1
|
Sharma A, Datta S, Sanjana RK, Pooja BM, Bose S, Hegde G. Onion peel derived carbon nanoparticles incorporated polysulfone membranes: enhanced dye removal from water. RSC Adv 2025; 15:7786-7798. [PMID: 40070394 PMCID: PMC11895526 DOI: 10.1039/d5ra00025d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The ongoing discharge of hazardous dyes from industrial processes has intensified global water pollution, posing serious threats to aquatic ecosystems and human health. Addressing this challenge, our study explores the potential of bio-based carbon nanomaterials (CNM), synthesized from onion peel biowaste and designated as ON11, as effective agents in dye removal. These CNMs were incorporated into a mixed matrix membrane (MMM), using polysulfone (PSU) as the membrane substrate, to enhance dye adsorption. The CNM synthesis was achieved through a simple, eco-friendly process. We examined their impact on adsorption efficiency by introducing ON11 nanoparticles at varying concentrations into the PSU membrane (ON11@PSU). This CNM-embedded membrane structure offers a solution to challenges associated with the large-scale application of nanomaterials, particularly by minimizing leaching into water and improving durability. The ON11 and ON11@PSU membranes were characterized using various techniques, including SEM, Raman spectroscopy, XRD, optical profilometer, and FTIR, to confirm their behavior, morphology, and structural integrity. The surface area of ON11 was 423.26 m2 g-1, with BJH average pore diameter of 4.5 nm and BET pore volume of 0.26 cm3 g-1. ON11 nanoparticles were adsorptive in nature, and their utility in membrane adsorption is explored. The influence of parameters, including contact time, dye concentration, membrane thickness, pH, and adsorbent dosage, was systematically evaluated to optimize the dye adsorption efficiency of the ON11@PSU membrane pad. It was observed that the thickness of the 60 μm membrane (S a = 2.170 μm and S q = 2.75 μm) showed higher removal efficiency for all the selected dyes than the other thicknesses at the native pH itself. The MMM demonstrated its effectiveness as an adsorbent membrane, achieving maximum removal efficiencies of approximately 98% for MG dye, 92% for RhB dye, and 67% for MB dye. The negative zeta potential of adsorptive membranes enabled the electrostatic attraction of positively charged dyes, enhancing adsorption capacity. The findings contribute to developing sustainable and effective membrane utility as adsorbents, opening avenues for the effective use of agricultural waste products in environmental remediation applications.
Collapse
Affiliation(s)
- Aman Sharma
- Department of Chemistry, School of Sciences, Christ University Bengaluru 560029 Karnataka India
- Centre for Advanced Research and Development (CARD), Christ University Bengaluru 560029 Karnataka India
| | - Soumi Datta
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 Karnataka India
| | - R K Sanjana
- Centre for Advanced Research and Development (CARD), Christ University Bengaluru 560029 Karnataka India
| | - B M Pooja
- Centre for Advanced Research and Development (CARD), Christ University Bengaluru 560029 Karnataka India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 Karnataka India
| | - Gurumurthy Hegde
- Department of Chemistry, School of Sciences, Christ University Bengaluru 560029 Karnataka India
- Centre for Advanced Research and Development (CARD), Christ University Bengaluru 560029 Karnataka India
| |
Collapse
|
2
|
Navina BK, Velmurugan NK, Senthil Kumar P, Rangasamy G, Palanivelu J, Thamarai P, Vickram AS, Saravanan A, Shakoor A. Fungal bioremediation approaches for the removal of toxic pollutants: Mechanistic understanding for biorefinery applications. CHEMOSPHERE 2024; 350:141123. [PMID: 38185426 DOI: 10.1016/j.chemosphere.2024.141123] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Pollution is a global menace that poses harmful effects on all the living ecosystems and to the Earth. As years pass by, the available and the looming rate of pollutants increases at a faster rate. Although many treatments and processing strategies are waged for treating such pollutants, the by-products and the wastes or drain off generated by these treatments further engages in the emission of hazardous waste. Innovative and long-lasting solutions are required to address the urgent global issue of hazardous pollutant remediation from contaminated environments. Myco-remediation is a top-down green and eco-friendly tool for pollution management. It is a cost-effective and safer practice of converting pernicious substances into non-toxic forms by the use of fungi. But these pollutants can be transformed into useable products along with multiple benefits for the environment such as sequestration of carbon emissions and also to generate high valuable bioactive materials that fits as a sustainable economic model. The current study has examined the possible applications of fungi in biorefineries and their critical role in the transformation and detoxification of pollutants. The paper offers important insights into using fungal bioremediation for both economically and environmentally sound solutions in the domain of biorefinery applications by combining recent research findings.
Collapse
Affiliation(s)
- Bala Krishnan Navina
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - Nandha Kumar Velmurugan
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Awais Shakoor
- Hawkesbury Institute for the Environment, West Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
3
|
Mullai P, Vishali S, Sambavi SM, Dharmalingam K, Yogeswari MK, Vadivel Raja VC, Bharathiraja B, Bayar B, Abubackar HN, Al Noman MA, Rene ER. Energy generation from bioelectrochemical techniques: Concepts, reactor configurations and modeling approaches. CHEMOSPHERE 2023; 342:139950. [PMID: 37648163 DOI: 10.1016/j.chemosphere.2023.139950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
The process industries play a significant role in boosting the economy of any nation. However, poor management in several industries has been posing worrisome threats to an environment that was previously immaculate. As a result, the untreated waste and wastewater discarded by many industries contain abundant organic matter and other toxic chemicals. It is more likely that they disrupt the proper functioning of the water bodies by perturbing the sustenance of many species of flora and fauna occupying the different trophic levels. The simultaneous threats to human health and the environment, as well as the global energy problem, have encouraged a number of nations to work on the development of renewable energy sources. Hence, bioelectrochemical systems (BESs) have attracted the attention of several stakeholders throughout the world on many counts. The bioelectricity generated from BESs has been recognized as a clean fuel. Besides, this technology has advantages such as the direct conversion of substrate to electricity, and efficient operation at ambient and even low temperatures. An overview of the BESs, its important operating parameters, bioremediation of industrial waste and wastewaters, biodegradation kinetics, and artificial neural network (ANN) modeling to describe substrate removal/elimination and energy production of the BESs are discussed. When considering the potential for use in the industrial sector, certain technical issues of BES design and the principal microorganisms/biocatalysts involved in the degradation of waste are also highlighted in this review.
Collapse
Affiliation(s)
- P Mullai
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - S Vishali
- Department of Chemical Engineering, SRM Institute of Science and Engineering, Kattankulathur, 603 203, Tamil Nadu, India.
| | - S M Sambavi
- Department of Chemical and Biological Engineering, Energy Engineering with Industrial Management, University of Sheffield, Sheffield, United Kingdom.
| | - K Dharmalingam
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, Telangana, India.
| | - M K Yogeswari
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - V C Vadivel Raja
- Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr.Sakunthala Engineering College, Chennai, 600062, Tamil Nadu, India.
| | - Büşra Bayar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Haris Nalakath Abubackar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Md Abdullah Al Noman
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| |
Collapse
|
4
|
Sagar NA, Kumar Y, Singh R, Nickhil C, Kumar D, Sharma P, Om Pandey H, Bhoj S, Tarafdar A. Onion waste based-biorefinery for sustainable generation of value-added products. BIORESOURCE TECHNOLOGY 2022; 362:127870. [PMID: 36049716 DOI: 10.1016/j.biortech.2022.127870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Waste derived from the onion processing sector can be harnessed for the production of organic acids, polyphenols, polysachharides, biofuels and pigments. To sustainably utilize onion processing residues, different biorefinery strategies such as enzymatic hydrolysis, fermentation and hydrothermal carbonization have been widely investigated. This review discusses the recent advances in the biorefinery approaches used for valorization of onion processing waste followed by the production of different value-added products from diverse classes of onion waste. The review also highlights the current challenges faced by the bioprocessing sector for the utilization of onion processing waste and perspectives to tackle them.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Yogesh Kumar
- Department of Food Technology, Faculty of Science and Humanities, SRM University, Sonipat, Haryana 131 029, India
| | - Ramveer Singh
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand 249 404, India
| | - C Nickhil
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784 028, India
| | - Deepak Kumar
- Division of Food Technology, Department of Nutrition and Dietetics, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana 121 004, India
| | - Praveen Sharma
- Department of Botany, Rotary Institute of Management and Technology, Chandausi, Uttar Pradesh 244 412, India
| | - Hari Om Pandey
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Suvarna Bhoj
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India.
| |
Collapse
|
5
|
Abstract
The large amounts of organic waste thrown into the garbage without any productivity, and the increase in the demand for electrical energy worldwide, has led to the search for new eco-friendly ways of generating electricity. Because of this, microbial fuel cells have begun to be used as a technology to generate bioelectricity. The main objective of this research was to generate bioelectricity through banana waste using a low-cost laboratory-scale method, achieving the generation of maximum currents and voltages of 3.71667 ± 0.05304 mA and 1.01 ± 0.017 V, with an optimal pH of 4.023 ± 0.064 and a maximum electrical conductivity of the substrate of 182.333 ± 3.51 µS/cm. The FTIR spectra of the initial and final substrate show a decrease in the peaks belonging to phenolic compounds, alkanes, and alkenes, mainly. The maximum power density was 5736.112 ± 12.62 mW/cm2 at a current density of 6.501 A/cm2 with a peak voltage of 1006.95 mV. The molecular analysis of the biofilm formed on the anode electrode identified the species Pseudomonas aeruginosa (100%), and Paenalcaligenes suwonensis (99.09%), Klebsiella oxytoca (99.39%) and Raoultella terrigena (99.8%), as the main electricity generators for this type of substrate. This research gives a second use to the fruit with benefits for farmers and companies dedicated to exporting and importing because they can reduce their expenses by using their own waste.
Collapse
|