1
|
Fang J, Gan W, Wang Z, Zhang R, Zhang S, Liu F, Zhao X, Kong X. Induction of antiherbivore defense responses in poplars using a methyl jasmonate and mesoporous silica nanoparticle complex. PEST MANAGEMENT SCIENCE 2024; 80:6310-6321. [PMID: 39118395 DOI: 10.1002/ps.8360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Poplar in China has long been plagued by the fall webworm Hyphantria cunea. Enhancing plant immunity using chemical elicitors is an environmentally friendly approach to pest control. The phytohormone methyl jasmonate (MeJA) can stimulate the chemical defenses of poplars against herbivores but has been shown to have limited efficacy in practice. Here, we studied the effects of a MeJA and mesoporous silica nanoparticle (MSN) complex (MeJA@MSN) regarding the induction of poplar resistance to H. cunea, which may provide strategies for the effective use of MeJA. RESULTS The silicon-based phytohormone complex (MeJA@MSNs) exhibited excellent biological and physiochemical properties, such as excellent biocompatibility and plant tissue transportability. The changes in metabolites in poplar leaves induced by MeJA, MSNs, and MeJA@MSNs were investigated by metabolic analysis. MeJA@MSNs led to highly potent induced resistance along with elevated salicylaldehyde content, which increased with the dose administered. The salicylaldehyde metabolite showed a strong antifeedant effect on H. cunea larvae at a dosage of 1 μg, with the 50% lethal dose being 20.4 μg/mg. Furthermore, transcriptional analysis showed that MeJA@MSNs upregulated key genes in biosynthetic pathways more than MeJA and MSNs. CONCLUSION Our results show that MeJA and MSNs interact positively in poplar, leading to salicylaldehyde accumulation and increased induced resistance to H. cunea, providing new insights into the underlying resistance mechanisms induced by MeJA@MSNs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaxing Fang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Wei Gan
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zheng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Rong Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiyang Zhao
- College of Forestry and Grasslands, Jilin Agricultural University, Changchun, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
2
|
Torres-Díaz LL, Pérez-Álvarez EP, Parra-Torrejón B, Marín-San Román S, de Sáenz de Urturi I, Ramírez-Rodríguez GB, Murillo-Peña R, González-Lázaro M, Delgado-López JM, Garde-Cerdán T. Effects of foliar application of methyl jasmonate and/or urea, conventional or via nanoparticles, on grape volatile composition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8248-8262. [PMID: 39031784 DOI: 10.1002/jsfa.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Viticulture has adapted foliar applications of biostimulants as a tool to improve crop quality. Recently, nanotechnology has been incorporated as a strategy to reduce the loss of biostimulants and treat nutrient deficiencies. Therefore, the present study aimed to investigate the effect of foliar applications of amorphous calcium phosphate nanoparticles (ACP) doped with methyl jasmonate (ACP-MeJA) and urea (ACP-Ur), individually or together (ACP-MeJA+Ur), on the content of volatile compounds in 'Tempranillo' grapes, compared to the conventional application of MeJA and Ur, individually or in combination (MeJA+Ur). RESULTS The results showed that nanoparticle treatments reduced the total C6 compounds and some carbonyl compounds in the grape musts. This is of novel interest because their presence at high levels is undesirable to quality. In addition, some aroma-positive compounds such as nerol, neral, geranyl acetone, β-cyclocitral, β-ionone, 2-phenylethanal and 2-phenylethanol increased, despite applying MeJA and Ur at a lower dose. CONCLUSION Consequently, although few differences in grape volatile composition were detected, nanotechnology could be an option for improving the aromatic quality of grapes, at the same time as reducing the required doses of biostimulants and generating more sustainable agricultural practices. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Lesly L Torres-Díaz
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - Eva P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - Belén Parra-Torrejón
- Facultad de Ciencias, Departamento de Química Inorgánica, Universidad de Granada, Granada, Spain
| | - Sandra Marín-San Román
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - Itziar de Sáenz de Urturi
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | | | - Rebeca Murillo-Peña
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - Miriam González-Lázaro
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - José M Delgado-López
- Facultad de Ciencias, Departamento de Química Inorgánica, Universidad de Granada, Granada, Spain
| | - Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| |
Collapse
|
3
|
Rodríguez-Lorenzo M, Mauri N, Royo C, Rambla JL, Diretto G, Demurtas O, Hilbert G, Renaud C, Tobar V, Huete J, Delrot S, Granell A, Martínez-Zapater JM, Carbonell-Bejerano P. The flavour of grape colour: anthocyanin content tunes aroma precursor composition by altering the berry microenvironment. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6369-6390. [PMID: 37294268 PMCID: PMC10627162 DOI: 10.1093/jxb/erad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/07/2023] [Indexed: 06/10/2023]
Abstract
Anthocyaninless (white) instead of black/red (coloured) fruits develop in grapevine cultivars without functional VviMYBA1 and VviMYBA2 genes, and this conditions the colour of wines that can be produced. To evaluate whether this genetic variation has additional consequences on fruit ripening and composition, we performed comparisons of microenvironment, transcriptomics, and metabolomics of developing grapes between near-isogenic white- and black-berried somatic variants of Garnacha and Tempranillo cultivars. Berry temperature was as much as 3.5 ºC lower in white- compared to black-berried Tempranillo. An RNA-seq study combined with targeted and untargeted metabolomics revealed that ripening fruits of white-berried variants were characterized by the up-regulation of photosynthesis-related and other light-responsive genes and by their higher accumulation of specific terpene aroma precursors, fatty acid-derived aldehyde volatiles, and phenylpropanoid precursor amino acids. MYBA1-MYBA2 function proved essential for flavonol trihydroxylation in black-berried somatic variants, which were also characterized by enhanced expression of pathogen defence genes in the berry skin and increased accumulation of C6-derived alcohol and ester volatiles and γ-aminobutyric acid. Collectively, our results indicate that anthocyanin depletion has side-effects on grape composition by altering the internal microenvironment of the berry and the partitioning of the phenylpropanoid pathway. Our findings show how fruit colour can condition other fruit features, such as flavour potential and stress homeostasis.
Collapse
Affiliation(s)
- Maite Rodríguez-Lorenzo
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Nuria Mauri
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Carolina Royo
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - José L Rambla
- Instituto de Biología Molecular y Celular de Plantas, IBMCP, CSIC - Universidad Politécnica de Valencia, 46011 Valencia, Spain
- Universitat Jaume I, Departamento de Biología, Bioquímica y Ciencias Naturales, 12071 Castellón de la Plana, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies Energy and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy
| | - Olivia Demurtas
- Italian National Agency for New Technologies Energy and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy
| | - Ghislaine Hilbert
- EGFV, Bordeaux Sciences Agro, INRA - Université de Bordeaux, ISVV, 33140 Villenave d’Ornon, France
| | - Christel Renaud
- EGFV, Bordeaux Sciences Agro, INRA - Université de Bordeaux, ISVV, 33140 Villenave d’Ornon, France
| | - Vanessa Tobar
- Servicio de Información Agroclimática de La Rioja (SIAR). Consejería de Agricultura, Ganadería y Medio Ambiente, Gobierno de La Rioja, 26007 Logroño, Spain
| | - Joaquín Huete
- Servicio de Información Agroclimática de La Rioja (SIAR). Consejería de Agricultura, Ganadería y Medio Ambiente, Gobierno de La Rioja, 26007 Logroño, Spain
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, INRA - Université de Bordeaux, ISVV, 33140 Villenave d’Ornon, France
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, IBMCP, CSIC - Universidad Politécnica de Valencia, 46011 Valencia, Spain
| | - José Miguel Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| |
Collapse
|
4
|
Influence of foliar treatments with methyl jasmonate and methyl jasmonate-doped nanoparticles on nitrogen composition of Tempranillo grapes during two vintages. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
AbstractNanoparticles are emerging as a cutting-edge technology to improve crop agricultural input efficiency and reduce biotic and abiotic stresses. In viticulture, nanoparticles hold promise for the sustainable application of an elicitor (methyl jasmonate, MeJ), allowing a considerable dosage reduction. Herein, the influence of the foliar application of free MeJ (10 mM) and MeJ nanoformulation (ACP-MeJ, 1 mM MeJ) on Tempranillo grape amino acids content over two vintages (2019 and 2020) was evaluated. While both MeJ treatments provided a significant increase of the amino nitrogen and yeast assimilable nitrogen in the must in 2019, there were no significant differences on these parameters in 2020. In 2019, MeJ treatment enhanced the synthesis of most of the amino acids included in this study, while ACP-MeJ promoted the formation of six amino acids. Hence, the content of total amino acids, with and without proline, was higher after applying MeJ than in the control musts. However, these values were higher for control must than for MeJ samples in 2020. The multivariable analysis confirmed that the vintage factor had a more prominent effect on the overall parameters of the musts. This strong influence of the vintage could be related to the higher rainfall in 2020.
Collapse
|
5
|
Giménez-Bañón MJ, Paladines-Quezada DF, Moreno-Olivares JD, Bleda-Sánchez JA, Fernández-Fernández JI, Parra-Torrejón B, Ramírez-Rodríguez GB, Delgado-López JM, Gil-Muñoz R. Methyl Jasmonate and Nanoparticles Doped with Methyl Jasmonate affect the Cell Wall Composition of Monastrell Grape Skins. Molecules 2023; 28:molecules28031478. [PMID: 36771144 PMCID: PMC9921610 DOI: 10.3390/molecules28031478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The structural composition of the cell wall of grape skins is related to the cell wall integrity and subsequent extraction of the different compounds that are contained inside vacuoles and also the cell wall breakdown products. Different reports have established that methyl jasmonate (MeJ) produces changes in the composition of the grape skin cell wall. The use of elicitors to promote the production of secondary metabolites in grapes has been studied in several reports; however, its study linked to nanotechnology is less developed. These facts led us to study the effect of methyl jasmonate (MeJ) and nanoparticles doped with MeJ (nano-MeJ) on the cell walls of Monastrell grapes during three seasons. Both treatments tended to increase cell wall material (CWM) and caused changes in different components of the skin cell walls. In 2019 and 2021, proteins were enlarged in both MeJ and nano-MeJ-treated grapes. A general decrease in total phenolic compounds was detected with both treatments, in addition to an increment in uronic acids when the grapes were well ripened. MeJ and nano-MeJ produced a diminution in the amount of cellulose in contrast to an increase in hemicellulose. It should be noted that the effects with nano-MeJ treatment occurred at a dose 10 times lower than with MeJ treatment.
Collapse
Affiliation(s)
- María José Giménez-Bañón
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain
| | | | - Juan Daniel Moreno-Olivares
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain
| | - Juan Antonio Bleda-Sánchez
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain
| | | | - Belén Parra-Torrejón
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | | | | | - Rocío Gil-Muñoz
- Murcian Institute of Agricultural and Environment Research and Development (IMIDA), Ctra. La Alberca s/n, 30150 Murcia, Spain
- Correspondence:
| |
Collapse
|
6
|
Paladines-Quezada DF, Moreno-Olivares JD, Fernández-Fernández JI, Bleda-Sánchez JA, Gil-Muñoz R. Different response of proanthocyanidins from Vitis vinifera cv. Monastrell depending on time of elicitor application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:143-151. [PMID: 35833383 DOI: 10.1002/jsfa.12123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Proanthocyanidins (PAs) are phenolic compounds present in skins and seeds of wine grapes and have great implications for plant physiology and wine quality. There are several strategies to increase PA concentration, such as application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH), compounds that can stimulate defence responses like phenolic compound biosynthesis in wine grapes, which have been applied mainly at veraison (beginning of ripening). We recently evaluated the application of MeJ and BTH on Vitis vinifera cv. Monastrell grapes during veraison and mid-ripening (3 weeks after veraison). Grapes treated at mid-ripening showed higher anthocyanin concentrations than those at veraison. In this trial, over two seasons, we evaluated whether time of application (veraison or mid-ripening) of MeJ and BTH on 'Monastrell' grapes is a determining factor in the biosynthesis and composition of PAs in grapes and their subsequent release into wines. RESULTS Application of elicitors at different ripening times produced significant differences in the PAs of 'Monastrell' grapes, since those treated at mid-ripening recorded a higher PAs concentration in skin and seeds, and then in the wines produced, compared to grapes treated at veraison. CONCLUSION Results suggest that despite different environmental conditions endured in each of the two seasons evaluated, application of elicitors at mid-ripening of Monastrell grapes could be used to harvest grapes with higher PA concentration, increasing the functional value of the wines, without altering their organoleptic quality. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Juan A Bleda-Sánchez
- Murcian Institute of Agrarian and Environmental Research and Development, Murcia, Spain
| | - Rocío Gil-Muñoz
- Murcian Institute of Agrarian and Environmental Research and Development, Murcia, Spain
| |
Collapse
|
7
|
VanderWeide J, Harris C, Zandberg WF, Castellarin SD. Understanding the Sensitivity of Grape Terpenes to Jasmonates Using In Vitro Culture and In Vivo Vineyard Experiments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3141-3151. [PMID: 36602277 DOI: 10.1021/acs.jafc.2c06831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Terpene volatiles define the flavor of terpenic grape cultivars. However, grape terpene concentrations can vary 2- to 3-fold across seasons and vineyards, impacting vintage quality. The plant hormone methyl jasmonate (MeJA) stimulates grape terpene production but is expensive and can decrease berry weight and maturity. The synthetic jasmonate prohydrojasmon (PDJ) is cost-effective yet has not been evaluated on grape maturity and terpene production. Here, we performed in vitro (berry culture) and in vivo (vineyard) experiments using Gewürztraminer (Vitis vinifera L.) to evaluate the time- and concentration-dependent sensitivity of maturity parameters and terpene content to MeJA and PDJ. In vitro berry weight was reduced by high MeJA and PDJ concentration across timings. Terpenes were most sensitive to low MeJA concentration at veraison (increased 24-fold) in vitro. Moderate PDJ concentration applied at veraison doubled (increased twofold) terpene concentration in vivo without impacting berry weight or maturity. In conclusion, PDJ may provide a solution to mitigate seasonal variability in terpene production in terpenic grape cultivars.
Collapse
Affiliation(s)
- Joshua VanderWeide
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BCV6T 1Z4, Canada
| | - Chelsea Harris
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BCV6T 1Z4, Canada
| | - Wesley F Zandberg
- Wine Research Centre, Department of Chemistry, University of British Columbia-Okanagan, 3187 University Way, Kelowna, BCV1V 1V7, Canada
| | - Simone D Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BCV6T 1Z4, Canada
| |
Collapse
|
8
|
Effect of applying elicitors to Vitis vinifera L. cv. Monastrell at different ripening times on the complex carbohydrates of the resulting wines. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04053-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|