1
|
Khamto N, Utama K, Chawapun P, Siriphong S, Tateing S, Duangdesh S, Sangthong P, Chomsri NO, Meepowpan P. Discovery of amino acid-conjugated dimethylcardamonin analogues as potent anti-cervical cancer agents on SiHa cells targeting p53 signalling pathway. Biomed Pharmacother 2024; 181:117705. [PMID: 39586137 DOI: 10.1016/j.biopha.2024.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
DMC (1) is a phytochemical found in the seeds of Syzygium nervosum, exhibiting anticancer activity in various cells through multiple pathways. Herein, the bioactivity of DMC (1) was enhanced by chemical modification through esterification, attaching fatty acid and amino acid moieties to yield 27 semi-synthetic derivatives. These compounds were evaluated for their in vitro cytotoxicity against three main types of cervical cancer cells, including SiHa, HeLa, and C-33A. As a result, the amino acid DMC derivative, 4´-(L-tyrosinyloxy)-DMC (7j), exhibited potent cytotoxicity against SiHa cells, which was approximately two-fold greater than that of 1. Further investigation into the mechanism of action of 7j was conducted, revealing its ability to induce cell cycle arrest and apoptosis. Gene expression analysis showed the downregulation of CDK2 and upregulation of the BAX/BCL2 ratio. Atomistic insight was studied on HPV 16 E6 via molecular dynamics simulation, revealing key interactions between tyrosinyl portion and C51 residue.
Collapse
Affiliation(s)
- Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; Multidisciplinary and Interdisciplinary School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Kraikrit Utama
- Office of Research Administration, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Pornthip Chawapun
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Sadanon Siriphong
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Suriya Tateing
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Sarocha Duangdesh
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; Multidisciplinary and Interdisciplinary School, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
| | - Ni-Orn Chomsri
- Agricultural Technology Research Institute (ATRI), Rajamangala University of Technology Lanna, 202 Pichai District, Lampang 52100, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Thanh DT, Tan MT, Thu NTM, Trinh PNP, Thuong PTH, Tuyet PTG, Ngan LTM, Hieu TT. Phytochemical Composition, Antioxidant, Anti- Helicobacter pylori, and Enzyme Inhibitory Evaluations of Cleistocalyx operculatus Flower Bud and Leaf Fractions. BIOTECH 2024; 13:42. [PMID: 39449372 PMCID: PMC11503338 DOI: 10.3390/biotech13040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Six solvent fractions isolated from flower bud and leaf ethanolic extracts of Cleistocalyx operculatus were analyzed for their phytochemical contents, including phenolics, flavonoids, saponins, tannins, and alkaloids. Antioxidant activities were measured using the ABTS, DPPH, and FRAP assays. The results showed that the flower bud aqueous fraction (BAF) and the leaf aqueous fraction (LAF) rich in phenolic content (768.18 and 490.74 mg GAE/g dry extract, respectively) exhibited significantly higher antioxidant activities than the other fractions. The flower bud hexane fraction (BHF) had remarkably high flavonoid and saponin contents (134.77 mg QE/g and 153.33 mg OA/g dry extract, respectively), followed by that of the leaf hexane fraction (LHF) (76.54 mg QE/g and 88.25 mg OA/g dry extract, respectively). The BHF and LHF were found to have extremely high antibacterial activity against two H. pylori strains, ATCC 51932 and 43504 (MICs of 125 µg/mL). Interestingly, DMC (2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone) isolated from the BHF displayed greater antibacterial activity against the bacterial strains (MICs of 25-50 µg/mL) than those of the fractions. In addition, DMC presented potent inhibitory effects on H. pylori urease (IC50 of 3.2 µg/mL) and α-amylase (IC50 of 83.80 µg/mL), but no inhibition against α-glucosidase. It was also demonstrated that DMC showed pronounced inhibitory effects on the urease activity and biofilm formation of H. pylori, and could increase the membrane permeability of the bacterial cells. Scanning electron micrographs depicted that the BHF and DMC had strong effects on the cell shape and significantly induced the distortion and damage of the cell membrane. The fractions and DMC showed no significant toxicity to four tested human cell lines. Efforts to reduce antibiotic use indicate the need for further studies of the flower buds and DMC as potential products to prevent or treat gastric H. pylori infections.
Collapse
Affiliation(s)
- Doan Thien Thanh
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam; (D.T.T.); (M.T.T.); (N.T.M.T.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (P.N.P.T.); (P.T.H.T.); (P.T.G.T.)
| | - Mai Thanh Tan
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam; (D.T.T.); (M.T.T.); (N.T.M.T.)
| | - Nguyen Thi My Thu
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam; (D.T.T.); (M.T.T.); (N.T.M.T.)
| | - Pham Nhat Phuong Trinh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (P.N.P.T.); (P.T.H.T.); (P.T.G.T.)
| | - Pham Thi Hoai Thuong
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (P.N.P.T.); (P.T.H.T.); (P.T.G.T.)
| | - Pham Thi Giang Tuyet
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (P.N.P.T.); (P.T.H.T.); (P.T.G.T.)
| | - Luong Thi My Ngan
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam; (D.T.T.); (M.T.T.); (N.T.M.T.)
| | - Tran Trung Hieu
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam; (D.T.T.); (M.T.T.); (N.T.M.T.)
| |
Collapse
|
3
|
Chawapun P, Khamto N, Utama K, Siriphong S, Dechsupa N, Kantapan J, Meerak J, Meepowpan P, Sangthong P. Synthesis and biological evaluation of imidazolium conjugated with dimethylcardamonin (DMC) as a novel potential agent against MDA-MB-231 triple-negative breast cancer cells. Biomed Pharmacother 2024; 178:117249. [PMID: 39111077 DOI: 10.1016/j.biopha.2024.117249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
A new imidazolium ionic liquid (IL) halide conjugated with dimethylcardamonin (DMC, 1), namely [Bbim]Br-DMC (3), was synthesised to improve the biological activity of the natural chalcone. DMC was isolated from seeds of Syzygium nervosum A. Cunn. ex DC. which was an effective anti-breast cancer agent. The compound 1 and 3 showed anticancer activity in MDA-MB-231 cells with IC50 values of 14.54 ± 0.99 μM and 7.40 ± 0.15 μM, respectively. MTT assay showed that compound 3 had cytotoxic effect at least two-fold greater than compound 1 but was low toxic to normal cells of Hs 578Bst. After 48 h, compound 3 at concentration of IC50 value inhibited the proliferation and induced morphological changes of MDA-MB-231 cells in a time-dependent manner. The cell cycle profile also showed that compound 3 exerted anti-proliferation activity with the cell cycle arrest at G0/G1 phase and compound 3 also induced apoptosis and reduced mitochondrial membrane potential in MDA-MB-231 cells in a dose-dependent manner. In gene expression assay, compound 3 up-regulated pro-apoptotic genes such as Bax and p53 and suppressed anti-apoptotic Bcl-2 whereas there was no effect on DNA repair gene such as PARP1. The Bax/Bcl-2 ratio was significantly increased after treated with compound 3. In the molecular docking study, the interactions between compound 3 and B-DNA structure in the minor groove region via hydrogen bonds was reported. In conclusion, [Bbim]Br-DMC or compound 3 is a potential candidate to induce apoptosis and inhibits proliferation via cell cycle arrest and decreases mitochondrial membrane of triple-negative breast cancer MDA-MB-231 cells.
Collapse
Affiliation(s)
- Pornthip Chawapun
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kraikrit Utama
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sadanon Siriphong
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jomkhwan Meerak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Taya S, Punvittayagul C, Meepowpan P, Wongpoomchai R. Cancer Chemopreventive Effect of 2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone on Diethylnitrosamine-Induced Early Stages of Hepatocarcinogenesis in Rats. PLANTS (BASEL, SWITZERLAND) 2024; 13:1975. [PMID: 39065504 PMCID: PMC11280862 DOI: 10.3390/plants13141975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) is a major compound in Cleistocalyx nervosum seed extract (CSE), which has been reported to have various biological activities, including anti-cancer activity. Therefore, this study attempted to evaluate whether DMC is a chemopreventive compound in CSE. Moreover, the preventive mechanisms of CSE and DMC in the DEN-induced early stages of hepatocarcinogenesis in rats were investigated. Male Wistar rats were intraperitoneally injected with DEN 50 mg/kg bw once a week for 8 weeks. Rats received CSE and DMC orally throughout the experiment. The number of glutathione S-transferase placental form (GST-P)-positive foci in the liver was measured. Furthermore, the preventive mechanisms of CSE and DMC on DEN-induced HCC, including cell proliferation and apoptosis, were investigated. Administering CSE at a dosage of 400 mg/kg bw and DMC at a dosage of 10 mg/kg bw significantly decreased the number and size of GST-P-positive foci and GST-P expression. In addition, DMC inhibited the development of preneoplastic lesions by decreasing cell proliferation and causing cell apoptosis; however, CSE inhibited the development of preneoplastic lesions by inducing cell apoptosis. In conclusion, DMC exhibited a cancer chemopreventive effect on the early stages of hepatocarcinogenesis by increasing cell apoptosis and reducing cell proliferation.
Collapse
Affiliation(s)
- Sirinya Taya
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Charatda Punvittayagul
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rawiwan Wongpoomchai
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Thanh DT, Oanh VK, Nguyen HC, Ngan LTM, Hieu TT. Phytochemical composition, antioxidant, antibacterial, and enzyme inhibitory activities of organic extracts from flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry. BIOTECHNOLOGIA 2024; 105:137-147. [PMID: 38988368 PMCID: PMC11231999 DOI: 10.5114/bta.2024.139753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/16/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024] Open
Abstract
Cleistocalyx operculatus flower buds have been widely used in traditional medicine because of their rich content of bioactive constituents. In this study, we obtained seven solvent extracts from the flower buds and evaluated their total phenolic (TPC), flavonoid (TFC), tannin (TTC), triterpenoid saponin (TSC), and alkaloid (TAC) contents. We assessed antioxidant activities using the DPPH assay and also looked at antimicrobial and enzyme inhibitory effects. The water extract possessed the highest TPC (328.9 mg GAE/g extract), followed by ethanol, methanol, and hexane extracts (85.4-101.5 mg GAE/g extract). Chloroform, butanol, ethyl acetate, and ethanol extracts had high TSCs (245.4-287.2 mg OAE/g extract). The hexane extract was richest in TTC and TFC (32.7 mg CE/g extract and 81.1 mg QE/g extract, respectively). Ethanol and methanol extracts exhibited the strongest antioxidant activities (IC50 values of 25.2 and 30.3 μg/ml, respectively), followed by the water extract (IC50 of 40.2 μg/ml). The hexane extract displayed the most growth-inhibitory activity against Helicobacter pylori ATCC51932 and ATCC43504 strains and Salmonella enterica serovar Typhimurium ATCC13311 (MIC values of 0.06, 0.13, and 0.4 mg/ml, respectively). Moreover, the hexane extract revealed the strongest inhibition of H. pylori urease activity (IC50 of 4.51 μg/ml), whereas the water and methanol extracts had potent inhibitory effects on α-glucosidase activity (IC50 values of 9.9 and 15.1 μg/ml, respectively). These flower bud extracts could be used for health protection, especially in preventing bacterial infections and inhibiting enzymes associated with various human diseases. Further investigation into the application of C. operculatus flower buds in the food and pharmaceutical industries is necessary.
Collapse
Affiliation(s)
- Doan Thien Thanh
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Vo Kieu Oanh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hoang Chinh Nguyen
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Luong Thi My Ngan
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
| | - Tran Trung Hieu
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Gupta S, Banavath HN, Tejavath KK. Pharmacoinformatic screening of phytoconstituent and evaluation of its anti-PDAC effect using in vitro studies. J Biomol Struct Dyn 2023; 41:10627-10641. [PMID: 36510680 DOI: 10.1080/07391102.2022.2155701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
With no prominent treatment for pancreatic ductal adenocarcinoma (PDAC) in conventional chemotherapy, recent studies have focused on uniting conventional and traditional medicines including plant phytoconstituents. Herein, we used pharmacoinformatic studies to identify potent phytoconstituent as ligand having inhibition activities against canonical anticancer targets, and evaluated its effect on PDAC cell lines. SwissTargetPrediction and SuperPred tools were utilized to segregate protein targets of ligand in humans, following which FunRich was applied to garner its targets in PDAC. STRING analysis predicted protein-protein interactions and dynamic simulation studies confirmed stability of ligand-protein complex. For in vitro cytotoxic potential, ligand treatment at different concentrations was given to PDAC cell lines both alone and combined with gemcitabine, followed by evaluation of effects on migration. Differential gene expression was checked using PCR for evaluating mechanism of cytotoxicity. Results showed pentagalloylglucose (PGG) with highest docking and MMGBSA scores for Cyclooxygenase 2 (Cox2) inhibition site. SwissTargetPrediction and SuperPred analysis detected 40 targets of PGG in PDAC. Simulation data showed stability of protein-ligand complex. In in vitro experiments Mia-PaCa-2 was more sensitive to PGG than Panc-1. PGG successfully inhibited migration both alone and in combination with gemcitabine. Additionally, PGG treatment induced apoptosis in both the cell lines; but showed antagonism when combined with gemcitabine. In conclusion, our report demonstrates PGG has good binding with Cox2 and showed anti-PDAC activity by inhibiting migration and inducing apoptosis, thus it can be used as a therapy option. But further studies are required to confirm its behaviour as a combination therapy drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Hemanth Naick Banavath
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
7
|
Vachiraarunwong A, Tuntiwechapikul W, Wongnoppavich A, Meepowpan P, Wongpoomchai R. 2,4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone from Cleistocalyx nervosum var. paniala seeds attenuated the early stage of diethylnitrosamine and 1,2-dimethylhydrazine-induced colorectal carcinogenesis. Biomed Pharmacother 2023; 165:115221. [PMID: 37517291 DOI: 10.1016/j.biopha.2023.115221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Dichloromethane extract of Cleistocalyx nervosum var. paniala seeds exhibited an anticarcinogenicity against chemically-induced the early stages of carcinogenesis in rats. This study aimed to identify anticarcinogenic compounds from C. nervosum seed extract (CSE). METHODS Salmonella mutation assay was performed to determine mutagenicity and antimutagenicity of partially purified and purified compounds of CSE. The anticarcinogenic enzyme-inducing activity was measured in Hepa1c1c7. Moreover, the anticancer potency was examined on various human cancer cell lines. The anticarcinogenicity of DMC was investigated using dual-organ carcinogenicity model. The number of preneoplastic lesions was evaluated in the liver and colon. The inhibitory mechanisms of DMC on liver- and colorectal carcinogenesis were investigated. RESULTS Six partially purified fractions (MK1 - MK6) and purified compounds, including 2,4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) and hariganetin, were obtained from CSE. Among these fractions, MK4 and DMC presented the greatest antimutagenicity against indirect mutagens in bacterial model. Moreover, MK5 possessed an effective anticarcinogenic enzyme inducer in Hepa1c1c7. The MK4, DMC and CSE showed greater anticancer activity on all cell lines and exhibited the most effective toxicity on colon cancer cells. Furthermore, DMC inhibited the formation of colonic preneoplastic lesions in carcinogens-treated rats. It reduced PCNA-positive cells and frequency of BCAC in rat colon. DMC also enhanced the detoxifying enzyme, GST, in rat livers. CONCLUSIONS DMC obtained from CSE may be a promising cancer chemopreventive compound of colorectal cancer process in rats. It could increase detoxifying enzymes and suppress the cell proliferation process resulting in prevention of post-initiation stage of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Arpamas Vachiraarunwong
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Wirote Tuntiwechapikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
8
|
Utama K, Khamto N, Meepowpan P, Aobchey P, Kantapan J, Meerak J, Roytrakul S, Sangthong P. 2',4'-Dihydroxy-6'‑methoxy-3',5'-dimethylchalcone and its amino acid-conjugated derivatives induce G0/G1 cell cycle arrest and apoptosis via BAX/BCL2 ratio upregulation and in silico insight in SiHa cell lines. Eur J Pharm Sci 2023; 184:106390. [PMID: 36813001 DOI: 10.1016/j.ejps.2023.106390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 01/19/2023] [Indexed: 02/22/2023]
Abstract
We modified the chemical structure of 2',4'-dihydroxy-6'‑methoxy-3',5'-dimethylchalcone (DMC, 1), a phytochemical found in the seed of Syzygium nervosum A.Cunn. ex DC., by conjugation with the amino acid L-alanine (compound 3a) or L-valine (compound 3b) to enhance anticancer activity and water solubility. Compounds 3a and 3b had antiproliferative activity in human cervical cancer cell lines (C-33A, SiHa and HeLa), with half-maximal inhibitory concentrations (IC50) of 7.56 ± 0.27 and 8.24 ± 0.14 µM, respectively in SiHa cells; these values were approximately two-fold greater than DMC. We investigated the biological activities of compounds 3a and 3b based on a wound healing assay, a cell cycle assay and messenger RNA (mRNA) expression analysis to determine the possible mechanism of anticancer activity. Compounds 3a and 3b inhibited SiHa cell migration in the wound healing assay. After treatment with compounds 3a and 3b, there was an increase in SiHa cells in the G1 phase, indicative of cell cycle arrest. Moreover, compound 3a showed potential anticancer activity by upregulating TP53 and CDKN1A that resulted in upregulation of BAX and downregulation of CDK2 and BCL2, leading to apoptosis and cell cycle arrest. The BAX/BCL2 expression ratio was increased after treatment with compound 3avia the intrinsic apoptotic pathway. In silico molecular dynamics simulation and binding free energy calculation shed light on how these DMC derivatives interact with the HPV16 E6 protein, a viral oncoprotein associated with cervical cancer. Our findings suggest that compound 3a is a potential candidate for anti-cervical cancer drug development.
Collapse
Affiliation(s)
- Kraikrit Utama
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Paitoon Aobchey
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Kantapan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jomkhwan Meerak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 12120, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
Ye Y, Ma Y, Kong M, Wang Z, Sun K, Li F. Effects of Dietary Phytochemicals on DNA Damage in Cancer Cells. Nutr Cancer 2023; 75:761-775. [PMID: 36562548 DOI: 10.1080/01635581.2022.2157024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the increasing incidence of cancer worldwide, the prevention and treatment of cancer have garnered considerable scientific attention. Traditional chemotherapeutic drugs are highly toxic and associated with substantial side effects; therefore, there is an urgent need for developing new therapeutic agents. Dietary phytochemicals are important in tumor prevention and treatment because of their low toxicity and side effects at low concentrations; however, their exact mechanisms of action remain obscure. DNA damage is mainly caused by physical or chemical factors in the environment, such as ultraviolet light, alkylating agents and reactive oxygen species that cause changes in the DNA structure of cells. Several phytochemicals have been shown inhibit the occurrence and development of tumors by inducing DNA damage. This article reviews the advances in phytochemical research; particularly regarding the mechanisms related to DNA damage and provide a theoretical basis for future chemoprophylaxis research.
Collapse
Affiliation(s)
- Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mei Kong
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhihua Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kang Sun
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Gazdova M, Michalkova R, Kello M, Vilkova M, Kudlickova Z, Baloghova J, Mirossay L, Mojzis J. Chalcone-Acridine Hybrid Suppresses Melanoma Cell Progression via G2/M Cell Cycle Arrest, DNA Damage, Apoptosis, and Modulation of MAP Kinases Activity. Int J Mol Sci 2022; 23:12266. [PMID: 36293123 PMCID: PMC9603750 DOI: 10.3390/ijms232012266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
This study was focused on investigating the antiproliferative effects of chalcone hybrids in melanoma cancer cells. Among seven chalcone hybrids, the chalcone-acridine hybrid 1C was the most potent and was selected for further antiproliferative mechanism studies. This in vitro study revealed the potent antiproliferative effect of 1C via cell cycle arrest and apoptosis induction. Cell cycle arrest at the G2/M phase was associated with modulation of expression or phosphorylation of specific cell cycle-associated proteins (cyclin B1, p21, and ChK1), tubulins, as well as with the activation of the DNA damage response pathway. Chalcone 1C also induced apoptosis accompanied by mitochondrial dysfunction evidenced by a decrease in mitochondrial membrane potential, increase in Bax/Bcl-xL ratio and cytochrome c release followed by caspase 3/7 activation. In addition, increased phosphorylation of MAP kinases (Erk1/2, p38 and JNK) was observed in chalcone 1C-treated melanoma cells. The strong antiproliferative activities of this chalcone-acridine hybrid suggest that it may be useful as an antimelanoma agent in humans.
Collapse
Affiliation(s)
- Maria Gazdova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Maria Vilkova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Zuzana Kudlickova
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
11
|
Yadav N, Tripathi AK, Parveen A, Parveen S, Banerjee M. PLGA-Quercetin Nano-Formulation Inhibits Cancer Progression via Mitochondrial Dependent Caspase-3,7 and Independent FoxO1 Activation with Concomitant PI3K/AKT Suppression. Pharmaceutics 2022; 14:1326. [PMID: 35890222 PMCID: PMC9323198 DOI: 10.3390/pharmaceutics14071326] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Quercetin is one of the most important plant flavanols, having several pharmacological and biological uses. Quercetin (Q) is an extremely hydrophobic phytochemical and has poor intracellular absorption, which makes its use limited. Present research demonstrates that quercetin-loaded PLGA nanoparticles (PLGA-QNPs) could overcome its low hydrophilicity and improve its anti-cancer potential. PLGA nanoparticles loaded with Q were prepared by the solvent evaporation technique and its anticancer activity was examined in vitro as well as in vivo. The cell viability was assessed through MTT assay and apoptosis was assayed through Hoechst-PI and EB/AO double staining followed by mitochondrial damage through Mito-tracker RMX-Ros. Gene expression was examined through RT-PCR. Cell cycle arrest in G2/M phase was analyzed through FACS. The results obtained revealed that PLGA-QNPs significantly reduced the viability of human cervical and breast cancer cell lines. PLGA-QNPs induced apoptosis in human cervical cancer cells in a dose dependent manner. The gene expression of PI3K/AKT was down-regulated and FoxO1 was upregulated in PLGA-QNP-treated cells, which showed a high expression level of active Caspase-3 and 7, which are responsible for apoptosis. In addition, PLGA-QNPs reduced the average number of tumors and prolonged the tumor latency period in DMBA-induced mammary adenocarcinoma SD rats. These findings suggest that PLGA-QNPs inhibit cervical and breast cancer progression via mitochondrial dependent Caspase-3 and 7 and mitochondrial independent FoxO1 activation with concomitant suppression of the PI3K/AKT pathway. For future studies, we suggest that potential druggability efficacy and clinical development of anticancer PLGA-QNPs need to be evaluated intensely for successful anticancer drug development.
Collapse
Affiliation(s)
- Neera Yadav
- College of Pharmacy, Gachon University, #191, Hambakmoeiro, Yeonsu-gu, Incheon 21936, Korea;
- Molecular and Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow 226007, India;
| | - Amit Kumar Tripathi
- Electrophysiology Lab, School of Biomedical Engineering, Banaras Hindu University, Varanasi 221005, India;
| | - Amna Parveen
- College of Pharmacy, Gachon University, #191, Hambakmoeiro, Yeonsu-gu, Incheon 21936, Korea;
| | - Shama Parveen
- Molecular and Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow 226007, India;
| | - Monisha Banerjee
- Molecular and Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow 226007, India;
| |
Collapse
|