1
|
Segneanu AE, Vlase G, Marin CN, Vlase T, Sicoe C, Herea DD, Ciocîlteu MV, Bejenaru LE, Minuti AE, Zară CM, Socoliuc V, Stavila C, Bejenaru C. Wild grown Portulaca oleracea as a novel magnetite based carrier with in vitro antioxidant and cytotoxicity potential. Sci Rep 2025; 15:8694. [PMID: 40082491 PMCID: PMC11906776 DOI: 10.1038/s41598-025-92495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
The latest research on nanotechnology through the new tailored scaffolds encompassed the therapeutic effects of natural compounds, and the unique properties of metallic nanoparticles offer new possibilities in emerging biomedical fields. Various strategies have been developed to address the limitations of existing therapeutic agents concerning specificity, vectorization, bioavailability, drug resistance, and adverse effects. In this study, the medicinal plant Portulaca oleracea L. and magnetite nanoparticles were used to develop an innovative target carrier system, designed to enhance the cytotoxic effect and overcome the main drawbacks (permeability and localization) of the phytoconstituents. The low-metabolite profile of Romanian wild-grown Portulaca oleracea L. exhibits a diverse range of hundred fifty-five compounds across various chemical categories (amino acids, peptides, fatty acids, flavonoids, alkaloids, terpenoids, phenolic acids, organic acids, esters, sterols, coumarins, nucleosides, lignans, and miscellaneous compounds). Morpho-structural and magnetic properties of the new phytocarrier were investigated using a variety of methods, including XRD, FTIR, Raman, SEM, DLS), and magnetic determinations. The MTT assay was conducted to evaluate in vitro the potential cytotoxicity on normal human dermal fibroblasts (NHDF), as well as on two tumoral cell lines: human osteosarcoma (HOS) and cervical cancer (HeLa). Results indicated that significant inhibition of both cancer cell lines' viability was exerted by the new phytocarrier compared to herbal extract. Furthermore, the results obtained for the total phenolic content and the antioxidant potential screening performed using the FRAP and DPPH assays were superior for the new carrier system. These findings suggest the potential biomedical applications of the developed carrier system and its promising implications for future research and development in the field.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Department of Chemistry, Institute for Advanced Environmental Research, West University of Timişoara (ICAM-WUT), 4 Oituz Street, 300086, Timişoara, Romania
| | - Gabriela Vlase
- Department of Chemistry, Institute for Advanced Environmental Research, West University of Timişoara (ICAM-WUT), 4 Oituz Street, 300086, Timişoara, Romania
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115, Timişoara, Romania
| | - Catalin Nicolae Marin
- Faculty of Physics, West University of Timişoara, 4 Vasile Pârvan Avenue, 300223, Timişoara, Romania
| | - Titus Vlase
- Department of Chemistry, Institute for Advanced Environmental Research, West University of Timişoara (ICAM-WUT), 4 Oituz Street, 300086, Timişoara, Romania
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115, Timişoara, Romania
| | - Crina Sicoe
- Faculty of Chemistry, Biology, Geography, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115, Timişoara, Romania
| | - Daniel Dumitru Herea
- National Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Avenue, 700050, Iaşi, Romania
| | - Maria Viorica Ciocîlteu
- Department of Instrumental and Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Ludovic-Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania.
| | - Anca Emanuela Minuti
- National Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Avenue, 700050, Iaşi, Romania
| | - Camelia-Mihaela Zară
- National Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Avenue, 700050, Iaşi, Romania
| | - Vlad Socoliuc
- Laboratory of Magnetic Fluids, Center of Fundamental and Advanced Technical Research, The Romanian Academy-Timişoara Branch, 24 Mihai Viteazul Avenue, 300223, Timişoara, Romania
| | - Cristina Stavila
- National Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Avenue, 700050, Iaşi, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| |
Collapse
|
2
|
Xue Y, Wang T, Liu JP, Chen Q, Dai XL, Su M, Cheng YH, Chu CC, Ren YQ. Recent Trends in the Development and Application of Nano-Antioxidants for Skin-Related Disease. Antioxidants (Basel) 2024; 14:27. [PMID: 39857361 PMCID: PMC11762136 DOI: 10.3390/antiox14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Skin is a vital barrier for the human body, protecting against external environmental influences and maintaining internal homeostasis. In addition, an imbalance of oxidative stress and antioxidant mechanisms can lead to skin-related diseases. Thus, for treating skin-related diseases, antioxidant therapy may be an important strategy to alleviate these symptoms. However, traditional drug therapies have limitations in treating these conditions, such as lack of lasting effect and insufficient skin permeability. Recently, nano-antioxidants, with their good permeability, sustained-release ability, multifunctionality, and other beneficial characteristics, have showed their advances in the exploration of skin-related diseases from research on safe therapies to clinical practice. Hereby, we review the latest research and advancements in nano-antioxidants for skin-related diseases. We categorize skin-related diseases into four main groups: skin inflammatory diseases, skin damage caused by ultraviolet rays, skin wound healing, and other skin-related conditions. Additionally, we summarize the prospects and potential future directions for nano-antioxidant drugs in treating skin-related diseases.
Collapse
Affiliation(s)
- Yi Xue
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Tao Wang
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Ji-Peng Liu
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Qi Chen
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Xiao-Long Dai
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China;
| | - Yu-Hang Cheng
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Cheng-Chao Chu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yun-Qing Ren
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| |
Collapse
|
3
|
Arregui-Almeida D, Coronel M, Analuisa K, Bastidas-Caldes C, Guerrero S, Torres M, Aluisa A, Debut A, Brämer-Escamilla W, Pilaquinga F. Banana fruit (Musa sp.) DNA-magnetite nanoparticles: Synthesis, characterization, and biocompatibility assays on normal and cancerous cells. PLoS One 2024; 19:e0311927. [PMID: 39401205 PMCID: PMC11472939 DOI: 10.1371/journal.pone.0311927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/26/2024] [Indexed: 10/17/2024] Open
Abstract
Magnet-mediated gene therapy has gained considerable interest from researchers as a novel alternative for treating genetic disorders, particularly through the use of superparamagnetic iron oxide nanoparticles (NPs)-such as magnetite NPs (Fe3O4NPs)-as non-viral genetic vectors. Despite their commercial availability for specific genetic transfection, such as in microglia cell lines, many potential uses remain unexplored. Still, ethical concerns surrounding the use of human DNA often impede genetic research. Hence, this study examined DNA-coated Fe3O4NPs (DNA-Fe₃O₄NPs) as potential transfection vectors for human foreskin fibroblasts (HFFs) and A549 (lung cancer) cell lines, using banana (Musa sp.) as a low-cost, and bioethically unproblematic DNA source. Following coprecipitation synthesis, DNA-Fe₃O₄NP characterization revealed a ζ-potential of 40.65 ± 4.10 mV, indicating good colloidal stability in aqueous media, as well as a superparamagnetic regime, evidenced by the absence of hysteresis in their magnetization curves. Successful DNA coating on the NPs was confirmed through infrared spectra and surface analysis results, while magnetite content was verified via characteristic X-ray diffraction peaks. Transmission electron microscopy (TEM) determined the average size of the DNA-Fe3O4NPs to be 14.69 ± 5.22 nm. TEM micrographs also showed no morphological changes in the DNA-Fe3O4NPs over a 30-day period. Confocal microscopy of HFF and A549 lung cancer cell lines incubated with fluoresceinamine-labeled DNA-Fe3O4NPs demonstrated their internalization into both the cytoplasm and nucleus. Neither uncoated Fe3O4NPs nor DNA-Fe3O4NPs showed cytotoxicity to A549 lung cancer cells at 1-50 μg/mL and 25-100 μg/mL, respectively, after 24 h. HFFs also maintained viability at 1-10 μg/mL for both NP types. In conclusion, DNA-Fe3O4NPs were successfully internalized into cells and exhibited no cytotoxicity in both healthy and cancerous cells across a range of concentrations. These NPs, capable of binding to various types of DNA and RNA, hold promise for applications in gene therapy.
Collapse
Affiliation(s)
- David Arregui-Almeida
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - Martín Coronel
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - Karina Analuisa
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | | | - Santiago Guerrero
- Laboratorio de Ciencia de Datos Biomédicos, Universidad Internacional del Ecuador, Quito, Pichincha, Ecuador
| | - Marbel Torres
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Pichincha, Ecuador
| | - Andrea Aluisa
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Pichincha, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Pichincha, Ecuador
| | - Werner Brämer-Escamilla
- Escuela de Ciencias Físicas y Nanotecnología, Universidad Yachay Tech, Urcuquí, Imbabura, Ecuador
| | - Fernanda Pilaquinga
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| |
Collapse
|
4
|
Ilie CI, Spoiala A, Chircov C, Dolete G, Oprea OC, Vasile BS, Crainiceanu SA, Nicoara AI, Marinas IC, Stan MS, Ditu LM, Ficai A, Oprea E. Antioxidant, Antitumoral, Antimicrobial, and Prebiotic Activity of Magnetite Nanoparticles Loaded with Bee Pollen/Bee Bread Extracts and 5-Fluorouracil. Antioxidants (Basel) 2024; 13:895. [PMID: 39199141 PMCID: PMC11351729 DOI: 10.3390/antiox13080895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota dysbiosis that often occurs in cancer therapy requires more efficient treatment options to be developed. In this concern, the present research approach is to develop drug delivery systems based on magnetite nanoparticles (MNPs) as nanocarriers for bioactive compounds. First, MNPs were synthesized through the spraying-assisted coprecipitation method, followed by loading bee pollen or bee bread extracts and an antitumoral drug (5-fluorouracil/5-FU). The loaded-MNPs were morphologically and structurally characterized through transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Dynamic Light Scattering (DLS), and thermogravimetric analysis. UV-Vis spectroscopy was applied to establish the release profiles and antioxidant activity. Furthermore, the antibacterial and antitumoral activity of loaded-MNPs was assessed. The results demonstrate that MNPs with antioxidant, antibacterial, antiproliferative, and prebiotic properties are obtained. Moreover, the data highlight the improvement of 5-FU antibacterial activity by loading on the MNPs' surface and the synergistic effects between the anticancer drug and phenolic compounds (PCs). In addition, the prolonged release behavior of PCs for many hours (70-75 h) after the release of 5-FU from the developed nanocarriers is an advantage, at least from the point of view of the antioxidant activity of PCs. Considering the enhancement of L. rhamnosus MF9 growth and antitumoral activity, this study developed promising drug delivery alternatives for colorectal cancer therapy.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Simona Adriana Crainiceanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
| | - Adrian-Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | | | - Miruna Silvia Stan
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Biochemistry, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Lia-Mara Ditu
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| |
Collapse
|
5
|
Khodavandi P, Hosseini A, Khodavandi A, Alizadeh F, Azizi A, Gerami M. Hyphae-specific genes: Possible molecular targets for magnetic iron oxide nanoparticles alone and combined with visible light in Candida albicans. Photodiagnosis Photodyn Ther 2023; 44:103822. [PMID: 37778716 DOI: 10.1016/j.pdpdt.2023.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Candida albicans readily develops resistance to fluconazole. Magnetic iron oxide nanoparticles (denoted as MION) and antimicrobial photodynamic therapy are attracting attention as therapeutic agents. This study aims to investigate the inhibitory efficacy of MION alone and combined with visible light against C. albicans and expression analysis of hyphal wall protein 1 (HWP1) and agglutinin-like sequence 1 (ALS1) genes in C. albicans. Antifungal susceptibility testing, photodynamic activity assay, reactive oxygen species (ROS) production assay and gene expression analysis were determined in C. albicans treated with MION alone and combined with visible light. MION at 1 × minimum inhibitory concentration (MIC) level (500 μg/mL) exhibited antifungal activity against C. albicans isolates. Further, 1 × MIC levels of MION alone and combined with visible light displayed remarkable fungicidal effects at 24 and 48 h after treatment. The MION combined with visible light caused the highest levels of ROS production by all C. albicans isolates. The relative RT-PCR data showed significant downregulation of HWP1 and ALS1 genes which are the key virulence genes in C. albicans. Differences in gene expression of HWP1 and ALS1 were more significant in MION combined with visible light treatments than MION alone. Our study sheds a novel light on facile development of effective treatment of C. albicans especially fluconazole-resistant C. albicans infections. The hyphae-specific genes HWP1 and ALS1 could be probable molecular targets for MION alone and combined with visible light in C. albicans.
Collapse
Affiliation(s)
| | - Asma Hosseini
- Department of Microbiology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Fahimeh Alizadeh
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Arsalan Azizi
- Department of Pathology, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Majid Gerami
- Education Research Center, Yasuj University, Yasuj, Iran
| |
Collapse
|
6
|
Huseynzada A, Aghayev M, Hajiyeva S, Israyilova A, Sayin K, Gasimov E, Rzayev F, Hasanova U, Eyvazova G, Abbasov V, Gakhramanova Z, Huseynova S, Huseynova P, Huseynova L, Salimova N. Synthesis, nanostructuring and in silico studies of a new imine bond containing a macroheterocycle as a promising PBP-2a non-β-lactam inhibitor. J Mater Chem B 2023; 11:8271-8280. [PMID: 37581615 DOI: 10.1039/d3tb00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
This study is devoted to the synthesis of a 40-membered macroheterocycle with its further nanostructuring by magnetite nanoparticles. The mentioned macroheterocycle was synthesized by the [2+2] cyclocondensation of the oxygen-containing diamine with an aromatic dialdehyde in a non-catalytic medium and with no work-up procedure. The structure of the obtained macroheterocycle was studied by 1H and 13C nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Furthermore, the nanosupramolecular complex of macroheterocycles with magnetite nanoparticles was obtained and investigated by Fourier-transform infrared and ultraviolet-visible spectroscopy methods. Shifts in the infrared spectra of the nanosupramolecular complex indicate the interaction through metal-aromatic ring non-covalent bonding. The shift is also observed for the C-O-C stretching band of ether bonds. The loading rate of macroheterocycles on magnetite nanoparticles was 18.6%. The morphology of the ensemble was studied by transmission electron microscopy, which confirmed the synthesis of nanospherical particles with a diameter range of 10-20 nm. Powder X-ray diffraction analysis showed patterns of cubic Fe3O4 nanoparticles with a crystallite size equal to 9.1 nm. The macroheterocycle and its nanosupramolecular complex were tested against Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. The results have shown that the created complex has shown 64 times better activity against Staphylococcus aureus in comparison with the individual macroheterocycle and 32 times better activity in comparison with the pristine antibiotic Ampicillin as a control. In addition, computational analysis of the macroheterocycle was performed at the B3LYP/6-31G level in water. Molecular docking analyses for the macroheterocycle revealed Penicillin-binding protein PBP2a (5M18) from the transpeptidase family as a target protein in Staphylococcus aureus.
Collapse
Affiliation(s)
- Alakbar Huseynzada
- ICRL, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
- Chemistry Department, Azerbaijan Engineers Union, Bashir Safaroglu 118, Baku, AZ 1009, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Mirjavid Aghayev
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St, OH-44, Rootstown, OH 44272, USA
| | - Sarvinaz Hajiyeva
- ICRL, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- Physics Department, Kent State University, 800 E. Summit St., Kent, OH 44242, USA
| | - Aygun Israyilova
- Laboratory of Microbiology and Virology, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
- Research Institute of Crop Husbandry, Ministry of Agriculture, Baku, AZ 1098, Azerbaijan
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Koray Sayin
- Chemistry Department, Faculty of Science, Sivas Cumhuriyet University, Sivas, 58140, Turkey
| | - Eldar Gasimov
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, 163 A Samad Vurgun, Baku AZ1078, Azerbaijan
| | - Fuad Rzayev
- Laboratory of Electron Microscopy of the SRC, Azerbaijan Medical University, 163 A Samad Vurgun, Baku AZ1078, Azerbaijan
| | - Ulviyya Hasanova
- ICRL, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
- ICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Goncha Eyvazova
- Nanoresearch Center, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Vagif Abbasov
- Institute of Petrochemical Processes, K. Avenue 30, Baku, AZ 1005, Azerbaijan
| | - Zarema Gakhramanova
- GPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.
| | - Sanam Huseynova
- Department of Molecular Biology and Biotechnology, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
| | - Parvana Huseynova
- Chemistry Department, Ganja State University, H. Aliyev 429, Ganja, AZ 2001, Azerbaijan
| | - Lala Huseynova
- Industrial Safety and Labor Protection Department, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan
| | - Nigar Salimova
- Petrochemical Technology and Industrial Ecology Department, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan
| |
Collapse
|
7
|
Cifuentes J, Cifuentes-Almanza S, Ruiz Puentes P, Quezada V, González Barrios AF, Calderón-Peláez MA, Velandia-Romero ML, Rafat M, Muñoz-Camargo C, Albarracín SL, Cruz JC. Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of Parkinson's disease. Front Bioeng Biotechnol 2023; 11:1181842. [PMID: 37214285 PMCID: PMC10196638 DOI: 10.3389/fbioe.2023.1181842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Therefore, development of novel technologies and strategies to treat PD is a global health priority. Current treatments include administration of Levodopa, monoamine oxidase inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic drugs. However, the effective release of these molecules, due to the limited bioavailability, is a major challenge for the treatment of PD. As a strategy to solve this challenge, in this study we developed a novel multifunctional magnetic and redox-stimuli responsive drug delivery system, based on the magnetite nanoparticles functionalized with the high-performance translocating protein OmpA and encapsulated into soy lecithin liposomes. The obtained multifunctional magnetoliposomes (MLPs) were tested in neuroblastoma, glioblastoma, primary human and rat astrocytes, blood brain barrier rat endothelial cells, primary mouse microvascular endothelial cells, and in a PD-induced cellular model. MLPs demonstrated excellent performance in biocompatibility assays, including hemocompatibility (hemolysis percentages below 1%), platelet aggregation, cytocompatibility (cell viability above 80% in all tested cell lines), mitochondrial membrane potential (non-observed alterations) and intracellular ROS production (negligible impact compared to controls). Additionally, the nanovehicles showed acceptable cell internalization (covered area close to 100% at 30 min and 4 h) and endosomal escape abilities (significant decrease in lysosomal colocalization after 4 h of exposure). Moreover, molecular dynamics simulations were employed to better understand the underlying translocating mechanism of the OmpA protein, showing key findings regarding specific interactions with phospholipids. Overall, the versatility and the notable in vitro performance of this novel nanovehicle make it a suitable and promising drug delivery technology for the potential treatment of PD.
Collapse
Affiliation(s)
- Javier Cifuentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | | | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
8
|
Wang Q, Cheng Y, Wang W, Tang X, Yang Y. Polyetherimide- and folic acid-modified Fe 3 O 4 nanospheres for enhanced magnetic hyperthermia performance. J Biomed Mater Res B Appl Biomater 2023; 111:795-804. [PMID: 36382676 DOI: 10.1002/jbm.b.35190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
Abstract
Recent studies have highlighted the development prospects of magnetic hyperthermia in cancer therapy. A few studies on the application of Fe3 O4 nanospheres for the magnetic hyperthermia of gynecological malignancies have achieved certain efficacy, but there was no visible progress currently. In this work, Fe3 O4 nanospheres modified with polyetherimide (PEI) and folic acid (FA) were synthesized using a hydrothermal method for possible utility in biocompatible and active tumor-targeting magnetic induction hyperthermia. The PEI- and FA-coated Fe3 O4 nanospheres showed high crystallinity, well-dispersed spherical structures and ideal Ms value. As a result, the designed Fe3 O4 @ PEI@FA nanospheres achieved higher specific absorption rate (SAR) values at 360 kHz and 308 Oe, as well as excellent biocompatibility in Hela, SKOV3, HEC-1-A and NIH3T3 cells. These nanospheres can be used as an optimal heating agent for the magnetic hyperthermia treatment of gynecological cancers.
Collapse
Affiliation(s)
- Qinganzi Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| | - Yuemei Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| | - Wenhua Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| | - Xiaolin Tang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China.,The Third People's Hospital of Gansu Province, Lanzhou, China
| | - Yongxiu Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gynecological Oncology Gansu Province, Lanzhou, China
| |
Collapse
|
9
|
Chircov C, Mincă MA, Serban AB, Bîrcă AC, Dolete G, Ene VL, Andronescu E, Holban AM. Zinc/Cerium-Substituted Magnetite Nanoparticles for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24076249. [PMID: 37047223 PMCID: PMC10093860 DOI: 10.3390/ijms24076249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Numerous studies have reported the possibility of enhancing the properties of materials by incorporating foreign elements within their crystal lattice. In this context, while magnetite has widely known properties that have been used for various biomedical applications, the introduction of other metals within its structure could prospectively enhance its effectiveness. Specifically, zinc and cerium have demonstrated their biomedical potential through significant antioxidant, anticancer, and antimicrobial features. Therefore, the aim of the present study was to develop a series of zinc and/or cerium-substituted magnetite nanoparticles that could further be used in the medical sector. The nanostructures were synthesized through the co-precipitation method and their morpho-structural characteristics were evaluated through X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) analyses. Furthermore, the nanostructures were subjected to a ROS-Glo H2O2 assay for assessing their antioxidant potential, MTT assay for determining their anticancer effects, and antimicrobial testing against S. aureus, P. aeruginosa, and C. albicans strains. Results have proven promising for future biomedical applications, as the nanostructures inhibit oxidative stress in normal cells, with between two- and three-fold reduction and cell proliferation in tumor cells; a two-fold decrease in cell viability and microbial growth; an inhibition zone diameter of 4–6 mm and minimum inhibitory concentration (MIC) of 1–2 mg/mL.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Maria-Andreea Mincă
- Faculty of Medical Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andreea Bianca Serban
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Horia Hulubei National R&D Institute for Physics and Nuclear Engineering, Reactorului Street No. 30, 077125 Magurele, Romania
- Doctoral School in Engineering and Applications of Lasers and Accelerators, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Vladimir-Lucian Ene
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Correspondence:
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Spl. Independentei, 050045 Bucharest, Romania
| | - Alina-Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, 060101 Bucharest, Romania
| |
Collapse
|