1
|
Yousefvand P, Sohrabi Y, Mastinu A, Heidari G, Weisany W. Optimizing growth, yield, and water use efficiency of Allium hirtifolium with salicylic acid under water stress condiions. Heliyon 2025; 11:e41550. [PMID: 39897866 PMCID: PMC11782965 DOI: 10.1016/j.heliyon.2024.e41550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Water stress significantly limits the growth and productivity of crops, particularly medicinal plants in arid and semi-arid regions. This study explores the use of salicylic acid (SA) as a means to enhance shallot (Allium hirtifolium) resistance to water stress, as well as improve growth, yield, and water use efficiency (WUE) under various irrigation levels. Conducted over three consecutive growing seasons in a field (2016-2019), The study was conducted as split plot based on randomized complete block design with four replications. Irrigation as the main factors included 100 % (full irrigation), 75 % and 50 % of plant water requirement and no irrigation (dryland) and SA foliar application as sub-factors including 0, 0.5, 0.75 and 1 mM in this study. After ensuring uniformity of variance of experimental errors for three years, composite analysis of data was performed for three years. The results of combined analysis of three-years data showed that water stress reduced several growth parameters, including plant height, leaf dimensions, bulb size, onion and grain weight, and yield. However, SA application notably mitigated these adverse effects. Specifically, applying 1 mM SA in dryland conditions, increased the pod diameter and 1000-seed weight by 10.17 % and 19.97 %, respectively. Also, in the condition of 50 % plant water requirement, 1 mM SA enhanced onion dry weight, daughter onion weight and plant height by 12.41 %, 21.68 % and 19.18 % respectively. Furthermore, shallot yield increased by 15.12 % in dryland and by 29.4 % under 50 % of the plant's water requirement with 1 mM SA. The WUE in the treatment of 50 % of the water requirement of the plant and the use of 1 mM SA increased by 19.1 % compared to the non-use. These findings suggest that applying 1 mM SA can be a viable strategy for improving the growth, yield, and water use efficiency of shallot plants under water-stressed environments.
Collapse
Affiliation(s)
- Peyman Yousefvand
- Research Center of Medicinal Plants Breeding and Development, University of Kurdistan, Sanandaj, Iran
| | - Yousef Sohrabi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Gholamreza Heidari
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Weria Weisany
- Department of Agronomy and Horticultural Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Wang F, Jia M, Li K, Cui Y, An L, Sheng H. Sphingomonas sp. Hbc-6 alters Arabidopsis metabolites to improve plant growth and drought resistance by manipulating the microbiome. Microbiol Res 2024; 287:127852. [PMID: 39084119 DOI: 10.1016/j.micres.2024.127852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Drought significantly affects crop productivity and poses a considerable threat to agricultural ecosystems. Plant growth-promoting bacteria (PGPB) and plant microbiome play important roles in improving drought resistance and plant performance. However, the response of the rhizosphere microbiota to PGPB during the development of plants and the interaction between inoculum, microbiota, and plants under drought stress remain to be explored. In the present study, we used culturomic, microbiomic, and metabonomic analyses to uncover the mechanisms by which Sphingomonas sp. Hbc-6, a PGPB, promotes Arabidopsis growth and enhances drought resistance. We found that the rhizosphere microbiome assembly was interactively influenced by developmental stage, Hbc-6, and drought; the bacterial composition exhibited three patterns of shifts with developmental stage: resilience, increase, and decrease. Drought diminished microbial diversity and richness, whereas Hbc-6 increased microbial diversity and helped plants recruit specific beneficial bacterial taxa at each developmental stage, particularly during the bolting stage. Some microorganisms enriched by Hbc-6 had the potential to promote carbon and nitrogen cycling processes, and 86.79 % of the isolated strains exhibited PGP characteristics (for example Pseudomonas sp. TA9). They jointly regulated plant physiological metabolism (i.e., upregulated drought resistant-facilitating substances and reduced harmful substances), thereby stimulating the growth of Arabidopsis and increasing plant biomass under drought stress conditions. Collectively, these results indicate that Hbc-6 mediates plant growth and drought resistance by affecting the microbiome. The study thus provides novel insights and strain resources for drought-resistant, high-yielding crop cultivation and breeding.
Collapse
Affiliation(s)
- Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingyue Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kun Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yafang Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; The College of Forestry, Beijing Forestry University, Beijing, China
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Sharma V, Sharma DP, Salwan R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb Pathog 2024; 193:106772. [PMID: 38969183 DOI: 10.1016/j.micpath.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali PB 140413, India.
| | - D P Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India
| | - Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India.
| |
Collapse
|
4
|
Phong Lam V, Loi DN, Shin J, Mi LK, Park J. Optimization of salicylic acid concentrations for increasing antioxidant enzymes and bioactive compounds of Agastache rugosa in a plant factory. PLoS One 2024; 19:e0306340. [PMID: 39052558 PMCID: PMC11271957 DOI: 10.1371/journal.pone.0306340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Salicylic acid (SA) plays a crucial role as a hormone in plants and belongs to the group of phenolic compounds. Our objective was to determine the optimal concentration of SA for enhancing the production of bioactive compounds in Agastache rugosa plants while maintaining optimal plant growth. The plants underwent SA soaking treatments at different concentrations (i.e., 0, 100, 200, 400, 800, and 1600 μmol mol-1) for 10 min at 7 days after they were transplanted. We observed that elevated levels of SA at 800 and 1600 μmol mol-1 induced oxidative stress, leading to a significant reduction across many plant growth variables, including leaf length, width, number, area, shoot fresh weight (FW), stem FW and length, and whole plant dry weights (DW) compared with that in the control plants. Additionally, the treatment with 1600 μmol mol-1 SA resulted in the lowest values of flower branch number, FW and DW of flowers, and DW of leaf, stem, and root. Conversely, applying 400 μmol mol-1 SA resulted in the greatest increase of chlorophyll (Chl) a and b, total Chl, total flavonoid, total carotenoid, and SPAD values. The photosynthetic rate and stomatal conductance decreased with increased SA concentrations (i.e., 800 and 1600 μmol mol-1). Furthermore, the higher SA treatments (i.e., 400, 800, and 1600 μmol mol-1) enhanced the phenolic contents, and almost all SA treatments increased the antioxidant capacity. The rosmarinic acid content peaked under 200 μmol mol-1 SA treatment. However, under 400 μmol mol-1 SA, tilianin and acacetin contents reached their highest levels. These findings demonstrate that immersing the roots in 200 and 400 μmol mol-1 SA enhances the production of bioactive compounds in hydroponically cultivated A. rugosa without compromising plant growth. Overall, these findings provide valuable insights into the impact of SA on A. rugosa and its potential implications for medicinal plant cultivation and phytochemical production.
Collapse
Affiliation(s)
- Vu Phong Lam
- Department of Horticultural Science, Chungnam National University, Daejeon, South Korea
- Department of Agronomy, Tay Bac University, Son La, Vietnam
| | - Dao Nhan Loi
- Department of Agronomy, Tay Bac University, Son La, Vietnam
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea
| | - Juhyung Shin
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea
| | - Lee Kyeong Mi
- Department of Horticultural Science, Chungnam National University, Daejeon, South Korea
| | - Jongseok Park
- Department of Horticultural Science, Chungnam National University, Daejeon, South Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
5
|
Sperdouli I, Panteris E, Moustaka J, Aydın T, Bayçu G, Moustakas M. Mechanistic Insights on Salicylic Acid-Induced Enhancement of Photosystem II Function in Basil Plants under Non-Stress or Mild Drought Stress. Int J Mol Sci 2024; 25:5728. [PMID: 38891916 PMCID: PMC11171592 DOI: 10.3390/ijms25115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. PSII efficiency in SA-sprayed leaves under NS conditions, evaluated at both low light (LL, 200 μmol photons m-2 s-1) and high light (HL, 900 μmol photons m-2 s-1), increased significantly with a parallel significant decrease in the excitation pressure at PSII (1-qL) and the excess excitation energy (EXC). This enhancement of PSII efficiency under NS conditions was induced by the mechanism of non-photochemical quenching (NPQ) that reduced singlet oxygen (1O2) production, as indicated by the reduced quantum yield of non-regulated energy loss in PSII (ΦNO). Under MiDS, the thylakoid structure of water-sprayed leaves appeared slightly dilated, and the efficiency of PSII declined, compared to NS conditions. In contrast, the thylakoid structure of SA-sprayed leaves did not change under MiDS, while PSII functionality was retained, similar to NS plants at HL. This was due to the photoprotective heat dissipation by NPQ, which was sufficient to retain the same percentage of open PSII reaction centers (qp), as in NS conditions and HL. We suggest that the redox status of the plastoquinone pool (qp) under MiDS and HL initiated the acclimation response to MiDS in SA-sprayed leaves, which retained the same electron transport rate (ETR) with control plants. Foliar spray of SA could be considered as a method to improve PSII efficiency in basil plants under NS conditions, at both LL and HL, while under MiDS and HL conditions, basil plants could retain PSII efficiency similar to control plants.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Dimitra), 57001 Thermi, Greece;
| | - Emmanuel Panteris
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Tuğba Aydın
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
6
|
González-Villagra J, Bravo LA, Reyes-Díaz M, Cohen JD, Ribera-Fonseca A, López-Olivari R, Jorquera-Fontena E, Tighe-Neira R. Pre-Harvest Salicylic Acid Application Affects Fruit Quality and Yield under Deficit Irrigation in Aristotelia chilensis (Mol.) Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3279. [PMID: 37765440 PMCID: PMC10537942 DOI: 10.3390/plants12183279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Salicylic acid (SA) application is a promising agronomic tool. However, studies under field conditions are required, to confirm the potential benefits of SA. Thus, SA application was evaluated under field conditions for its effect on abscisic acid levels, antioxidant related-parameters, fruit quality, and yield in Aristotelia chilensis subjected to different levels of irrigation. During two growing seasons, three-year-old plants under field conditions were subjected to full irrigation (FI: 100% of reference evapotranspiration (ETo), and deficit irrigation (DI: 60% ETo). During each growth season, a single application of 0.5 mM SA was performed at fruit color change by spraying fruits and leaves of both irrigation treatments. The results showed that DI plants experienced moderate water stress (-1.3 MPa), which increased ABA levels and oxidative stress in the leaves. The SA application facilitated the recovery of all physiological parameters under the DI condition, increasing fruit fresh weight by 44%, with a 27% increase in fruit dry weight, a 1 mm increase in equatorial diameter, a 27% improvement in yield per plant and a 27% increase in total yield, with lesser oxidative stress and tissue ABA levels in leaves. Also, SA application significantly increased (by about 10%) the values of fruit trait variables such as soluble solids, total phenols, and antioxidant activity, with the exceptions of titratable acidity and total anthocyanins, which did not vary. The results demonstrated that SA application might be used as an agronomic strategy to improve fruit yield and quality, representing a saving of 40% regarding water use.
Collapse
Affiliation(s)
- Jorge González-Villagra
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile; (E.J.-F.); (R.T.-N.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile
| | - León A. Bravo
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile;
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.R.-D.); (A.R.-F.)
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.R.-D.); (A.R.-F.)
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Jerry D. Cohen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA;
| | - Alejandra Ribera-Fonseca
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.R.-D.); (A.R.-F.)
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Medioambiente, Campus Andrés Bello, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Rafael López-Olivari
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Km 10 camino Cajón-Vilcún s/n, Temuco P.O. Box 929, Chile;
| | - Emilio Jorquera-Fontena
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile; (E.J.-F.); (R.T.-N.)
| | - Ricardo Tighe-Neira
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco P.O. Box 15-D, Chile; (E.J.-F.); (R.T.-N.)
| |
Collapse
|
7
|
Zangani E, Angourani HR, Andalibi B, Rad SV, Mastinu A. Sodium Nitroprusside Improves the Growth and Behavior of the Stomata of Silybum marianum L. Subjected to Different Degrees of Drought. Life (Basel) 2023; 13:life13040875. [PMID: 37109404 PMCID: PMC10145804 DOI: 10.3390/life13040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The use of growth-stimulating signals to increase the tolerance of plants to water deficits can be an important strategy in the production of plants in dry areas. Therefore, a split-plot experiment with three replications was conducted to evaluate the effects of sodium nitroprusside (SNP) application rate as an NO donor (0, 100, and 200 µM) on the growth and yield parameters of Silybum marianum L. (S. marianum) under different irrigation cut-off times (control, irrigation cut-off from stem elongation, and anthesis). The results of this study showed that with increasing drought severity, leaf RWC, proline content and capitula per plant, 1000 grain weight, plant height, branch per plant, capitula diameter, and the biological and grain yield of S. marianum decreased significantly, whereas the number of grains per capitula increased compared with the control. Also, by irrigation cut-off from the stem elongation stage, the density of leaf stomata at the bottom and top epidermis increased by 64% and 39%, respectively, and the length of the stomata at the bottom epidermis of the leaf decreased up to 28%. In contrast, the results of this experiment showed that the exogenous application of nitric oxide reduced the negative effects of irrigation cut-off, such that the application of 100 µM SNP enhanced RWC content (up to 9%), proline concentration (up to 40%), and grain (up to 34%) and biological (up to 44%) yields in plants under drought stress compared with non-application of SNP. The decrease in the number of capitula per plant and capitula diameter was also compensated by foliar application of 100 µM SNP under stress conditions. In addition, exogenous NO changed the behavior of the stomata during the period of dehydration, such that plants treated with SNP showed a decrease in the stomatal density of the leaf and an increase in the length of the stomata at the leaf bottom epidermis. These results indicate that SNP treatment, especially at 100 µM, was helpful in alleviating the deleterious effects of water deficiency and enhancing the tolerance of S. marianum to withholding irrigation times.
Collapse
Affiliation(s)
- Esmaeil Zangani
- Department of Plant Production and Genetics, University of Zanjan, Zanjan 45371-38791, Iran;
- Correspondence: (E.Z.); (A.M.)
| | - Hossein Rabbi Angourani
- Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Babak Andalibi
- Department of Plant Production and Genetics, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Saeid Vaezi Rad
- Department of Agronomy, Science and Research Branch, Islamic Azad University, Zanjan 45156-58145, Iran;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
- Correspondence: (E.Z.); (A.M.)
| |
Collapse
|
8
|
Moustakas M, Sperdouli I, Moustaka J, Şaş B, İşgören S, Morales F. Mechanistic Insights on Salicylic Acid Mediated Enhancement of Photosystem II Function in Oregano Seedlings Subjected to Moderate Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030518. [PMID: 36771603 PMCID: PMC9919124 DOI: 10.3390/plants12030518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/12/2023]
Abstract
Dramatic climate change has led to an increase in the intensity and frequency of drought episodes and, together with the high light conditions of the Mediterranean area, detrimentally influences crop production. Salicylic acid (SA) has been shown to supress phototoxicity, offering photosystem II (PSII) photoprotection. In the current study, we attempted to reveal the mechanism by which SA is improving PSII efficiency in oregano seedlings under moderate drought stress (MoDS). Foliar application of SA decreased chlorophyll content under normal growth conditions, but under MoDS increased chlorophyll content, compared to H2O-sprayed oregano seedlings. SA improved the PSII efficiency of oregano seedlings under normal growth conditions at high light (HL), and under MoDS, at both low light (LL) and HL. The mechanism by which, under normal growth conditions and HL, SA sprayed oregano seedlings compared to H2O-sprayed exhibited a more efficient PSII photochemistry, was the increased (17%) fraction of open PSII reaction centers (qp), and the increased (7%) efficiency of these open reaction centers (Fv'/Fm'), which resulted in an enhanced (24%) electron transport rate (ETR). SA application under MoDS, by modulating chlorophyll content, resulted in optimized antenna size and enhanced effective quantum yield of PSII photochemistry (ΦPSII) under both LL (7%) and HL (25%), compared to non-SA-sprayed oregano seedlings. This increased effective quantum yield of PSII photochemistry (ΦPSII) was due to the enhanced efficiency of the oxygen evolving complex (OEC), and the increased fraction of open PSII reaction centers (qp), which resulted in an increased electron transport rate (ETR) and a lower amount of singlet oxygen (1O2) production with less excess excitation energy (EXC).
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Navarra, Spain
| |
Collapse
|
9
|
Talaat NB, Hanafy AMA. Spermine-Salicylic Acid Interplay Restrains Salt Toxicity in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020352. [PMID: 36679065 PMCID: PMC9861978 DOI: 10.3390/plants12020352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 05/30/2023]
Abstract
Spermine (SPM) and salicylic acid (SA) are plant growth regulators, eliciting specific responses against salt toxicity. In this study, the potential role of 30 mgL-1 SPM and/or 100 mgL-1 SA in preventing salt damage was investigated. Wheat plants were grown under non-saline or saline conditions (6.0 and 12.0 dS m-1) with and without SA and/or SPM foliar applications. Exogenously applied SA and/or SPM alleviated the inhibition of plant growth and productivity under saline conditions by increasing Calvin cycle enzyme activity. Foliage applications also improved ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase activities, which effectively scavenged hydrogen peroxide and superoxide radicals in stressed plants. Furthermore, foliar treatments increased antioxidants such as ascorbate and glutathione, which effectively detoxified reactive oxygen species (ROS). Exogenous applications also increased N, P, and K+ acquisition, roots' ATP content, and H+-pump activity, accompanied by significantly lower Na+ accumulation in stressed plants. Under saline environments, exogenous SA and/or SPM applications raised endogenous SA and SPM levels. Co-application of SA and SPM gave the best response. The newly discovered data suggest that the increased activities of Calvin cycle enzymes, root H+-pump, and antioxidant defense machinery in treated plants are a mechanism for salt tolerance. Therefore, combining the use of SA and SPM can be a superior method for reducing salt toxicity in sustainable agricultural systems.
Collapse
|
10
|
Dinis LT, Jesus C, Amaral J, Gómez-Cadenas A, Correia B, Alves A, Pinto G. Water Deficit Timing Differentially Affects Physiological Responses of Grapevines Infected with Lasiodiplodia theobromae. PLANTS (BASEL, SWITZERLAND) 2022; 11:1961. [PMID: 35956441 PMCID: PMC9370450 DOI: 10.3390/plants11151961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Diseases and climate change are major factors limiting grape productivity and fruit marketability. Lasiodiplodia theobromae is a fungus of the family Botryosphaeriaceae that causes Botryosphaeria dieback of grapevine worldwide. Abiotic stress may change host vitality and impact susceptibility to the pathogen and/or change the pathogen's life cycle. However, the interaction between both stress drivers is poorly understood for woody plants. We addressed the hypothesis that distinct morpho-physiological and biochemical responses are induced in grapevine (Vitis vinifera)-L. theobromae interactions depending on when water deficits are imposed. Grapevines were submitted to water deficit either before or after fungus inoculation. Water deficit led to the reduction of the net photosynthetic rate, stomatal conductance, and transpiration rate, and increased the abscisic acid concentration regardless of fungal inoculation. L. theobromae inoculation before water deficit reduced plant survival by 50% and resulted in the accumulation of jasmonic acid and reductions in malondialdehyde levels. Conversely, grapevines inoculated after water deficit showed an increase in proline and malondialdehyde content and all plants survived. Overall, grapevines responded differently to the primary stress encountered, with consequences in their physiological responses. This study reinforces the importance of exploring the complex water deficit timing × disease interaction and the underlying physiological responses involved in grapevine performance.
Collapse
Affiliation(s)
- Lia-Tânia Dinis
- Department of Agronomy & CITAB–Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Apt. 1013, 5000-801 Vila Real, Portugal
| | - Cláudia Jesus
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.J.); (J.A.); (B.C.); (A.A.); (G.P.)
| | - Joana Amaral
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.J.); (J.A.); (B.C.); (A.A.); (G.P.)
| | - Aurelio Gómez-Cadenas
- Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castellón de la Plana, Spain;
| | - Barbara Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.J.); (J.A.); (B.C.); (A.A.); (G.P.)
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.J.); (J.A.); (B.C.); (A.A.); (G.P.)
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (C.J.); (J.A.); (B.C.); (A.A.); (G.P.)
| |
Collapse
|
11
|
Ammarellou A, Yousefi AR, Heydari M, Uberti D, Mastinu A. Biochemical and Botanical Aspects of Allium sativum L. Sowing. BIOTECH 2022; 11:16. [PMID: 35822789 PMCID: PMC9264397 DOI: 10.3390/biotech11020016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 01/11/2023] Open
Abstract
The main aim of this study was to evaluate the yield and compliance of selected Iranian garlic (Allium sativum L.) cultivars, including Tuyserkan (TSN), Heydareh (HDH), Mouien (MUN), and Taroom (TRM), during two growing seasons. The TRM cultivar germination rate is higher than the other cultivars studied. The TRM cultivars have quite remarkable values for the dry weight, fresh weight, stem diameter, and the number of leaves present. The fresh weight and dry weight of the TRM cultivar for the second year are 33.8 t/ha and 16.7 t/ha, respectively. However, on average, the HDH cultivar is the tallest plant in the experiments. Average pyruvic acid content in fresh samples of the TRM and HDH cultivars is 78 µm/gfw and 69.3 µm/gfw, respectively. It is observed that there are remarkable differences in the level of pyruvic acid between the different cultivars. The growth, development, and yield of plants are highly dependent on their genetic characteristics; in this experiment, the TRM cultivar shows a good yield (16.7 t/ha), and the evaluated characteristics improve compared to the other cultivars studied, which could be due to the high compatibility of this cultivar to the environmental conditions of the study. The excellent performance on the yield of TRM makes this cultivar more appreciable on a commercial level.
Collapse
Affiliation(s)
- Ali Ammarellou
- Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Ali Reza Yousefi
- Department of Plant Production and Genetics, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Moslem Heydari
- Department of Plant Production and Genetics, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| |
Collapse
|