1
|
Senekovič J, Jelen Š, Urbanek Krajnc A. Copper Sulfate Elicitation Effect on Biomass Production, Phenolic Compounds Accumulation, and Antioxidant Activity of Morus nigra L. Stem Node Culture. PLANTS (BASEL, SWITZERLAND) 2025; 14:766. [PMID: 40094754 PMCID: PMC11901489 DOI: 10.3390/plants14050766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Phenolic compounds are strong antioxidant and antibacterial agents with great pharmacological, medicinal, nutritional, and industrial value. The potential of Morus nigra in stem node culture was investigated for the production of phenolic compounds and their elicitation with CuSO4. Individual phenolic compounds in the samples were identified and quantified by using HPLC-PDA and HPLC-MS methods, while the content of total phenolic compounds, the content of total flavonoids, and the antioxidant activity of methanolic extracts were evaluated spectrophotometrically. The highest fresh and dry weights were obtained in plantlets treated with 0.5 mM CuSO4 for 42 days. The highest total phenolic content, total flavonoid content, and antioxidant activity of the extracts were determined in stem node cultures treated with 3 mM CuSO4 for 42 days. Under the latter conditions, the predominant representatives of the caffeoylquinic acids, p-coumaric acid derivatives, kaempferol derivatives, and quercetin derivatives also achieved the highest content. The most abundant phenolic compound in all samples was the chlorogenic acid. The nodal culture of M. nigra elicited with CuSO4 could potentially be used for the industrial production of phenolic compounds, especially caffeoylquinic acids. Moreover, considering the biochemical response to CuSO4 treatment and the ability to tolerate and accumulate copper, the potential application of M. nigra in phytoremediation is also highlighted.
Collapse
Affiliation(s)
| | | | - Andreja Urbanek Krajnc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (J.S.); (Š.J.)
| |
Collapse
|
2
|
Szewczyk A, Trepa M, Zych D. Optimization of the Production of Secondary Metabolites from Furanocoumarin and Furoquinoline Alkaloid Groups in In Vitro Ruta corsica Cultures Grown in Temporary Immersion Bioreactors. Molecules 2024; 29:5261. [PMID: 39598650 PMCID: PMC11596115 DOI: 10.3390/molecules29225261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Ruta corsica is a rare and endemic plant native to Corsica. Due to its limited distribution and the priority to preserve natural sites, has been insufficiently studied. In vitro cultures provide an opportunity to research R. corsica under controlled conditions. In the present study, in vitro cultures of R. corsica were conducted in PlantformTM bioreactors. The study aimed to assess the effects of growth cycle length (5 and 6 weeks) and different concentrations of plant growth regulators (NAA and BAP) at 0.1/0.1, 0.1/0.5, 0.5/0.5, 0.5/1.0, and 1.0/1.0 mg/L on biomass growth and secondary metabolite accumulation. HPLC analysis identified compounds in the furanocoumarin and furoquinoline alkaloid groups, with furanocoumarins being the primary secondary metabolites (maximum total content: 1571.5 mg/100 g DW). Among them, xanthotoxin, psoralen, and bergapten were dominant, with maximum concentrations of 588.1, 426.6, and 325.2 mg/100 g DW, respectively. The maximum total content of furoquinoline alkaloids was 661 mg/100 g DW, with γ-fagarine as the primary metabolite, reaching 448 mg/100 g DW. The optimal conditions for secondary metabolite accumulation in R. corsica cultures were a 5-week growth cycle and the LS 0.1/0.1 medium variant.
Collapse
Affiliation(s)
- Agnieszka Szewczyk
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Monika Trepa
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Dominika Zych
- SSG of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| |
Collapse
|
3
|
Kubica P, Szopa A, Setkiewicz A, Ekiert H. Efficient Production of Some Bioactive Depsides and Simple Phenolic Acids by Microshoots of Aronia × Prunifolia (Purple Aronia) Agitated Cultures as the Result of Feeding Strategy with Four Different Biogenetic Precursors. Molecules 2024; 29:4622. [PMID: 39407553 PMCID: PMC11477478 DOI: 10.3390/molecules29194622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
A precursor feeding strategy was used for the first time in agitated microshoot cultures of Aronia × prunifolia. This strategy involved the addition of biogenetic precursors of simple phenolic acids (phenylalanine, cinnamic acid, and benzoic acid) and depsides (caffeic acid) into the culture media, with an assessment of its effect on the production of these bioactive compounds. The in vitro cultures were maintained in Murashige-Skoog medium (1 mg/L BAP and 1 mg/L NAA). Precursors at five concentrations (0.1, 0.5, 1.0, 5.0, and 10.0 mmol/L) were fed into the medium at the time of culture initiation (point "0") and independently on the 10th day of growth cycles. The contents of 23 compounds were determined in methanolic extracts of biomass collected after 20 days of growth cycles using an HPLC method. All extracts contained the same four depsides (chlorogenic, neochlorogenic, rosmarinic, and cryptochlorogenic acids) and the same four simple phenolic acids (protocatechuic, vanillic, caffeic, and syringic acids). Chlorogenic and neochlorogenic acids were the predominant compounds in all extracts (max. 388.39 and 263.54 mg/100 g d.w.). The maximal total contents of all compounds were confirmed after feeding with cinnamic acid (5 mmol/L, point "0") and caffeic acid (10 mmol/L, point "0"), which caused a 2.68-fold and 2.49-fold increase in the contents of the estimated compounds vs. control cultures (603.03 and 558.48 mg/100 g d.w., respectively). The obtained results documented the efficacy of the precursor feeding strategy in enhancing the production of bioactive compounds in agitated cultures of A. × prunifolia and suggest a potential practical application value.
Collapse
|
4
|
Yi X, Wang Q, Zhang M, Shu Q, Zhu J. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2024; 178:117217. [PMID: 39079260 DOI: 10.1016/j.biopha.2024.117217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Doxorubicin (DOX), a commonly used chemotherapy drug, is hindered due to its tendency to induce cardiotoxicity (DIC). Ferroptosis, a novel mode of programmed cell death, has received substantial attention for its involvement in DIC. Recently, natural product-derived ferroptosis regulator emerged as a potential strategy for treating DIC. In this review, a comprehensive search was conducted across PubMed, Web of Science, Google Scholar, and ScienceDirect databases to gather relevant articles on the use of natural products for treating DIC in relation to ferroptosis. The available papers were carefully reviewed to summarize the therapeutic effects and underlying mechanisms of natural products in modulating ferroptosis for DIC treatment. It was found that ferroptosis plays an important role in DIC pathogenesis, with dysregulated expression of ferroptosis-related proteins strongly implicated in the condition. Natural products, such as flavonoids, polyphenols, terpenoids, and quinones can act as GPX4 activators, Nrf2 agonists, and lipid peroxidation inhibitors, thereby enhancing cell viability, attenuating myocardial fibrosis, improving cardiac function, and suppressing ferroptosis in both in vitro and in vivo models of DIC. This review demonstrates a strong correlation between DOX-induced cardiac ferroptosis and key proteins, such as GPX4, Keap1, Nrf2, AMPK, and HMOX1. Natural products are likely to exert therapeutic effects against DIC by modulating the activity of these proteins.
Collapse
Affiliation(s)
- Xiaojiao Yi
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Wang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Mengjie Zhang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Shu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Junfeng Zhu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
5
|
Liu M, Huang G, Lin Y, Huang Y, Xuan Z, Lun J, He S, Zhou J, Chen X, Qu Q, Lv W, Guo S. Effects of Dietary Callicarpa nudiflora Aqueous Extract Supplementation on Growth Performance, Growth Hormone, Antioxidant and Immune Function, and Intestinal Health of Broilers. Antioxidants (Basel) 2024; 13:572. [PMID: 38790677 PMCID: PMC11117905 DOI: 10.3390/antiox13050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
C. nudiflora is notably rich in flavonoids and phenylethanoid glycosides, making it a significant natural source of antioxidants. We examined the effects of C. nudiflora aqueous extract (CNE) on growth performance, antioxidant function, immunity, intestinal barrier function, nutrient transporters, and microbiota of broilers. A total of 360 one-day-old broilers were randomly assigned to four treatment groups: a basal diet with 0 (control, CON), 300 mg/kg (CNEL), 500 mg/kg (CNEM), and 700 mg/kg (CNEH) CNE for 42 days. CNEL and CNEM groups quadratically increased body weight and average daily gain but decreased feed-to-gain ratios during the starter and whole phases. Regarding the immune response of broilers, CNE treatment linearly down-regulated jejunal myeloid differentiation factor 88 (MyD88) expression and interleukin-1β (IL-1β) and interferon-γ expression in the liver (d 21), while decreasing jejunal IL-1β expression and the concentration of serum tumor necrosis factor-α and interleukin-6 (d 42). The CNEM and CNEH groups had lower MyD88 and nuclear factor kappa B expression in the liver (d 21) compared to the CON group. Broilers in the CNEL and CNEM groups had higher spleen index and thymus index (d 21) and interleukin-10 expression from the liver and jejunal mucosa (d 42) than that in the CON group. For the antioxidant capacity of broilers, CNE treatment linearly decreased the content of malonaldehyde and increased the activity of total antioxidant capacity in serum (d 42). CNEM and CNEH groups linearly increased the activity of superoxide dismutase in serum and heme oxygenase-1 expression in the liver, while increasing the activity of glutathione peroxidase in serum, jejunal nuclear factor E2-related factor 2 expression, and NAD(P)H quinone oxidoreductase 1 expression in the liver (d 42). As for the growth hormone of broilers, CNEM group increased the level of serum insulin-like growth factor 1 and up-regulated jejunal glucagon-like peptide 2 (GLP-2) expression (d 21). Broilers in the CNEM and CNEH groups had higher jejunal GLP-2 expression and growth hormone (GH) expression in the liver and the level of serum GH (d 42) than that in the CON group. Additionally, the villus height and jejunal Occludin and Claudin-1 expression in the CNEM group increased. CNE-containing diets resulted in a linear increase in the expression of jejunal zonula occluden-1 (d 21), villus height to crypt depth ratio, jejunal Occludin, excitatory amino acid transporters-3, and peptide-transporter 1 (d 42). The regulation of Oscillospira, Ruminococcaceae_Ruminococcus, and Butyricicoccus genera indicated that CNEH altered the composition of the cecal microbiota. In general, supplementing broilers with C. nudiflora aqueous extract could boost hormones, immune and antioxidant function, and gut health, improving their growth performance. Hence, CNE was a promising poultry feed additive, with 500 mg/kg appearing to be the optimal dose.
Collapse
Affiliation(s)
- Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Gengxiong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yulin Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yiwen Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoying Xuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianchi Lun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shiqi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jing Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoli Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou 510642, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou 510642, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou 510642, China
| |
Collapse
|
6
|
Rossi R, Mainardi E, Vizzarri F, Corino C. Verbascoside-Rich Plant Extracts in Animal Nutrition. Antioxidants (Basel) 2023; 13:39. [PMID: 38247465 PMCID: PMC10812750 DOI: 10.3390/antiox13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the search for dietary intervention with natural products able to sustain animal health and decrease environmental impact, has raised the number of studies pertaining to the use of plants' secondary metabolites. In fact, in livestock, there is a clear relationship between the animals' antioxidant status and the onset of some diseases that negatively affect animal welfare, health, and productive performance. An interesting compound that belongs to the secondary metabolites family of plants, named phenylpropanoids, is verbascoside. The genus Verbascum, which includes more than 233 plant species, is the genus in which this compound was first identified, but it has also been found in other plant extracts. Verbascoside exhibits several properties such as antioxidant, anti-inflammatory, chemopreventive, and neuroprotective properties, that have been evaluated mainly in in vitro studies for human health. The present work reviews the literature on the dietary integration of plant extracts containing verbascoside in livestock. The effects of dietary plant extracts containing verbascoside on the productive performance, antioxidant status, blood parameters, and meat quality in several animal species were evaluated. The present data point out that dietary plant extracts containing verbascoside appear to be a favorable dietary intervention to enhance health, antioxidant status, and product quality in livestock.
Collapse
Affiliation(s)
- Raffaella Rossi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (E.M.); (C.C.)
| | - Edda Mainardi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (E.M.); (C.C.)
| | - Francesco Vizzarri
- National Agricultural and Food Centre Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia;
| | - Carlo Corino
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (E.M.); (C.C.)
| |
Collapse
|
7
|
Wilczańska A, Sparzak-Stefanowska B, Kokotkiewicz A, Jesionek A, Królicka A, Łuczkiewicz M, Krauze-Baranowska M. Biotechnological strategies for controlled accumulation of flavones in hairy root culture of Scutellaria lateriflora L. Sci Rep 2023; 13:20422. [PMID: 37990031 PMCID: PMC10663461 DOI: 10.1038/s41598-023-47757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Accumulation of medicinally important flavones and acteoside was evaluated in Scutellaria lateriflora hairy root cultures subjected to different experimental strategies - feeding with precursors of phenolics biosynthesis (phenylalanine, cinnamic acid, and sodium cinnamate), addition of elicitors (chitosan, jasmonic acid) and Amberlite XAD-4 and XAD-7 resins and permeabilization with dimethyl sulfoxide (DMSO) and methanol. The production profile of S. lateriflora cultures changed under the influence of the applied strategies. Hairy roots of S. lateriflora were found to be a rich source of wogonoside or wogonin, depending on the treatment used. The addition of sodium cinnamate (1.0 mg/L) was the most effective approach to provide high production of flavonoids, especially wogonoside (4.41% dry weight /DW/; 566.78 mg/L). Permeabilization with DMSO (2 µg/ml for 12 h) or methanol (30% for 12 h) resulted in high biosynthesis of wogonin (299.77 mg/L and 274.03 mg/L, respectively). The obtained results provide new insight into the selection of the optimal growth conditions for the production of in vitro biomass with a significant level of flavone accumulation. The data may be valuable for designing large-scale cultivation systems of hairy roots of S. lateriflora with high productivity of bioactive compounds - wogonin or wogonoside.
Collapse
Affiliation(s)
- Agata Wilczańska
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Barbara Sparzak-Stefanowska
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Adam Kokotkiewicz
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Anna Jesionek
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Aleksandra Królicka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Maria Łuczkiewicz
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Mirosława Krauze-Baranowska
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
8
|
Ning K, Duan Y, Tong W, Chen Y, Zhang Q, Xie Q, Xiang H. Protective Effects of Different Molecular Weights of Purslane ( Portulaca oleracea L.) Aqueous Extract on DSS-Induced Ulcerative Colitis in Mice. Antioxidants (Basel) 2023; 12:1400. [PMID: 37507939 PMCID: PMC10376347 DOI: 10.3390/antiox12071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Purslane, a common wild vegetable, contains active substances with various biological functions. However, its effects have been under-investigated in ulcerative colitis (UC). Therefore, this study investigated the therapeutic effects of purslane macromolecular (POEM) and small molecular extracts (POES) on dextran sulfate sodium (DSS)-induced UC in mice. Membrane separation was used to obtain extracts of different molecular weights, and their compositional differences were compared using liquid chromatography-mass spectrometry (LC/MS). POEM contained more proteins and polysaccharides, whereas POES contained more organic acids and alkaloids. These differences in composition were directly responsible for the different degrees of remission of the alleviated UC in model mice. POEM may alleviate UC by regulating the antioxidant capacity and the gut microbiota, whereas the major alleviatory effect of POES was primarily related to the regulation of antioxidant capacity. The POEM and POES effects identified in this study provide a theoretical basis for the development of purslane as a functional food.
Collapse
Affiliation(s)
- Ke Ning
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yameng Duan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiwei Tong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yue Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qinghui Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, China
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- Institute of Changbai Mountain Resource and Health, Jilin University, Fusong 134504, China
| |
Collapse
|
9
|
Miceli N, Kwiecień I, Nicosia N, Speranza J, Ragusa S, Cavò E, Davì F, Taviano MF, Ekiert H. Improvement in the Biosynthesis of Antioxidant-Active Metabolites in In Vitro Cultures of Isatis tinctoria (Brassicaceae) by Biotechnological Methods/Elicitation and Precursor Feeding. Antioxidants (Basel) 2023; 12:antiox12051111. [PMID: 37237977 DOI: 10.3390/antiox12051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to establish the in vitro shoot culture of Isatis tinctoria L. and its ability to produce antioxidant bioactive compounds. The Murashige and Skoog (MS) medium variants, containing different concentrations (0.1-2.0 mg/L) of benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) were tested. Their influence on the growth of biomass, accumulation of phenolic compounds, and antioxidant potential was evaluated. To improve the phenolic content, agitated cultures (MS 1.0/1.0 mg/L BAP/NAA) were treated with different elicitors, including the following: Methyl Jasmonate, CaCl2, AgNO3, and yeast, as well as with L-Phenylalanine and L-Tyrosine-precursors of phenolic metabolites. The total phenolic content (TPC) of hydroalcoholic extracts (MeOH 70%) obtained from the biomass grown in vitro was determined spectrophotometrically; phenolic acids and flavonoids were quantified by RP-HPLC. Moreover, the antioxidant potential of extracts was examined through the DPPH test, the reducing power, and the Fe2+ chelating assays. The biomass extracts obtained after 72 h of supplementation with Tyr (2 g/L), as well as after 120 and 168 h with Tyr (1 g/L), were found to be the richest in TPC (49.37 ± 0.93, 58.65 ± 0.91, and 60.36 ± 4.97 mg GAE/g extract, respectively). Whereas among the elicitors, the highest TPC achieved was with CaCl2 (20 and 50 mM 24 h), followed by MeJa (50 and 100 µM, 120 h). The HPLC of the extracts led to the identification of six flavonoids and nine phenolic acids, with vicenin-2, isovitexin, syringic, and caffeic acids being the most abundant compounds. Notably, the amount of all flavonoids and phenolic acids detected in the elicited/precursor feeding biomass was higher than that of the leaves of the parental plant. The best chelating activity was found with the extract of biomass fed with Tyrosine 2 g/L, 72 h (IC50 0.27 ± 0.01 mg/mL), the strongest radical scavenging (DPPH test) for the extract obtained from biomass elicited with CaCl2 50 mM, after 24 h of incubation (25.14 ± 0.35 mg Trolox equivalents (TE)/g extract). In conclusion, the in vitro shoot culture of I. tinctoria supplemented with Tyrosine, as well as MeJa and/or CaCl2, could represent a biotechnological source of compounds with antioxidant properties.
Collapse
Affiliation(s)
- Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Inga Kwiecień
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Krakow, Poland
| | - Noemi Nicosia
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
- Division of Neuroscience, Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Jasmine Speranza
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Salvatore Ragusa
- PLANTA/Research, Documentation and Training Center, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Emilia Cavò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Halina Ekiert
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Krakow, Poland
| |
Collapse
|
10
|
Oracz J, Kowalski S, Żyżelewicz D, Kowalska G, Gumul D, Kulbat-Warycha K, Rosicka-Kaczmarek J, Brzozowska A, Grzegorczyk A, Areczuk A. The Influence of Microwave-Assisted Extraction on the Phenolic Compound Profile and Biological Activities of Extracts from Selected Scutellaria Species. Molecules 2023; 28:molecules28093877. [PMID: 37175287 PMCID: PMC10180449 DOI: 10.3390/molecules28093877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of the study was to investigate the effects of microwave-assisted extraction (MAE) conditions (microwave power, extraction time, and ethanol concentration) on the efficiency of the extraction of phenolic compounds from selected plant species belonging to the genus Scutellaria (i.e., Scutellaria baicalensis and Scutellaria lateriflora). The extracts from selected Scutellaria species were examined to establish the total phenolic content and the in vitro antioxidant and anti-inflammatory activity. The antioxidant capacity was determined by the ferric reducing antioxidant power (FRAP) and 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity methods. The anti-inflammatory activity was evaluated through the lipoxygenase (LOX) inhibitory assay. The phenolic profile of the extracts was characterized using ultra-high performance liquid chromatography coupled with diode array detection and high-resolution electrospray ionization mass spectrometry (UHPLC-DAD/ESI-HRMS/MS). Depending on the type of solvent and the extraction conditions used, the extracts obtained from selected Scutellaria species showed different total and individual phenolic content, as well as different antioxidant and anti-inflammatory properties. The results showed that all Scutellaria extracts had high total phenolic content and exhibited strong ferric ion reducing power and free radical scavenging capacity and a significant ability to inhibit the LOX activity. In general, the 70% ethanol extracts contained more phenolic compounds, mainly flavones, flavanones, and their derivatives, and showed greater in vitro biological activity than other extracts. The highest levels of phenolic compounds and the strongest antioxidant and anti-inflammatory potential were found in extracts from the roots of S. baicalensis. Optimal extraction conditions for all the plant materials tested were determined as the microwave power of 63 W, extraction time of 10 min, and 70% ethanol as the solvent.
Collapse
Affiliation(s)
- Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Stanisław Kowalski
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Gabriela Kowalska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Dorota Gumul
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland
| | - Kamila Kulbat-Warycha
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Anna Brzozowska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Aleksandra Grzegorczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland
| | - Anna Areczuk
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Balicka Str. 122, 30-149 Krakow, Poland
| |
Collapse
|
11
|
Szewczyk A, Marino A, Taviano MF, Cambria L, Davì F, Trepa M, Grabowski M, Miceli N. Studies on the Accumulation of Secondary Metabolites and Evaluation of Biological Activity of In Vitro Cultures of Ruta montana L. in Temporary Immersion Bioreactors. Int J Mol Sci 2023; 24:ijms24087045. [PMID: 37108206 PMCID: PMC10138805 DOI: 10.3390/ijms24087045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The present work focuses on in vitro cultures of Ruta montana L. in temporary immersion PlantformTM bioreactors. The main aim of the study was to evaluate the effects of cultivation time (5 and 6 weeks) and different concentrations (0.1-1.0 mg/L) of plant growth and development regulators (NAA and BAP) on the increase in biomass and the accumulation of secondary metabolites. Consequently, the antioxidant, antibacterial, and antibiofilm potentials of methanol extracts obtained from the in vitro-cultured biomass of R. montana were evaluated. High-performance liquid chromatography analysis was performed to characterize furanocoumarins, furoquinoline alkaloids, phenolic acids, and catechins. The major secondary metabolites in R. montana cultures were coumarins (maximum total content of 1824.3 mg/100 g DM), and the dominant compounds among them were xanthotoxin and bergapten. The maximum content of alkaloids was 561.7 mg/100 g DM. Concerning the antioxidant activity, the extract obtained from the biomass grown on the 0.1/0.1 LS medium variant, with an IC50 0.90 ± 0.03 mg/mL, showed the best chelating ability among the extracts, while the 0.1/0.1 and 0.5/1.0 LS media variants showed the best antibacterial (MIC range 125-500 µg/mL) and antibiofilm activity against resistant Staphylococcus aureus strains.
Collapse
Affiliation(s)
- Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Lucia Cambria
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Monika Trepa
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Mariusz Grabowski
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
12
|
Different Types of Hypericum perforatum cvs. (Elixir, Helos, Topas) In Vitro Cultures: A Rich Source of Bioactive Metabolites and Biological Activities of Biomass Extracts. Molecules 2023; 28:molecules28052376. [PMID: 36903619 PMCID: PMC10005045 DOI: 10.3390/molecules28052376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Microshoot agitated and bioreactor cultures (PlantForm bioreactors) of three Hypericum perforatum cultivars (Elixir, Helos, Topas) were maintained in four variants of Murashige and Skoog medium (MS) supplemented with 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) (in the range of 0.1-3.0 mg/L). In both types of in vitro cultures, the accumulation dynamics of phenolic acids, flavonoids, and catechins were investigated during 5- and 4-week growth cycles, respectively. The contents of metabolites in methanolic extracts from biomasses collected in 1-week intervals were estimated by HPLC. The highest total contents of phenolic acids, flavonoids, and catechins were 505, 2386, and 712 mg/100 g DW, respectively (agitated cultures of cv. Helos). The extracts from biomass grown under the best in vitro culture conditions were examined for antioxidant and antimicrobial activities. The extracts showed high or moderate antioxidant activity (DPPH, reducing power, and chelating activity assays), high activity against Gram-positive bacteria, and strong antifungal activity. Additionally, experiments with phenylalanine feeding (1 g/L) in agitated cultures were performed reaching the highest enhancement of the total contents of flavonoids, phenolic acids, and catechins on day 7 after the addition of the biogenetic precursor (2.33-, 1.73- and 1.33-fold, respectively). After feeding, the highest accumulation of polyphenols was detected in the agitated culture of cv. Elixir (4.48 g/100 g DW). The high contents of metabolites and the promising biological properties of the biomass extracts are interesting from a practical point of view.
Collapse
|
13
|
Kwiecień I, Łukaszyk A, Miceli N, Taviano MF, Davì F, Kędzia E, Ekiert H. In Vitro Cultures of Scutellaria brevibracteata subsp. subvelutina as a Source of Bioactive Phenolic Metabolites. Molecules 2023; 28:1785. [PMID: 36838774 PMCID: PMC9964101 DOI: 10.3390/molecules28041785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Some of the more than 350 Scutellaria species, such as S. baicalensis and S. lateriflora, have been used in traditional medicine and today play an important role in official phytotherapy. Other species have been less investigated, and their therapeutic potential is unknown. This is one of the few studies on Scutellaria brevibracteata subsp. subvelutina, and the first research of this species' in vitro cultures. The aim of this study was to establish an in vitro culture and analyse its phytochemical profile and biological activity. In the methanolic extracts from biomass cultured on six solid Murashige and Skoog (MS) medium variants supplemented with different combinations of 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) in the range 0.5-3 mg/L analysed by HPLC, the presence of specific flavonoids (baicalein, baicalin, wogonin, wogonoside, scutellarin, chrysin), phenylpropanoid glycosides (verbascoside, isoverbascoside), and phenolic acids (p-hydroxybenzoic, caffeic, ferulic, m-coumaric acids) was confirmed. The dominant metabolites were wogonoside and verbascoside with the highest content of 346 and 457 mg/100 g DW, respectively. Thus, the extract with the highest content of bioactive metabolites was selected for further research and subjected to evaluation of antioxidant and antimicrobial potential. The extract exhibited good free radical scavenging activity (IC50 = 0.92 ± 0.01 mg/mL) and moderate reducing power and chelating activity. The brine shrimp lethality bioassay proved its lack of biotoxicity. Antimicrobial activity was tested against sixteen strains of Gram-positive and Gram-negative bacteria and fungi. The strongest growth inhibitory activity was observed against Trichophyton tonsurans.
Collapse
Affiliation(s)
- Inga Kwiecień
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Aleksandra Łukaszyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Federica Davì
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Elżbieta Kędzia
- Department of Bioproducts Engineering, Institute of Natural Fibres and Medicinal Plants, National Research Institute, 71B Wojska Polskiego St., 60-630 Poznań, Poland
| | - Halina Ekiert
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| |
Collapse
|
14
|
The Influence of Exogenous Phenylalanine on the Accumulation of Secondary Metabolites in Agitated Shoot Cultures of Ruta graveolens L. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020727. [PMID: 36677781 PMCID: PMC9864388 DOI: 10.3390/molecules28020727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
This study aimed to examine the influence of the addition of a precursor (phenylalanine) on the accumulation of secondary metabolites in agitated shoot cultures of Ruta graveolens. Cultures were grown on Linsmaier and Skoog (LS) medium, with plant growth regulators (0.1 mg/L α-naphthaleneacetic acid-NAA-and 0.1 mg/L 6-benzylaminopurine-BAP). Phenylalanine was added to the cultures at a concentration of 1.25 g/L after 4 and 5 weeks of growth cycles. Biomass was collected after 2, 4, and 7 days of precursor addition. Both control and experimental cultures had the same secondary metabolites accumulated. Using the HPLC method, linear furanocoumarins (bergapten, isoimperatorin, isopimpinellin, psoralen, and xanthotoxin), furoquinoline alkaloids (γ-fagarine, 7-isopentenyloxy-γ-fagarine, and skimmianine), and catechin were detected and quantified in the methanolic extracts. In turn, phenolic acids, such as gallic acid, protocatechuic acid, p-hydroxybenzoic acid, syringic acid, p-coumaric acid, and ferulic acid were detected in hydrolysates. The production of phenolic acids and catechin (1.5-fold) was significantly increased by the addition of precursor, while there was no significant effect on the production of coumarins and alkaloids. The highest total content of phenolic acids (109 mg/100 g DW) was obtained on the second day of phenylalanine addition (the fourth week of growth cycles). The dominant phenolic compounds were p-coumaric acid (maximum content 64.3 mg/100 g DW) and ferulic acid (maximum content 35.6 mg/100 g DW). In the case of catechins, the highest total content (66 mg/100 g DW) was obtained on the third day of precursor addition (the fourth week of growth cycles). This study is the first to document the effect of feeding the culture medium with phenylalanine on the accumulation of bioactive metabolites in in vitro cultures of R. graveolens.
Collapse
|
15
|
Sohn SI, Pandian S, Rakkammal K, Largia MJV, Thamilarasan SK, Balaji S, Zoclanclounon YAB, Shilpha J, Ramesh M. Jasmonates in plant growth and development and elicitation of secondary metabolites: An updated overview. FRONTIERS IN PLANT SCIENCE 2022; 13:942789. [PMID: 36035665 PMCID: PMC9407636 DOI: 10.3389/fpls.2022.942789] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Secondary metabolites are incontestably key specialized molecules with proven health-promoting effects on human beings. Naturally synthesized secondary metabolites are considered an important source of pharmaceuticals, food additives, cosmetics, flavors, etc., Therefore, enhancing the biosynthesis of these relevant metabolites by maintaining natural authenticity is getting more attention. The application of exogenous jasmonates (JAs) is well recognized for its ability to trigger plant growth and development. JAs have a large spectrum of action that covers seed germination, hypocotyl growth regulation, root elongation, petal expansion, and apical hook growth. This hormone is considered as one of the key regulators of the plant's growth and development when the plant is under biotic or abiotic stress. The JAs regulate signal transduction through cross-talking with other genes in plants and thereby deploy an appropriate metabolism in the normal or stressed conditions. It has also been found to be an effective chemical elicitor for the synthesis of naturally occurring secondary metabolites. This review discusses the significance of JAs in the growth and development of plants and the successful outcomes of jasmonate-driven elicitation of secondary metabolites including flavonoids, anthraquinones, anthocyanin, xanthonoid, and more from various plant species. However, as the enhancement of these metabolites is essentially measured via in vitro cell culture or foliar spray, the large-scale production is significantly limited. Recent advancements in the plant cell culture technology lay the possibilities for the large-scale manufacturing of plant-derived secondary metabolites. With the insights about the genetic background of the metabolite biosynthetic pathway, synthetic biology also appears to be a potential avenue for accelerating their production. This review, therefore, also discussed the potential manoeuvres that can be deployed to synthesis plant secondary metabolites at the large-scale using plant cell, tissue, and organ cultures.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | | | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | | | - Yedomon Ange Bovys Zoclanclounon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Jayabalan Shilpha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
16
|
Ekiert HM, Szopa A. Biological Activities of Natural Products II. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051519. [PMID: 35268620 PMCID: PMC8911797 DOI: 10.3390/molecules27051519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022]
|