1
|
Seo D, Seong S, Kim H, Oh HS, Lee JH, Kim H, Kim YO, Maeda S, Chikami S, Hayashi T, Noh J. Molecular Self-Assembly and Adsorption Structure of 2,2'-Dipyrimidyl Disulfides on Au(111) Surfaces. Molecules 2024; 29:846. [PMID: 38398598 PMCID: PMC10892263 DOI: 10.3390/molecules29040846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The effects of solution concentration and pH on the formation and surface structure of 2-pyrimidinethiolate (2PymS) self-assembled monolayers (SAMs) on Au(111) via the adsorption of 2,2'-dipyrimidyl disulfide (DPymDS) were examined using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). STM observations revealed that the formation and structural order of 2PymS SAMs were markedly influenced by the solution concentration and pH. 2PymS SAMs formed in a 0.01 mM ethanol solution were mainly composed of a more uniform and ordered phase compared with those formed in 0.001 mM or 1 mM solutions. SAMs formed in a 0.01 mM solution at pH 2 were composed of a fully disordered phase with many irregular and bright aggregates, whereas SAMs formed at pH 7 had small ordered domains and many bright islands. As the solution pH increased from pH 7 to pH 12, the surface morphology of 2PymS SAMs remarkably changed from small ordered domains to large ordered domains, which can be described as a (4√2 × 3)R51° packing structure. XPS measurements clearly showed that the adsorption of DPymDS on Au(111) resulted in the formation of 2PymS (thiolate) SAMs via the cleavage of the disulfide (S-S) bond in DPymDS, and most N atoms in the pyrimidine rings existed in the deprotonated form. The results herein will provide a new insight into the molecular self-assembly behaviors and adsorption structures of DPymDS molecules on Au(111) depending on solution concentration and pH.
Collapse
Affiliation(s)
- Dongjin Seo
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Sicheon Seong
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Haeri Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Hyun Su Oh
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Jun Hyeong Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Hongki Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Yeon O Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
| | - Shoichi Maeda
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Shunta Chikami
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
| | - Jaegeun Noh
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea; (D.S.); (S.S.); (H.K.); (H.S.O.); (J.H.L.); (H.K.); (Y.O.K.)
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; (S.M.); (S.C.)
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Son YJ, Han JW, Kang H, Seong S, Han S, Maeda S, Chikami S, Hayashi T, Hara M, Noh J. Formation and Thermal Stability of Ordered Self-Assembled Monolayers by the Adsorption of Amide-Containing Alkanethiols on Au(111). Int J Mol Sci 2023; 24:ijms24043241. [PMID: 36834654 PMCID: PMC9967528 DOI: 10.3390/ijms24043241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
We examined the surface structure, binding conditions, electrochemical behavior, and thermal stability of self-assembled monolayers (SAMs) on Au(111) formed by N-(2-mercaptoethyl)heptanamide (MEHA) containing an amide group in an inner alkyl chain using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) to understand the effects of an internal amide group as a function of deposition time. The STM study clearly showed that the structural transitions of MEHA SAMs on Au(111) occurred from the liquid phase to the formation of a closely packed and well-ordered β-phase via a loosely packed α-phase as an intermediate phase, depending on the deposition time. XPS measurements showed that the relative peak intensities of chemisorbed sulfur against Au 4f for MEHA SAMs formed after deposition for 1 min, 10 min, and 1 h were calculated to be 0.0022, 0.0068, and 0.0070, respectively. Based on the STM and XPS results, it is expected that the formation of a well-ordered β-phase is due to an increased adsorption of chemisorbed sulfur and the structural rearrangement of molecular backbones to maximize lateral interactions resulting from a longer deposition period of 1 h. CV measurements showed a significant difference in the electrochemical behavior of MEHA and decanethiol (DT) SAMs as a result of the presence of an internal amide group in the MEHA SAMs. Herein, we report the first high-resolution STM image of well-ordered MEHA SAMs on Au(111) with a (3 × 2√3) superlattice (β-phase). We also found that amide-containing MEHA SAMs were thermally much more stable than DT SAMs due to the formation of internal hydrogen networks in MEHA SAMs. Our molecular-scale STM results provide new insight into the growth process, surface structure, and thermal stability of amide-containing alkanethiols on Au(111).
Collapse
Affiliation(s)
- Young Ji Son
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jin Wook Han
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hungu Kang
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sicheon Seong
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seulki Han
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Shoichi Maeda
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shunta Chikami
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Masahiko Hara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Jaegeun Noh
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Correspondence:
| |
Collapse
|