1
|
Bencs F, Románszki L, Farkas V, Perczel A. Structural Insights Into Amyloid Polymorphism: The Impact of Glutamine to Norleucine Substitutions in GNNQQNY Aggregation. Chemistry 2025; 31:e202404255. [PMID: 40152416 PMCID: PMC12063041 DOI: 10.1002/chem.202404255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
Polypeptides can self-assemble into highly organized amyloid structures through complex and poorly understood mechanisms. To better understand the key parameters governing amyloidogenesis, we investigated the aggregation of the Sup35 prion-derived GNNQQNY sequence alongside two rationally designed mutants, glutamine to norleucine in the 4th or 5th position, where selective removal of hydrogen bonding capacity reduces amyloid structural stability. Our findings reveal that β-sheet arrays form rapidly as an initial step, followed by π-π aromatic interactions between Tyr residues, which drive hierarchical self-assembly into 3D fibrillar structures via hydrophobic zippers and partial water exclusion. As the oligomers grow, they also acquire twist and chirality at the protofilament level, with Tyr ladders serving as key interaction surfaces that dictate the final amyloid architecture. These ladders guide protofibrils to assemble into either oppositely twisted chiral fibers or achiral nanocrystals, contributing to amyloid polymorphism. The emergence of distinct polymorphs is influenced by multiple factors, including fibril twisting, side-chain interactions, solvent exclusion, and local microenvironmental conditions. Our study provides crucial insights into the hierarchical nature of amyloid self-assembly and highlights the structural adaptability of amyloid fibrils, which is essential for designing functional amyloids and understanding the pathogenicity of disease-associated aggregates.
Collapse
Affiliation(s)
- Fruzsina Bencs
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryELTE Eötvös Loránd UniversityPázmány Péter sétány 1/ABudapestHungary
- ELTE Hevesy György PhD School of ChemistryELTE Eötvös Loránd UniversityPázmány Péter sétány 1/ABudapestHungary
| | - Loránd Románszki
- HUN‐REN Research Centre for Natural SciencesInstitute of Materials and Environmental ChemistryMagyar tudósok körútja 2BudapestHungary
| | - Viktor Farkas
- HUN‐REN – ELTE Protein Modeling Research GroupELTE Eötvös Loránd UniversityPázmány Péter sétány 1/ABudapestHungary
| | - András Perczel
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryELTE Eötvös Loránd UniversityPázmány Péter sétány 1/ABudapestHungary
- HUN‐REN – ELTE Protein Modeling Research GroupELTE Eötvös Loránd UniversityPázmány Péter sétány 1/ABudapestHungary
| |
Collapse
|
2
|
Espay AJ, Lees AJ, Cardoso F, Frucht SJ, Erskine D, Sandoval IM, Bernal-Conde LD, Sturchio A, Imarisio A, Hoffmann C, Montemagno KT, Milovanovic D, Halliday GM, Manfredsson FP. The α-synuclein seed amplification assay: Interpreting a test of Parkinson's pathology. Parkinsonism Relat Disord 2025; 131:107256. [PMID: 39794217 DOI: 10.1016/j.parkreldis.2024.107256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
The α-synuclein seed amplification assay (αSyn-SAA) sensitively detects Lewy pathology, the amyloid state of α-synuclein, in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD). The αSyn-SAA harnesses the physics of seeding, whereby a superconcentrated solution of recombinant α-synuclein lowers the thermodynamic threshold (nucleation barrier) for aggregated α-synuclein to act as a nucleation catalyst ("seed") to trigger the precipitation (nucleation) of monomeric α-synuclein into pathology. This laboratory setup increases the signal for identifying a catalyst if one is present in the tissue examined. The result is binary: positive, meaning precipitation occurred, and a catalyst is present, or negative, meaning no precipitation, therefore no catalyst. Since protein precipitation via seeding can only occur at a concentration many-fold higher than the human brain, laboratory-elicited seeding does not mean human brain seeding. We suggest that a positive αSyn-SAA reveals the presence of pathological α-synuclein but not the underlying etiology for the precipitation of monomeric α-synuclein into its pathological form. Thus, a positive αSyn-SAA supports a clinical diagnosis of PD but cannot inform disease pathogenesis, ascertain severity, predict the rate of progression, define biology or biological subtypes, or monitor treatment response.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| | - Andrew J Lees
- The National Hospital, Queen Square and Reta Lila Weston Institute for Neurological Studies University College London, London, UK
| | - Francisco Cardoso
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA
| | - Daniel Erskine
- Translational and Clinical Research Institute, Newcastle University, UK
| | - Ivette M Sandoval
- Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Luis Daniel Bernal-Conde
- Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA; Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Kora T Montemagno
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Glenda M Halliday
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - Fredric P Manfredsson
- Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
3
|
Yamaguchi K, Mima J, Nakajima K, Sakuta H, Yoshikawa K, Goto Y. Accelerated amyloid fibril formation at the interface of liquid-liquid phase-separated droplets by depletion interactions. Protein Sci 2025; 34:e5163. [PMID: 39876094 PMCID: PMC11774873 DOI: 10.1002/pro.5163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 01/30/2025]
Abstract
Amyloid fibril formation of α-synuclein (αSN) is a hallmark of synucleinopathies. Although the previous studies have provided numerous insights into the molecular basis of αSN amyloid formation, it remains unclear how αSN self-assembles into amyloid fibrils in vivo. Here, we show that αSN amyloid formation is accelerated in the presence of two macromolecular crowders, polyethylene glycol (PEG) (MW: ~10,000) and dextran (DEX) (MW: ~500,000), with a maximum at approximately 7% (w/v) PEG and 7% (w/v) DEX. Under these conditions, the two crowders induce a two-phase separation of upper PEG and lower DEX phases with a small number of liquid droplets of DEX and PEG in PEG and DEX phases, respectively. Fluorescence microscope images revealed that the interfaces of DEX droplets in the upper PEG phase are the major sites of amyloid formation. We consider that the depletion interactions working in micro phase-segregated state with DEX and PEG systems causes αSN condensation at the interface between solute PEG and DEX droplets, resulting in accelerated amyloid formation. Ultrasonication further accelerated the amyloid formation in both DEX and PEG phases, confirming the droplet-dependent amyloid formation. Similar PEG/DEX-dependent accelerated amyloid formation was observed for amyloid β peptide. In contrast, amyloid formation of β2-microglobulin or hen egg white lysozyme with a native fold was suppressed in the PEG/DEX mixtures, suggesting that the depletion interactions work adversely depending on whether the protein is unfolded or folded.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Graduate School of EngineeringOsaka UniversityOsakaJapan
- Global Center for Medical Engineering and InformaticsOsaka UniversityOsakaJapan
| | - Joji Mima
- Graduate School of EngineeringOsaka UniversityOsakaJapan
- Global Center for Medical Engineering and InformaticsOsaka UniversityOsakaJapan
| | - Kichitaro Nakajima
- Graduate School of EngineeringOsaka UniversityOsakaJapan
- Global Center for Medical Engineering and InformaticsOsaka UniversityOsakaJapan
| | - Hiroki Sakuta
- Faculty of Life and Medical SciencesDoshisha UniversityKyotoJapan
- Center for Complex Systems BiologyUniversal Biology Institute, The University of TokyoTokyoJapan
| | | | - Yuji Goto
- Graduate School of EngineeringOsaka UniversityOsakaJapan
- Global Center for Medical Engineering and InformaticsOsaka UniversityOsakaJapan
| |
Collapse
|
4
|
Goto Y, Nakajima K, Yamamoto S, Yamaguchi K. Supersaturation, a Critical Factor Underlying Proteostasis of Amyloid Fibril Formation. J Mol Biol 2024; 436:168475. [PMID: 38311232 DOI: 10.1016/j.jmb.2024.168475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
From a physicochemical viewpoint, amyloid fibril formation is a phase transition from soluble to crystal-like sates limited by supersaturation. It occurs only above solubility (i.e., the solubility limit) coupled with a breakdown of supersaturation. Although many studies have examined the role of molecular chaperones in the context of proteostasis, the role of supersaturation has not been addressed. Moreover, although molecular chaperone-dependent disaggregations have been reported for preformed amyloid fibrils, amyloid fibrils will not dissolve above the solubility of monomers, even if agitations fragment long fibrils to shorter amyloid particles. On the other hand, on considering a reversible and coupled equilibrium of interactions, folding/unfolding and amyloid formation/disaggregation, molecules stabilizing native states can work as a disaggregase reversing the amyloid fibrils to monomers. It is likely that the proteostasis network has various intra- and extracellular components which disaggregate preformed amyloid fibrils as well as prevent amyloid formation. Further studies with a view of solubility and supersaturation will be essential for comprehensive understanding of proteostasis.
Collapse
Affiliation(s)
- Yuji Goto
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kichitaro Nakajima
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Keiichi Yamaguchi
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Ohgita T, Kono H, Namba N, Saito H. Physicochemical mechanisms of aggregation and fibril formation of α-synuclein and apolipoprotein A-I. Biophys Physicobiol 2023; 21:e210005. [PMID: 38803339 PMCID: PMC11128303 DOI: 10.2142/biophysico.bppb-v21.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
Deposition and accumulation of amyloid fibrils is a hallmark of a group of diseases called amyloidosis and neurodegenerative disorders. Although polypeptides potentially have a fibril-forming propensity, native proteins have evolved into proper functional conformations to avoid aggregation and fibril formation. Understanding the mechanism for regulation of fibril formation of native proteins provides clues for the rational design of molecules for inhibiting fibril formation. Although fibril formation is a complex multistep reaction, experimentally obtained fibril formation curves can be fitted with the Finke-Watzky (F-W) two-step model for homogeneous nucleation followed by autocatalytic fibril growth. The resultant F-W rate constants for nucleation and fibril formation provide information on the chemical kinetics of fibril formation. Using the F-W two-step model analysis, we investigated the physicochemical mechanisms of fibril formation of a Parkinson's disease protein α-synuclein (αS) and a systemic amyloidosis protein apolipoprotein A-I (apoA-I). The results indicate that the C-terminal region of αS enthalpically and entropically suppresses nucleation through the intramolecular interaction with the N-terminal region and the intermolecular interaction with existing fibrils. In contrast, the nucleation of the N-terminal fragment of apoA-I is entropically driven likely due to dehydration of large hydrophobic segments in the molecule. Based on our recent findings, we discuss the similarity and difference of the fibril formation mechanisms of αS and the N-terminal fragment of apoA-I from the physicochemical viewpoints.
Collapse
Affiliation(s)
- Takashi Ohgita
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| | - Hiroki Kono
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Norihiro Namba
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hiroyuki Saito
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| |
Collapse
|
6
|
Portugal Barron D, Guo Z. The supersaturation perspective on the amyloid hypothesis. Chem Sci 2023; 15:46-54. [PMID: 38131088 PMCID: PMC10731913 DOI: 10.1039/d3sc03981a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/27/2023] [Indexed: 12/23/2023] Open
Abstract
Development of therapeutic interventions for Alzheimer's over the past three decades has been guided by the amyloid hypothesis, which puts Aβ deposition as the initiating event of a pathogenic cascade leading to dementia. In the current form, the amyloid hypothesis lacks a comprehensive framework that considers the complex nature of Aβ aggregation. The explanation of how Aβ deposition leads to downstream pathology, and how reducing Aβ plaque load via anti-amyloid therapy can lead to improvement in cognition remains insufficient. In this perspective we integrate the concept of Aβ supersaturation into the amyloid hypothesis, laying out a framework for the mechanistic understanding and therapeutic intervention of Alzheimer's disease. We discuss the important distinction between in vitro and in vivo patterns of Aβ aggregation, the impact of different aggregation stages on therapeutic strategies, and how future investigations could integrate this concept in order to produce a more thorough understanding and better treatment for Alzheimer's and other amyloid-related disorders.
Collapse
Affiliation(s)
- Diana Portugal Barron
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer's Research and Care, David Geffen School of Medicine, University of California, Los Angeles Los Angeles CA USA
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer's Research and Care, David Geffen School of Medicine, University of California, Los Angeles Los Angeles CA USA
| |
Collapse
|
7
|
Rosetti B, Marchesan S. Peptide Inhibitors of Insulin Fibrillation: Current and Future Challenges. Int J Mol Sci 2023; 24:1306. [PMID: 36674821 PMCID: PMC9863703 DOI: 10.3390/ijms24021306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Amyloidoses include a large variety of local and systemic diseases that share the common feature of protein unfolding or refolding into amyloid fibrils. The most studied amyloids are those directly involved in neurodegenerative diseases, while others, such as those formed by insulin, are surprisingly far less studied. Insulin is a very important polypeptide that plays a variety of biological roles and, first and foremost, is at the basis of the therapy of diabetic patients. It is well-known that it can form fibrils at the site of injection, leading to inflammation and immune response, in addition to other side effects. In this concise review, we analyze the current knowledge on insulin fibrillation, with a focus on the development of peptide-based inhibitors, which are promising candidates for their biocompatibility but still pose challenges to their effective use in therapy.
Collapse
Affiliation(s)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
8
|
Papadopoulos N, Suelves N, Perrin F, Vadukul DM, Vrancx C, Constantinescu SN, Kienlen-Campard P. Structural Determinant of β-Amyloid Formation: From Transmembrane Protein Dimerization to β-Amyloid Aggregates. Biomedicines 2022; 10:2753. [PMID: 36359274 PMCID: PMC9687742 DOI: 10.3390/biomedicines10112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 10/03/2023] Open
Abstract
Most neurodegenerative diseases have the characteristics of protein folding disorders, i.e., they cause lesions to appear in vulnerable regions of the nervous system, corresponding to protein aggregates that progressively spread through the neuronal network as the symptoms progress. Alzheimer's disease is one of these diseases. It is characterized by two types of lesions: neurofibrillary tangles (NFTs) composed of tau proteins and senile plaques, formed essentially of amyloid peptides (Aβ). A combination of factors ranging from genetic mutations to age-related changes in the cellular context converge in this disease to accelerate Aβ deposition. Over the last two decades, numerous studies have attempted to elucidate how structural determinants of its precursor (APP) modify Aβ production, and to understand the processes leading to the formation of different Aβ aggregates, e.g., fibrils and oligomers. The synthesis proposed in this review indicates that the same motifs can control APP function and Aβ production essentially by regulating membrane protein dimerization, and subsequently Aβ aggregation processes. The distinct properties of these motifs and the cellular context regulate the APP conformation to trigger the transition to the amyloid pathology. This concept is critical to better decipher the patterns switching APP protein conformation from physiological to pathological and improve our understanding of the mechanisms underpinning the formation of amyloid fibrils that devastate neuronal functions.
Collapse
Affiliation(s)
- Nicolas Papadopoulos
- SIGN Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, 1348 Brussels, Belgium
| | - Nuria Suelves
- Aging and Dementia Research Group, Cellular and Molecular (CEMO) Division, Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium
| | - Florian Perrin
- Memory Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Devkee M. Vadukul
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London SW7 2BX, UK
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Stefan N. Constantinescu
- SIGN Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, 1348 Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford University, Oxford OX1 2JD, UK
| | - Pascal Kienlen-Campard
- Aging and Dementia Research Group, Cellular and Molecular (CEMO) Division, Institute of Neuroscience, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|