1
|
Hernández-Montesinos IY, Carreón-Delgado DF, Lazo-Zamalloa O, Tapia-López L, Rosas-Morales M, Ochoa-Velasco CE, Hernández-Carranza P, Cruz-Narváez Y, Ramírez-López C. Exploring Agro-Industrial By-Products: Phenolic Content, Antioxidant Capacity, and Phytochemical Profiling via FI-ESI-FTICR-MS Untargeted Analysis. Antioxidants (Basel) 2024; 13:925. [PMID: 39199171 PMCID: PMC11351152 DOI: 10.3390/antiox13080925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigates agro-industrial by-products as sources of bioactive compounds, particularly focusing on phenolic compounds known for their antioxidant properties. With growing interest in natural alternatives to synthetic antioxidants due to safety concerns, this study highlights the health benefits of plant-derived phenolic compounds in food preservation and healthcare products. Traditional and advanced analytical techniques were used to obtain phytochemical profiles of various residue extracts, including espresso (SCG) and cold-brew spent coffee grounds (CBCG), pineapple peel (PP), beetroot pomace (BP), apple pomace (AP), black carrot pomace (BCP), and garlic peel (GP). Assessments of total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity (AC) supported their revalorization. CBCG showed the highest TPC, TFC, and AC. TPC content in by-products decreased in the order CBCG > SCG > GP > BCP > PP > AP > BP, with a similar trend for TFC and AC. Phytochemical profiling via FI-ESI-FTICR-MS enabled the preliminary putative identification of a range of compounds, with polyphenols and terpenes being the most abundant. Univariate and multivariate analyses revealed key patterns among samples. Strong positive correlations (Pearson's R > 0.8) indicated significant contribution of polyphenols to antioxidant capacities. These findings highlight the potential of agro-industrial residues as natural antioxidants, advocating for their sustainable utilization.
Collapse
Affiliation(s)
- Itzel Yoali Hernández-Montesinos
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - David Fernando Carreón-Delgado
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Oxana Lazo-Zamalloa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Lilia Tapia-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Minerva Rosas-Morales
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Carlos Enrique Ochoa-Velasco
- Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, 4 Sur 104, Centro Histórico, Puebla 72000, Mexico
| | - Paola Hernández-Carranza
- Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, 4 Sur 104, Centro Histórico, Puebla 72000, Mexico
| | - Yair Cruz-Narváez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Av. Instituto Politécnico Nacional, Lindavista, Gustavo A. Madero, Ciudad de México 07700, Mexico
| | - Carolina Ramírez-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| |
Collapse
|
2
|
Trejo-Teniente I, Jaramillo-Loranca BE, Vargas-Hernández G, Villanueva-Ibáñez M, Tovar-Jiménez X, Olvera-Venegas PN, Tapia-Ramírez J. Synthesis and toxicity assessment of Coffea arabica extract-derived gold nanoparticles loaded with doxorubicin in lung cancer cell cultures. Front Bioeng Biotechnol 2024; 12:1378601. [PMID: 38737534 PMCID: PMC11082400 DOI: 10.3389/fbioe.2024.1378601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Cancer is the second leading cause of death worldwide, despite the many treatments available, cancer patients face side effects that reduce their quality of life. Therefore, there is a need to develop novel strategies to increase the efficacy of treatments. In this study, gold nanoparticles obtained by green synthesis with Coffea arabica green bean extract were loaded with Doxorubicin, (a highly effective but non-specific drug) by direct interaction and using commercial organic ligands that allow colloidal dispersion at physiological and tumor pH. Conjugation of these components resulted in stable nanohybrids at physiological pH and a tumor pH release dependent, with a particle size less than 40 nm despite having the ligands and Doxorubicin loaded on their surface, which gave them greater specificity and cytotoxicity in H69 tumor cells.
Collapse
Affiliation(s)
- Isaí Trejo-Teniente
- Laboratory of Nanotechnology, New Materials and Systems for Health, Industry and Alternative Energies, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
- Laboratory of Bioactive Compounds, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
| | - Blanca Estela Jaramillo-Loranca
- Laboratory of Nanotechnology, New Materials and Systems for Health, Industry and Alternative Energies, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
| | - Genaro Vargas-Hernández
- Laboratory of Bioactive Compounds, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
| | - Maricela Villanueva-Ibáñez
- Laboratory of Nanotechnology, New Materials and Systems for Health, Industry and Alternative Energies, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
| | - Xochitl Tovar-Jiménez
- Laboratory of Bioactive Compounds, Universidad Politécnica de Pachuca, Zempoala, Hidalgo, Mexico
| | | | - José Tapia-Ramírez
- Department of Genetics and Molecular Biology, Centro de Investigaciones y de Estudios Avanzados IPN, Mexico City, Mexico
| |
Collapse
|
3
|
Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, Jurowski K. Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. Int J Mol Sci 2024; 25:4057. [PMID: 38612865 PMCID: PMC11012566 DOI: 10.3390/ijms25074057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.
Collapse
Affiliation(s)
- Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Alicja Krośniak
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
4
|
Arteaga-Castrejón AA, Agarwal V, Khandual S. Microalgae as a potential natural source for the green synthesis of nanoparticles. Chem Commun (Camb) 2024; 60:3874-3890. [PMID: 38529840 DOI: 10.1039/d3cc05767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The increasing global population is driving the development of alternative sources of food and energy, as well as better or new alternatives for health and environmental care, which represent key challenges in the field of biotechnology. Microalgae represent a very important source material to produce several high-value-added bioproducts. Due to the rapid changes in the modern world, there is a need to build new materials for use, including those in the nanometer size, although these developments may be chronological but often do not occur at a time. In the last few years, a new frontier has opened up at the interface of biotechnology and nanotechnology. This new frontier could help microalgae-based nanomaterials to possess new functions and abilities. Processes for the green synthesis of nanomaterials are being investigated, and the availability of biological resources such as microalgae is continuously being examined. The present review provides a concise overview of the recent advances in the synthesis, characterization, and applications of nanoparticles formed using a wide range of microalgae-based biosynthesis processes. Highlighting their innovative and sustainable potential in current research, our study contributes towards the in-depth understanding and provides latest updates on the alternatives offered by microalgae in the synthesis of nanomaterials.
Collapse
Affiliation(s)
- Ariana A Arteaga-Castrejón
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, Mexico.
| | - Sanghamitra Khandual
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
5
|
Yust BG, Wilkinson F, Rao NZ. Variables Affecting the Extraction of Antioxidants in Cold and Hot Brew Coffee: A Review. Antioxidants (Basel) 2023; 13:29. [PMID: 38247454 PMCID: PMC10812495 DOI: 10.3390/antiox13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Coffee beans are a readily available, abundant source of antioxidants used worldwide. With the increasing interest in and consumption of coffee beverages globally, research into the production, preparation, and chemical profile of coffee has also increased in recent years. A wide range of variables such as roasting temperature, coffee grind size, brewing temperature, and brewing duration can have a significant impact on the extractable antioxidant content of coffee products. While there is no single standard method for measuring all of the antioxidants found in coffee, multiple methods which introduce the coffee product to a target molecule or reagent can be used to deduce the overall radical scavenging capacity. In this article, we profile the effect that many of these variables have on the quantifiable concentration of antioxidants found in both cold and hot brew coffee samples. Most protocols for cold brew coffee involve an immersion or steeping method where the coffee grounds are in contact with water at or below room temperature for several hours. Generally, a higher brewing temperature or longer brewing time yielded greater antioxidant activity. Most studies also found that a lower degree of coffee bean roast yielded greater antioxidant activity.
Collapse
Affiliation(s)
- Brian G. Yust
- College of Humanities & Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Frank Wilkinson
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA; (F.W.); (N.Z.R.)
| | - Niny Z. Rao
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA; (F.W.); (N.Z.R.)
| |
Collapse
|