1
|
Sui B, He Q, Yan B, Liu K, Xu Y, He S, Bo X. MORF: Multi-view oblique random forest for hepatotoxicity prediction. iScience 2025; 28:111755. [PMID: 39906562 PMCID: PMC11791245 DOI: 10.1016/j.isci.2025.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Hepatotoxicity prediction is significant in drug development, so the experts expect to get effective and reliable references. Based on the consideration that the hepatotoxicity data involve multiple types of features, this paper proposes a multi-view oblique random forest (MORF) for hepatotoxicity prediction by considering each type of feature as an independent view. The Householder transformation is employed to get the inclined cut hyperplane in each view. Two versions of the multi-view oblique decision tree (ODT) algorithms were designed by generating optimal nodes based on selecting proper hyperplanes from different views, named ODT-N and ODT-R. These two types of ODT algorithms serve as the base learners to construct two MORF. Experiments conducted on the hepatotoxicity data provide performance comparisons among different algorithms, and the results confirm that our algorithms can fully utilize the information in different views.
Collapse
Affiliation(s)
- Binsheng Sui
- Department of Digital Media, Xiamen University, Xiamen 361005, China
| | - Qingzhuo He
- Wee School of Communication and Information, Nanyang Technological University, Singapore, Singapore
| | - Bowei Yan
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Kunhong Liu
- Department of Digital Media, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Intelligent Storage and Computing, School of Informatics, Xiamen University, Xiamen 361005, China
| | - Yong Xu
- Xiamen Key Laboratory of Intelligent Fishery, Xiamen Ocean Vocational College, Xiamen 361100, China
| | - Song He
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| |
Collapse
|
2
|
Guan J, Dong D, Xie P, Zhao Z, Guo Y, Lee TY, Yao L, Chiang YC. StackDILI: Enhancing Drug-Induced Liver Injury Prediction through Stacking Strategy with Effective Molecular Representations. J Chem Inf Model 2025; 65:1027-1039. [PMID: 39786982 DOI: 10.1021/acs.jcim.4c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Drug-induced liver injury (DILI) is a major challenge in drug development, often leading to clinical trial failures and market withdrawals due to liver toxicity. This study presents StackDILI, a computational framework designed to accelerate toxicity assessment by predicting DILI risk. StackDILI integrates multiple molecular descriptors to extract structural and physicochemical features, including the constitution, pharmacophore, MACCS, and E-state descriptors. Additionally, a genetic algorithm is employed for feature selection and optimization, ensuring that the most relevant features are used. These optimized features are processed through a stacking ensemble model comprising multiple tree-based machine learning models, improving prediction accuracy and interpretability. Notably, StackDILI demonstrates a strong performance on the DILIrank test set and maintains robustness across cross-validation. Moreover, interpretability analysis reveals key molecular features associated with DILI risks, providing valuable insights into toxicity prediction. To further improve accessibility, a user-friendly web interface is developed, allowing users to input SMILES strings and receive rapid predictions with ease. The StackDILI model provides a powerful tool for efficient DILI assessment, supporting safer drug development. The web interface is accessible at https://awi.cuhk.edu.cn/biosequence/StackDILI/.
Collapse
Affiliation(s)
- Jiahui Guan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Danhong Dong
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Zhihao Zhao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Yilin Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| |
Collapse
|
3
|
Li T, Li J, Jiang H, Skiles DB. Deep Learning Prediction of Drug-Induced Liver Toxicity by Manifold Embedding of Quantum Information of Drug Molecules. Pharm Res 2025; 42:109-122. [PMID: 39663331 DOI: 10.1007/s11095-024-03800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE Drug-induced liver injury, or DILI, affects numerous patients and also presents significant challenges in drug development. It has been attempted to predict DILI of a chemical by in silico approaches, including data-driven machine learning models. Herein, we report a recent DILI deep-learning effort that utilized our molecular representation concept by manifold embedding electronic attributes on a molecular surface. METHODS Local electronic attributes on a molecular surface were mapped to a lower-dimensional embedding of the surface manifold. Such an embedding was featurized in a matrix form and used in a deep-learning model as molecular input. The model was trained by a well-curated dataset and tested through cross-validations. RESULTS Our DILI prediction yielded superior results to the literature-reported efforts, suggesting that manifold embedding of electronic quantities on a molecular surface enables machine learning of molecular properties, including DILI. CONCLUSIONS The concept encodes the quantum information of a molecule that governs intermolecular interactions, potentially facilitating the deep-learning model development and training.
Collapse
Affiliation(s)
- Tonglei Li
- Department of Industrial & Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.
| | - Jiaqing Li
- Department of Industrial & Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Hongyi Jiang
- Department of Industrial & Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - David B Skiles
- Department of Industrial & Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
4
|
Yang Y, Yang Z, Pang X, Cao H, Sun Y, Wang L, Zhou Z, Wang P, Liang Y, Wang Y. Molecular designing of potential environmentally friendly PFAS based on deep learning and generative models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176095. [PMID: 39245376 DOI: 10.1016/j.scitotenv.2024.176095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widely used across a spectrum of industrial and consumer goods. Nonetheless, their persistent nature and tendency to accumulate in biological systems pose substantial environmental and health threats. Consequently, striking a balance between maximizing product efficiency and minimizing environmental and health risks by tailoring the molecular structure of PFAS has become a pivotal challenge in the fields of environmental chemistry and sustainable development. To address this issue, a computational workflow was proposed for designing an environmentally friendly PFAS by incorporating deep learning (DL) and molecular generative models. The hybrid DL architecture MolHGT+ based on heterogeneous graph neural network with transformer-like attention was applied to predict the surface tension, bioaccumulation, and hepatotoxicity of the molecules. Through virtual screening of the PFAS master database using MolHGT+, the findings indicate that incorporating the siloxane group and betaine fragment can effectively decrease both the bioaccumulation and hepatotoxicity of PFAS while preserving low surface tension. In addition, molecular generative models were employed to create a structurally diverse pool of novel PFASs with the aforementioned hit molecules serving as the initial template structures. Overall, our study presents a promising AI-driven method for advancing the development of environmentally friendly PFAS.
Collapse
Affiliation(s)
- Ying Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zeguo Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xudi Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yuzhen Sun
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yawei Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Wang J, Zhang L, Sun J, Yang X, Wu W, Chen W, Zhao Q. Predicting drug-induced liver injury using graph attention mechanism and molecular fingerprints. Methods 2024; 221:18-26. [PMID: 38040204 DOI: 10.1016/j.ymeth.2023.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023] Open
Abstract
Drug-induced liver injury (DILI) is a significant issue in drug development and clinical treatment due to its potential to cause liver dysfunction or damage, which, in severe cases, can lead to liver failure or even fatality. DILI has numerous pathogenic factors, many of which remain incompletely understood. Consequently, it is imperative to devise methodologies and tools for anticipatory assessment of DILI risk in the initial phases of drug development. In this study, we present DMFPGA, a novel deep learning predictive model designed to predict DILI. To provide a comprehensive description of molecular properties, we employ a multi-head graph attention mechanism to extract features from the molecular graphs, representing characteristics at the level of compound nodes. Additionally, we combine multiple fingerprints of molecules to capture features at the molecular level of compounds. The fusion of molecular fingerprints and graph features can more fully express the properties of compounds. Subsequently, we employ a fully connected neural network to classify compounds as either DILI-positive or DILI-negative. To rigorously evaluate DMFPGA's performance, we conduct a 5-fold cross-validation experiment. The obtained results demonstrate the superiority of our method over four existing state-of-the-art computational approaches, exhibiting an average AUC of 0.935 and an average ACC of 0.934. We believe that DMFPGA is helpful for early-stage DILI prediction and assessment in drug development.
Collapse
Affiliation(s)
- Jifeng Wang
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Li Zhang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Jianqiang Sun
- School of Information Science and Engineering, Linyi University, Linyi 276000, China
| | - Xin Yang
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Wei Wu
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
6
|
Wu W, Qian J, Liang C, Yang J, Ge G, Zhou Q, Guan X. GeoDILI: A Robust and Interpretable Model for Drug-Induced Liver Injury Prediction Using Graph Neural Network-Based Molecular Geometric Representation. Chem Res Toxicol 2023; 36:1717-1730. [PMID: 37839069 DOI: 10.1021/acs.chemrestox.3c00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Drug-induced liver injury (DILI) is a significant cause of drug failure and withdrawal due to liver damage. Accurate prediction of hepatotoxic compounds is crucial for safe drug development. Several DILI prediction models have been published, but they are built on different data sets, making it difficult to compare model performance. Moreover, most existing models are based on molecular fingerprints or descriptors, neglecting molecular geometric properties and lacking interpretability. To address these limitations, we developed GeoDILI, an interpretable graph neural network that uses a molecular geometric representation. First, we utilized a geometry-based pretrained molecular representation and optimized it on the DILI data set to improve predictive performance. Second, we leveraged gradient information to obtain high-precision atomic-level weights and deduce the dominant substructure. We benchmarked GeoDILI against recently published DILI prediction models, as well as popular GNN models and fingerprint-based machine learning models using the same data set, showing superior predictive performance of our proposed model. We applied the interpretable method in the DILI data set and derived seven precise and mechanistically elucidated structural alerts. Overall, GeoDILI provides a promising approach for accurate and interpretable DILI prediction with potential applications in drug discovery and safety assessment. The data and source code are available at GitHub repository (https://github.com/CSU-QJY/GeoDILI).
Collapse
Affiliation(s)
- Wenxuan Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayu Qian
- School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China
| | - Changjie Liang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingya Yang
- School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingping Zhou
- School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China
| | - Xiaoqing Guan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|