1
|
Connaughton M, Dabagh M. Impact of stroma remodeling on forces experienced by cancer cells and stromal cells within a pancreatic tumor tissue. Biomed Eng Online 2024; 23:88. [PMID: 39210409 PMCID: PMC11363431 DOI: 10.1186/s12938-024-01278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Remodeling (re-engineering) of a tumor's stroma has been shown to improve the efficacy of anti-tumor therapies, without destroying the stroma. Even though it still remains unclear which stromal component/-s and what characteristics hinder the reach of nanoparticles deep into cancer cells, we hypothesis that mechanisms behind stroma's resistance to the penetration of nanoparticles rely heavily on extrinsic mechanical forces on stromal cells and cancer cells. Our hypothesis has been formulated on the basis of our previous study which has shown that changes in extracellular matrix (ECM) stiffness with tumor growth influence stresses exerted on fibroblasts and cancer cells, and that malignant cancer cells generate higher stresses on their stroma. This study attempts to establish a distinct identification of the components' remodeling on the distribution and magnitude of stress within a tumor tissue which ultimately will impact the resistance of stroma to treatment. In this study, our objective is to construct a three-dimensional in silico model of a pancreas tumor tissue consisting of cancer cells, stromal cells, and ECM to determine how stromal remodeling alters the stresses distribution and magnitude within the pancreas tumor tissue. Our results show that changes in mechanical properties of ECM significantly alter the magnitude and distribution of stresses within the pancreas tumor tissue. Our results revealed that these stresses are more sensitive to ECM properties as we see the stresses reaching to a maximum of 22,000 Pa for softer ECM with Young's modulus of 250 Pa. The stress distribution and magnitude within the pancreas tumor tissue does not show high sensitivity to the changes in mechanical properties of stromal cells surrounding stiffer cancer cells (PANC-1 with Young's modulus of 2400 Pa). However, softer cancer cells (MIA-PaCa-2 with (Young's modulus of 500 Pa) increase the stresses experienced by stiffer stromal cells and for stiffer ECM. By providing a unique platform to dissect and quantify the impact of individual stromal components on the stress distribution within a tumor tissue, this study serves as an important first step in understanding of which stromal components are vital for an efficient remodeling. This knowledge will be leveraged to overcome a tumor's resistance against the penetration of nanoparticles on a per-patient basis.
Collapse
Affiliation(s)
- Morgan Connaughton
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Mahsa Dabagh
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
2
|
Lopez-Cavestany M, Wright OA, Reckhorn NT, Carter AT, Jayawardana K, Nguyen T, Briggs DP, Koktysh DS, Esteban Linares A, Li D, King MR. Superhydrophobic Array Devices for the Enhanced Formation of 3D Cancer Models. ACS NANO 2024; 18:23637-23654. [PMID: 39150223 PMCID: PMC11363216 DOI: 10.1021/acsnano.4c08132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
During the metastatic cascade, cancer cells travel through the bloodstream as circulating tumor cells (CTCs) to a secondary site. Clustered CTCs have greater shear stress and treatment resistance, yet their biology remains poorly understood. We therefore engineered a tunable superhydrophobic array device (SHArD). The SHArD-C was applied to culture a clinically relevant model of CTC clusters. Using our device, we cultured a model of cancer cell aggregates of various sizes with immortalized cancer cell lines. These exhibited higher E-cadherin expression and are significantly more capable of surviving high fluid shear stress-related forces compared to single cells and model clusters grown using the control method, helping to explain why clustering may provide a metastatic advantage. Additionally, the SHArD-S, when compared with the AggreWell 800 method, provides a more consistent spheroid-forming device culturing reproducible sizes of spheroids for multiple cancer cell lines. Overall, we designed, fabricated, and validated an easily tunable engineered device which grows physiologically relevant three-dimensional (3D) cancer models containing tens to thousands of cells.
Collapse
Affiliation(s)
- Maria Lopez-Cavestany
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Olivia A. Wright
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Noah T. Reckhorn
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexandria T. Carter
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Kalana Jayawardana
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Tin Nguyen
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Dayrl P. Briggs
- Center
for Nanophase Materials Science, Oak Ridge
National Laboratories, Knoxville, Tennessee 37830, United States
| | - Dmitry S. Koktysh
- Vanderbilt
Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alberto Esteban Linares
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Deyu Li
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Michael R. King
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
3
|
Yao Y, Zheng M, Borkar NA, Thompson MA, Zhang EY, Koloko Ngassie ML, Wang S, Pabelick CM, Vogel ER, Prakash YS. Role of STIM1 in stretch-induced signaling in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2024; 327:L150-L159. [PMID: 38771147 PMCID: PMC11687955 DOI: 10.1152/ajplung.00370.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Alteration in the normal mechanical forces of breathing can contribute to changes in contractility and remodeling characteristic of airway diseases, but the mechanisms that mediate these effects in airway cells are still under investigation. Airway smooth muscle (ASM) cells contribute to both contractility and extracellular matrix (ECM) remodeling. In this study, we explored ASM mechanisms activated by mechanical stretch, focusing on mechanosensitive piezo channels and the key Ca2+ regulatory protein stromal interaction molecule 1 (STIM1). Expression of Ca2+ regulatory proteins, including STIM1, Orai1, and caveolin-1, mechanosensitive ion channels Piezo-1 and Piezo-2, and NLRP3 inflammasomes were upregulated by 10% static stretch superimposed on 5% cyclic stretch. These effects were blunted by STIM1 siRNA. Histamine-induced [Ca2+]i responses and inflammasome activation were similarly blunted by STIM1 knockdown. These data show that the effects of mechanical stretch in human ASM cells are mediated through STIM1, which activates multiple pathways, including Piezo channels and the inflammasome, leading to potential downstream changes in contractility and ECM remodeling.NEW & NOTEWORTHY Mechanical forces on the airway can contribute to altered contractility and remodeling in airway diseases, but the mechanisms are not clearly understood. Using human airway smooth muscle cells exposed to cyclic forces with static stretch to mimic breathing and static pressure, we found that the effects of stretch are mediated through STIM1, resulting in the activation of multiple pathways, including Piezo channels and the inflammasome, with potential downstream influences on contractility and remodeling.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Mengning Zheng
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, People’s Republic of China
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Niyati A. Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A. Thompson
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Emily Y. Zhang
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Maunick Lefin Koloko Ngassie
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
| | - Christina M. Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Elizabeth R. Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
4
|
Grayson KA, Greenlee JD, Himmel LE, Hapach LA, Reinhart-King CA, King MR. Spatial distribution of tumor-associated macrophages in an orthotopic prostate cancer mouse model. Pathol Oncol Res 2024; 30:1611586. [PMID: 38689823 PMCID: PMC11058651 DOI: 10.3389/pore.2024.1611586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.
Collapse
Affiliation(s)
- Korie A. Grayson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Joshua D. Greenlee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Lauren E. Himmel
- Department of Pathology, Microbiology and Immunology, Translational Pathology Shared Resource, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lauren A. Hapach
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | | | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
5
|
Zhang Y, Zou W, Dou W, Luo H, Ouyang X. Pleiotropic physiological functions of Piezo1 in human body and its effect on malignant behavior of tumors. Front Physiol 2024; 15:1377329. [PMID: 38690080 PMCID: PMC11058998 DOI: 10.3389/fphys.2024.1377329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Mechanosensitive ion channel protein 1 (Piezo1) is a large homotrimeric membrane protein. Piezo1 has various effects and plays an important and irreplaceable role in the maintenance of human life activities and homeostasis of the internal environment. In addition, recent studies have shown that Piezo1 plays a vital role in tumorigenesis, progression, malignancy and clinical prognosis. Piezo1 is involved in regulating the malignant behaviors of a variety of tumors, including cellular metabolic reprogramming, unlimited proliferation, inhibition of apoptosis, maintenance of stemness, angiogenesis, invasion and metastasis. Moreover, Piezo1 regulates tumor progression by affecting the recruitment, activation, and differentiation of multiple immune cells. Therefore, Piezo1 has excellent potential as an anti-tumor target. The article reviews the diverse physiological functions of Piezo1 in the human body and its major cellular pathways during disease development, and describes in detail the specific mechanisms by which Piezo1 affects the malignant behavior of tumors and its recent progress as a new target for tumor therapy, providing new perspectives for exploring more potential effects on physiological functions and its application in tumor therapy.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wen Zou
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenlei Dou
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Connaughton M, Dabagh M. Modeling Physical Forces Experienced by Cancer and Stromal Cells Within Different Organ-Specific Tumor Tissue. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:413-434. [PMID: 38765886 PMCID: PMC11100865 DOI: 10.1109/jtehm.2024.3388561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Mechanical force exerted on cancer cells by their microenvironment have been reported to drive cells toward invasive phenotypes by altering cells' motility, proliferation, and apoptosis. These mechanical forces include compressive, tensile, hydrostatic, and shear forces. The importance of forces is then hypothesized to be an alteration of cancer cells' and their microenvironment's biophysical properties as the indicator of a tumor's malignancy state. Our objective is to investigate and quantify the correlation between a tumor's malignancy state and forces experienced by the cancer cells and components of the microenvironment. In this study, we have developed a multicomponent, three-dimensional model of tumor tissue consisting of a cancer cell surrounded by fibroblasts and extracellular matrix (ECM). Our results on three different organs including breast, kidney, and pancreas show that: A) the stresses within tumor tissue are impacted by the organ specific ECM's biophysical properties, B) more invasive cancer cells experience higher stresses, C) in pancreas which has a softer ECM (Young modulus of 1.0 kPa) and stiffer cancer cells (Young modulus of 2.4 kPa and 1.7 kPa) than breast and kidney, cancer cells experienced significantly higher stresses, D) cancer cells in contact with ECM experienced higher stresses compared to cells surrounded by fibroblasts but the area of tumor stroma experiencing high stresses has a maximum length of 40 μm when the cancer cell is surrounded by fibroblasts and 12 μm for when the cancer cell is in vicinity of ECM. This study serves as an important first step in understanding of how the stresses experienced by cancer cells, fibroblasts, and ECM are associated with malignancy states of cancer cells in different organs. The quantification of forces exerted on cancer cells by different organ-specific ECM and at different stages of malignancy will help, first to develop theranostic strategies, second to predict accurately which tumors will become highly malignant, and third to establish accurate criteria controlling the progression of cancer cells malignancy. Furthermore, our in silico model of tumor tissue can yield critical, useful information for guiding ex vivo or in vitro experiments, narrowing down variables to be investigated, understanding what factors could be impacting cancer treatments or even biomarkers to be looking for.
Collapse
Affiliation(s)
- Morgan Connaughton
- Department of Biomedical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeWI53211USA
| | - Mahsa Dabagh
- Department of Biomedical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeWI53211USA
| |
Collapse
|
7
|
Greenlee JD, Zhang Z, Subramanian T, Liu K, King MR. TRAIL-conjugated liposomes that bind natural killer cells to induce colorectal cancer cell apoptosis. J Biomed Mater Res A 2024; 112:110-120. [PMID: 37772330 PMCID: PMC10794038 DOI: 10.1002/jbm.a.37621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Natural killer (NK) cell functionality is a strong indicator of favorable prognosis in cancer patients, making NK cells an appealing therapeutic target to prevent lymph node dissemination. We engineered liposomes that are conjugated with anti-CD335 antibodies for NK cell targeting, and the apoptotic ligand TRAIL to kill cancer cells. Liposomes were made using a thin film hydration method followed by extrusion to approximately 100 nm in diameter and conjugation of proteins via thiol-maleimide click chemistry. TRAIL/anti-CD335 liposomes successfully bound to isolated NK cells. Once piggybacked to the surface of NK cells, these "Super Natural Killer Cells" were able to more effectively kill oxaliplatin-resistant SW620 cells and metastatic COLO205 colorectal cancer cells via TRAIL-mediated apoptosis compared to NK cells alone. Importantly, Super NK cells were more effective under physiological levels of fluid shear stress found in the lymphatics. Liposome biodistribution after intravenous administration confirmed the sustained presence of liposomes within the spleen and tumor draining mesenteric lymph nodes for at least 4 days. These results demonstrate the enhanced apoptotic effects of NK cells armored with liposomal TRAIL against clinically relevant colorectal cancer cells, providing the groundwork for in vivo treatment studies in mouse models of colorectal cancer metastasis.
Collapse
Affiliation(s)
| | | | | | - Kevin Liu
- Vanderbilt University Department of Biomedical Engineering
| | | |
Collapse
|
8
|
Ogbodo UC, Enejoh OA, Okonkwo CH, Gnanasekar P, Gachanja PW, Osata S, Atanda HC, Iwuchukwu EA, Achilonu I, Awe OI. Computational identification of potential inhibitors targeting cdk1 in colorectal cancer. Front Chem 2023; 11:1264808. [PMID: 38099190 PMCID: PMC10720044 DOI: 10.3389/fchem.2023.1264808] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction: Despite improved treatment options, colorectal cancer (CRC) remains a huge public health concern with a significant impact on affected individuals. Cell cycle dysregulation and overexpression of certain regulators and checkpoint activators are important recurring events in the progression of cancer. Cyclin-dependent kinase 1 (CDK1), a key regulator of the cell cycle component central to the uncontrolled proliferation of malignant cells, has been reportedly implicated in CRC. This study aimed to identify CDK1 inhibitors with potential for clinical drug research in CRC. Methods: Ten thousand (10,000) naturally occurring compounds were evaluated for their inhibitory efficacies against CDK1 through molecular docking studies. The stability of the lead compounds in complex with CDK1 was evaluated using molecular dynamics simulation for one thousand (1,000) nanoseconds. The top-scoring candidates' ADME characteristics and drug-likeness were profiled using SwissADME. Results: Four hit compounds, namely, spiraeoside, robinetin, 6-hydroxyluteolin, and quercetagetin were identified from molecular docking analysis to possess the least binding scores. Molecular dynamics simulation revealed that robinetin and 6-hydroxyluteolin complexes were stable within the binding pocket of the CDK1 protein. Discussion: The findings from this study provide insight into novel candidates with specific inhibitory CDK1 activities that can be further investigated through animal testing, clinical trials, and drug development research for CRC treatment.
Collapse
Affiliation(s)
| | - Ojochenemi A. Enejoh
- Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja, Nigeria
| | - Chinelo H. Okonkwo
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | | | - Pauline W. Gachanja
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - Shamim Osata
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Halimat C. Atanda
- Biotechnology Department, Federal University of Technology, Akure, Nigeria
| | - Emmanuel A. Iwuchukwu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Olaitan I. Awe
- Department of Computer Science, University of Ibadan, Ibadan, Nigeria
- African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
| |
Collapse
|
9
|
Lopez-Cavestany M, Wright OA, Cassidy AM, Carter AT, King MR. Dual Affinity Nanoparticles for the Transport of Therapeutics from Carrier Cells to Target Cells under Physiological Flow Conditions. ACS OMEGA 2023; 8:42748-42761. [PMID: 38024679 PMCID: PMC10652824 DOI: 10.1021/acsomega.3c05605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
In this study, a novel two-stage nanoparticle delivery platform was developed based on the dual functionalization of a liposome with moieties that have fundamentally different strengths of adhesion and binding kinetics. The essential concept of this system is that the nanoparticles are designed to loosely bind to the carrier cell until they come into contact with the target cell, to which they bind with greater strength. This allows the nanoparticle to be transferred from one cell to another, circulating for longer periods of time in the blood and delivering the therapeutic agent to the target circulating tumor cell. Liposomes were prepared using the lipid cake and extrusion technique, then functionalized with E-selectin (ES), anti-cell surface vimentin antibody fragments, and TRAIL via click chemistry. The binding of dual affinity (DA) liposomes was confirmed with the neutrophil-like cell line PLB985, the colorectal cancer cell line HCT116, and healthy granulocytes isolated from peripheral whole blood under physiologically relevant fluid shear stress (FSS) in a cone-and-plate viscometer. Transfer of the DA liposomes from PLB985 to HCT116 cells under FSS was greater compared to all of the control liposome formulations. Additionally, DA liposomes demonstrated enhanced apoptotic effects on HCT116 cells in whole blood under FSS, surpassing the efficacy of the ES/TRAIL liposomes previously developed by the King Lab.
Collapse
Affiliation(s)
- Maria Lopez-Cavestany
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Olivia A. Wright
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ava M. Cassidy
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexandria T. Carter
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Michael R. King
- Department of Biomedical
Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
10
|
Strelez C, Perez R, Chlystek JS, Cherry C, Yoon AY, Haliday B, Shah C, Ghaffarian K, Sun RX, Jiang H, Lau R, Schatz A, Lenz HJ, Katz JE, Mumenthaler SM. Integration of Patient-Derived Organoids and Organ-on-Chip Systems: Investigating Colorectal Cancer Invasion within the Mechanical and GABAergic Tumor Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557797. [PMID: 37745376 PMCID: PMC10515884 DOI: 10.1101/2023.09.14.557797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Three-dimensional (3D) in vitro models are essential in cancer research, but they often neglect physical forces. In our study, we combined patient-derived tumor organoids with a microfluidic organ-on-chip system to investigate colorectal cancer (CRC) invasion in the tumor microenvironment (TME). This allowed us to create patient-specific tumor models and assess the impact of physical forces on cancer biology. Our findings showed that the organoid-on-chip models more closely resembled patient tumors at the transcriptional level, surpassing organoids alone. Using 'omics' methods and live-cell imaging, we observed heightened responsiveness of KRAS mutant tumors to TME mechanical forces. These tumors also utilized the γ-aminobutyric acid (GABA) neurotransmitter as an energy source, increasing their invasiveness. This bioengineered model holds promise for advancing our understanding of cancer progression and improving CRC treatments.
Collapse
Affiliation(s)
- Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Rachel Perez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - John S Chlystek
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | | | - Ah Young Yoon
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Bethany Haliday
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Curran Shah
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kimya Ghaffarian
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Ren X Sun
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Hannah Jiang
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Roy Lau
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Aaron Schatz
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan E Katz
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Kim YJ, Hyun J. Mechanosensitive ion channels in apoptosis and ferroptosis: focusing on the role of Piezo1. BMB Rep 2023; 56:145-152. [PMID: 36724905 PMCID: PMC10068349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023] Open
Abstract
Mechanosensitive ion channels sense mechanical stimuli applied directly to the cellular membranes or indirectly through their tethered components, provoking cellular mechanoresponses. Among others, Piezo1 mechanosensitive ion channel is a relatively novel Ca2+-permeable channel that is primarily present in non-sensory tissues. Recent studies have demonstrated that Piezo1 plays an important role in Ca2+-dependent cell death, including apoptosis and ferroptosis, in the presence of mechanical stimuli. It has also been proven that cancer cells are sensitive to mechanical stresses due to higher expression levels of Piezo1 compared to normal cells. In this review, we discuss Piezo1-mediated cell death mechanisms and therapeutic strategies to inhibit or induce cell death by modulating the activity of Piezo1 with pharmacological drugs or mechanical perturbations induced by stretch and ultrasound. [BMB Reports 2023; 56(3): 145-152].
Collapse
Affiliation(s)
- Yong-Jae Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Mechanobiology Dental Medicine Research Center, College of Dentistry, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
12
|
Kim YJ, Hyun J. Mechanosensitive ion channels in apoptosis and ferroptosis: focusing on the role of Piezo1. BMB Rep 2023; 56:145-152. [PMID: 36724905 PMCID: PMC10068349 DOI: 10.5483/bmbrep.2023-0002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 08/27/2023] Open
Abstract
Mechanosensitive ion channels sense mechanical stimuli applied directly to the cellular membranes or indirectly through their tethered components, provoking cellular mechanoresponses. Among others, Piezo1 mechanosensitive ion channel is a relatively novel Ca2+-permeable channel that is primarily present in non-sensory tissues. Recent studies have demonstrated that Piezo1 plays an important role in Ca2+-dependent cell death, including apoptosis and ferroptosis, in the presence of mechanical stimuli. It has also been proven that cancer cells are sensitive to mechanical stresses due to higher expression levels of Piezo1 compared to normal cells. In this review, we discuss Piezo1-mediated cell death mechanisms and therapeutic strategies to inhibit or induce cell death by modulating the activity of Piezo1 with pharmacological drugs or mechanical perturbations induced by stretch and ultrasound. [BMB Reports 2023; 56(3): 145-152].
Collapse
Affiliation(s)
- Yong-Jae Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Mechanobiology Dental Medicine Research Center, College of Dentistry, Dankook University, Cheonan 31116, Korea
| |
Collapse
|