Australia
| | - Zhizhou Liu
- School of Chemistry, Faculty of Sciences, Monash University, 3800 Clayton, Australia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Dragoslav Vidović
- School of Chemistry, Faculty of Sciences, Monash University, 3800 Clayton, Australia
| |
Collapse
|
3
|
Rezaei Bazkiaei A, Findlater M, Gorden AEV. Applications of catalysis in hydroboration of imines, nitriles, and carbodiimides. Org Biomol Chem 2022; 20:3675-3702. [PMID: 35451449 DOI: 10.1039/d2ob00162d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic hydroboration of imines, nitriles, and carbodiimides is a powerful method of preparing amines which are key synthetic intermediates in the synthesis of many value-added products. Imine hydroboration has perennially featured in notable reports while nitrile and carbodiimide hydroboration have gained attention recently. Initial developments in catalytic hydroboration of imines and nitriles employed precious metals and typically required harsh reaction conditions. More recent advances have shifted toward the use of base metal and main group element catalysis and milder reaction conditions. In this survey, we review metal and nonmetal catalyzed hydroboration of these unsaturated organic molecules and group them into three distinct categories: precious metals, base metals, and main group catalysts. The TON and TOF of imine hydroboration catalysts are reported and summarized with a brief overview of recent advances in the field. Mechanistic and kinetic studies of some of these protocols are also presented.
Collapse
Affiliation(s)
- Adineh Rezaei Bazkiaei
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| | - Michael Findlater
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA.
| | - Anne E V Gorden
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| |
Collapse
|
4
|
Zou W, Gao L, Cao J, Li Z, Li G, Wang G, Li S. Mechanistic Insight into Hydroboration of Imines from Combined Computational and Experimental Studies. Chemistry 2022; 28:e202104004. [PMID: 35018677 DOI: 10.1002/chem.202104004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 12/15/2022]
Abstract
Boron Lewis acid-catalyzed and catalyst-free hydroboration reactions of imines are attractive due to the mild reaction conditions. In this work, the mechanistic details of the hydroboration reactions of two different kinds of imines with pinacolborane (HBpin) are investigated by combining density functional theory calculations and some experimental studies. For the hydroboration reaction of N-(α-methylbenzylidene)aniline catalyzed by tris[3,5-bis(trifluoromethyl)phenyl]borane (BArF 3 ), our calculations show that the reaction proceeds through a boron Lewis acid-promoted hydride transfer mechanism rather than the classical Lewis acid activation mechanism. For the catalyst- and solvent-free hydroboration reaction of imine, N-benzylideneaniline, our calculations and experimental studies indicate that this reaction is difficult to occur under the reaction conditions reported previously. With a combination of computational and experimental studies, we have established that the commercially available BH3 ⋅ SMe2 can serve as an efficient catalyst for the hydroboration reactions of N-benzylideneaniline and similar imines. The hydroboration reactions catalyzed by BH3 ⋅ SMe2 are most likely to proceed through a hydroboration/B-H/B-N σ-bond metathesis pathway, which is very different from that of the reaction catalyzed by BArF 3 .
Collapse
Affiliation(s)
- Wentian Zou
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenxing Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|